JPS58217231A - Electric discharge machine - Google Patents
Electric discharge machineInfo
- Publication number
- JPS58217231A JPS58217231A JP9831882A JP9831882A JPS58217231A JP S58217231 A JPS58217231 A JP S58217231A JP 9831882 A JP9831882 A JP 9831882A JP 9831882 A JP9831882 A JP 9831882A JP S58217231 A JPS58217231 A JP S58217231A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- voltage
- electrodes
- workpiece
- highest
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/14—Electric circuits specially adapted therefor, e.g. power supply
- B23H7/18—Electric circuits specially adapted therefor, e.g. power supply for maintaining or controlling the desired spacing between electrode and workpiece
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は放電加工装置、特に同一の駆動軸に固定され、
互いに電気的に絶縁された複数の電極と同一の被加工物
間に夫々独立した放電加工用電源を接続して、上記被加
工物を放電加工する放電加工装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric discharge machining apparatus, in particular, to a
The present invention relates to an electric discharge machining apparatus that connects independent electric discharge machining power supplies between a plurality of electrodes that are electrically insulated from each other and the same workpiece, and performs electric discharge machining on the workpiece.
第1図は従来のこの種の放電加工装置の回路構成図を示
すものである。第1図において、放電加工用電源toは
4つの独立した電圧源El−に4を内蔵している。給電
フィーダ12.14.16.18は上記電圧源g1.g
4と電極20.22.24.26をそれぞれ接続してい
る。上記4つの電圧源のアースE0は給電フィーダ28
で被加工物30へ接続されている。上記の各電極は絶縁
板32に取付けられて互いに電気的に絶縁され、上記絶
縁板32が電極駆動装置34の駆動軸34aに取付けら
れている。この電極駆動装置は後記の電極送り方向判定
回路から電極送シ指令電圧36の供給を受けて、被加工
物3oへ全ての電極20゜22.24.26を送シ込ん
だり、戻したりする。FIG. 1 shows a circuit diagram of a conventional electric discharge machining apparatus of this type. In FIG. 1, the electric discharge machining power source TO has four independent voltage sources El-. The power supply feeder 12.14.16.18 is connected to the voltage source g1. g
4 and electrodes 20, 22, 24, and 26, respectively. The earth E0 of the above four voltage sources is the power feeder 28
and is connected to the workpiece 30. Each of the above electrodes is attached to an insulating plate 32 to be electrically insulated from each other, and the insulating plate 32 is attached to a drive shaft 34a of an electrode drive device 34. This electrode drive device receives an electrode feed command voltage 36 from an electrode feed direction determination circuit to be described later, and feeds all the electrodes 20 degrees 22, 24, 26 to the workpiece 3o and returns them.
分圧回路38ij:上記各電極20〜26と被加工物3
0との間の加工電圧を分圧するもので、直列接続された
分圧抵抗器40と42にょシ構成され、電極間検出電圧
44を最低電圧フォロア回路46へ出力する。この最低
電圧フォロア回路46は上記電極間検出電圧44のうち
最も低い電極間検出電圧44Lを電極送シ方向判定回路
(レベルシフ)回路)s4へ出力するもので、プルアッ
プ抵抗48とオペアンプ5o及びダイオード52で構成
される理想ダイオードのワイヤードOR回路である。上
記電極送り方向判定回路54は入力された上記電極間検
出最低電圧44LのOVレベルを、基準電圧voでシフ
トして前記電極間検出電圧36を出力する。Voltage dividing circuit 38ij: Each of the above electrodes 20 to 26 and the workpiece 3
It divides the machining voltage between 0 and 0, and is composed of voltage dividing resistors 40 and 42 connected in series, and outputs the inter-electrode detection voltage 44 to the lowest voltage follower circuit 46. This lowest voltage follower circuit 46 outputs the lowest inter-electrode detection voltage 44L among the inter-electrode detection voltages 44 to the electrode feeding direction determination circuit (level shift) circuit s4, and includes a pull-up resistor 48, an operational amplifier 5o, and a diode. 52 is an ideal diode wired OR circuit. The electrode feeding direction determining circuit 54 shifts the OV level of the input minimum inter-electrode detection voltage 44L by a reference voltage vo and outputs the inter-electrode detection voltage 36.
従来の放電加工装置は上記の回路構成からなるもので、
以下、電極20〜26が駆動される様子を第2図、第3
図及び第4図を参照しながら説明する。電極20〜26
と被加工物3oとの間で発生した加工電圧は、分圧回路
38で分圧される。Conventional electrical discharge machining equipment consists of the circuit configuration described above.
Below, the manner in which the electrodes 20 to 26 are driven is shown in Figures 2 and 3.
This will be explained with reference to the figures and FIG. Electrodes 20-26
The machining voltage generated between the workpiece 3o and the workpiece 3o is divided by a voltage dividing circuit 38.
第2図は上記分圧された加工電圧の一例を示すグラフで
、横軸は時刻を表わし縦軸は上記の分圧された加工電圧
を表わす。第2図において、電極20と被加工物30の
電極間検出電圧はグラフ4411電極22と被加工物3
0の電極間検出電圧はグラフ442、電極24と被加工
物30の電極間検出電圧はグラフ443、電極26と被
加工物30の電極間検出電圧はグラフ444である。上
記4つの電極間検出電圧441〜444は最低電圧フォ
ロア回路46により最も低い電極間検出電圧のみ選択さ
れて、第2図の太線グラフ44Lが出力される。FIG. 2 is a graph showing an example of the divided machining voltage, in which the horizontal axis represents time and the vertical axis represents the divided machining voltage. In FIG. 2, the detected voltage between the electrodes 20 and the workpiece 30 is expressed by a graph 4411, the electrode 22 and the workpiece 3.
A graph 442 shows the voltage detected between the electrodes at 0, a graph 443 shows the voltage detected between the electrodes 24 and the workpiece 30, and a graph 444 shows the voltage detected between the electrodes 26 and the workpiece 30. Of the four interelectrode detection voltages 441 to 444, only the lowest interelectrode detection voltage is selected by the lowest voltage follower circuit 46, and the bold line graph 44L in FIG. 2 is output.
電極間検出最低電圧である上記グラフ44Lの出力は、
電極送り方向判定回路54へ入力される。The output of the graph 44L, which is the minimum voltage detected between the electrodes, is
The signal is input to the electrode feeding direction determination circuit 54.
上記判定回路54では入力される電極間検出最低電圧4
4Lと基準電圧■。との差を取り、その差が正の時は符
号を反転して電極を送り込むと共に、上記差に比例した
電極送り込み速度指令を電極駆動装置34へ出力する。In the judgment circuit 54, the input interelectrode detection minimum voltage 4
4L and reference voltage■. When the difference is positive, the sign is reversed and the electrode is fed, and an electrode feeding speed command proportional to the difference is output to the electrode driving device 34.
上記差が負の時は符号を反転して電極を戻すと共に、上
記差に比例した電極戻し速度指令を電極駆動装置34へ
出力する。When the difference is negative, the sign is reversed and the electrode is returned, and an electrode return speed command proportional to the difference is output to the electrode driving device 34.
第3図は上記判定回路54から出力された電極送り指令
電圧36を示すグラフで、ある。第3図において、横軸
は時刻を表わし、縦軸は電極送り込み速度を表わすもの
で、時刻t、における電極の送り込み速度は電極送り込
み指令電圧に比例しており、この1例を横軸に電極送り
指令電圧を表わし、縦軸に電極送り込み速度を表わした
第4図に示す。本例では4つの電極送シ込み速度のうち
最も小さい速度(v38! )で4つの電極が送り込ま
れることを示している。すなわち、最も小さい送り込み
速度の電極をサーボしている。FIG. 3 is a graph showing the electrode feed command voltage 36 output from the determination circuit 54. In Fig. 3, the horizontal axis represents time and the vertical axis represents the electrode feeding speed.The electrode feeding speed at time t is proportional to the electrode feeding command voltage, and this example is plotted on the horizontal axis. This is shown in FIG. 4, which shows the feeding command voltage and the vertical axis shows the electrode feeding speed. This example shows that four electrodes are fed in at the smallest speed (v38!) among the four electrode feeding speeds. In other words, the electrode with the lowest feeding speed is servoed.
従って、4つの電極間・・検出電圧がすべて基準電圧V
0よシ高く、電極と被加工物間が開放ぎみで、放電の頻
度が少ない時に最も小さい電極送シ速度で同時に電極を
送シ込むため、放電の頻度が充分多くなる様な電極と被
加工物との間隙に達するまで電極を送シ込むのに長時間
を要している。この電極送り込みの時間は放電加工に寄
与しない時間であり、上記電極送り込み指令時間が増加
すればするほど、全体の時間の中で放電加工する時間の
割合いが減少し、放電加工速度を増加させるためには障
害となっている欠点がある。また、各電極の加工電圧が
まちまちとなシ、各電極の加工速度が一定しないで、被
加工物の加工面が揃い欠点がある。Therefore, the detection voltage between the four electrodes is all the reference voltage V
0, the electrode and workpiece are almost open, and the electrodes are fed at the same time at the lowest electrode feeding speed when the frequency of discharge is low. It takes a long time to feed the electrode until it reaches the gap between the electrode and the object. This electrode feeding time is a time that does not contribute to electrical discharge machining, and as the electrode feeding command time increases, the proportion of electrical discharge machining time in the total time decreases, increasing the electrical discharge machining speed. There are drawbacks that are an obstacle to this. Further, since the machining voltage of each electrode is different, the machining speed of each electrode is not constant, and the machining surface of the workpiece is uniform, resulting in a disadvantage.
本発明は前述した従来の課題に鑑み為されたものであり
、その目的は電極送り込み指令時間中は最も大きく、か
つ電極間隙の状態に適する速度で電極を送シ、速やかに
放電の頻度が充分多くなる様な電極と被加工物との間隙
とし、電極送り込みに要する時間を少なくして全体の時
間の中で放電加工する時間の割合いを多くシ、放電加工
速度を増加させるとともに各電極の加工電圧のばらつき
を少なくして、被加工物の加工面を均一にすることので
きる放電加工装置を提供することにある。The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to feed the electrode at the maximum speed during the electrode feeding command time and at a speed suitable for the state of the electrode gap, and to quickly increase the frequency of discharge to a sufficient level. Increase the gap between the electrode and the workpiece, reduce the time required to feed the electrode, increase the proportion of the time for electrical discharge machining in the total time, increase the electrical discharge machining speed, and increase the distance between each electrode. It is an object of the present invention to provide an electric discharge machining apparatus that can reduce variations in machining voltage and make the machined surface of a workpiece uniform.
上記目的を達成するために、本発明は、同一の駆動軸に
固定され互いに電気的に絶縁された複数の電極と同一の
被加工物間に夫々独立した放電加工用電源を接続して、
上記被加工物を放電加工する放電加工装置において、上
記複数の電極と被加工物間の最高電圧に比例した電圧を
出力する最高電圧フォロア回路と、上記複数の電源と被
加工物間の最低電圧に比し1」シた電圧を出力する最低
電圧フォロア回路と、上記最高電圧フォロア回路から入
力された電極間検出最高電圧と上記最低電圧フォロア回
路から人力された電極間検出最低電圧とを基準電圧と比
較して電極送シ方向を決定する電極送り方向判定回路と
を備え、上記電極送り方向判定回路から送り込みの判定
があった場合は送り込み速度の最も大きい速度で全ての
電極を駆動し、該電極送シ方向判定回路から戻しの判定
があった場合は戻し速度の最も大きい速度で全ての電極
を駆動する様にしたことを特徴とする。In order to achieve the above object, the present invention connects independent electric discharge machining power supplies between a plurality of electrodes fixed to the same drive shaft and electrically insulated from each other and the same workpiece,
The electrical discharge machining device for electrical discharge machining the workpiece includes a highest voltage follower circuit that outputs a voltage proportional to the highest voltage between the plurality of electrodes and the workpiece, and a minimum voltage between the plurality of power supplies and the workpiece. The lowest voltage follower circuit outputs a voltage 1" higher than the maximum voltage follower circuit, and the highest voltage detected between the electrodes input from the highest voltage follower circuit and the lowest voltage detected between the electrodes manually inputted from the lowest voltage follower circuit are set as a reference voltage. and an electrode feeding direction determination circuit that determines the electrode feeding direction by comparing the electrode feeding direction, and when the electrode feeding direction determining circuit determines feeding, all the electrodes are driven at the highest feeding speed, and the electrodes are driven at the highest feeding speed. The present invention is characterized in that, when a return determination is made from the electrode feeding direction determination circuit, all electrodes are driven at the highest return speed.
以下、図面に基づいて本発明の好適な実施例を説明する
。第5図は前記第1図と同一部分に同一符号を付した本
発明による放電加工装置の一実施例を示す回路構成図で
ある。第5図において、最高電圧フォロア回路56は前
記電極間検出電圧44のうち最も高い電極間検出電圧を
出力するもので、プルダウン抵抗58とオペLンプ60
及びダイオード62で構成される理想ダイオードのワイ
ヤードOR回路である。電極送シ方向判定回路64は最
低電圧フォロア回路46からの出力44LのOvレベル
を基準電圧voでシフトして、次のスイッチ回路66へ
出力するオペアンプ回路68と、最高電圧フォロア回路
56からの出力44HのOvレベルを基準電圧voでシ
フトして、次のスイッチ回路70へ出力するオペアンプ
回路72と、上記オペアンプ回路68の出力が正の場合
にON動作するスイッチ回路66と、上記オペアンプ回
路72の出力が負の場合にON動作するスイッチ回路7
0から構成されている。そして、上記スイッチ回路66
またはスイッチ回路70から電極駆動装置34へ電極送
り指令電圧74が出力される。Hereinafter, preferred embodiments of the present invention will be described based on the drawings. FIG. 5 is a circuit configuration diagram showing an embodiment of the electrical discharge machining apparatus according to the present invention, in which the same parts as in FIG. 1 are given the same reference numerals. In FIG. 5, the highest voltage follower circuit 56 outputs the highest inter-electrode detection voltage among the inter-electrode detection voltages 44, and includes a pull-down resistor 58 and an operational L-amp 60.
This is an ideal diode wired OR circuit composed of a diode 62 and a diode 62. The electrode feeding direction determination circuit 64 shifts the Ov level of the output 44L from the lowest voltage follower circuit 46 by a reference voltage vo, and outputs the same to the next switch circuit 66, and an operational amplifier circuit 68, which shifts the Ov level of the output 44L from the lowest voltage follower circuit 46 and outputs the same to the next switch circuit 66, and the output from the highest voltage follower circuit 56. an operational amplifier circuit 72 that shifts the Ov level of 44H using a reference voltage vo and outputs it to the next switch circuit 70; a switch circuit 66 that is turned on when the output of the operational amplifier circuit 68 is positive; Switch circuit 7 that turns on when the output is negative
Consists of 0. Then, the switch circuit 66
Alternatively, the electrode feed command voltage 74 is output from the switch circuit 70 to the electrode drive device 34.
本発明放電加工装置の一実施例は上記の回゛路構成から
なるもので、以下、電極20〜26が駆動される様子を
第5図、第6図及び第7図を参照しながら説明する。各
電極20〜26と被加工物30との間で発生した加工電
圧は分圧回路38で分圧される。One embodiment of the electrical discharge machining apparatus of the present invention has the circuit configuration described above, and the manner in which the electrodes 20 to 26 are driven will be explained below with reference to FIGS. 5, 6, and 7. . The machining voltage generated between each of the electrodes 20 to 26 and the workpiece 30 is divided by a voltage dividing circuit 38.
第6図は上記分圧された加工電圧の一例を示すグラフで
、横軸は時刻を表わし、縦軸は上記の分圧された加工電
圧を表わす。電極2oと被加工物30の電極間検出電圧
はグラフ4411電極22と被加工物30の電極間検出
電圧はグラフ442、電極24と被加工物3oの電極間
検出電圧はグラフ443、電極26と被加工物3oの電
極間検出電圧はグラフ444である。FIG. 6 is a graph showing an example of the divided machining voltage, in which the horizontal axis represents time and the vertical axis represents the divided machining voltage. The voltage detected between the electrode 2o and the workpiece 30 is shown in a graph 4411, the voltage detected between the electrode 22 and the workpiece 30 is shown in a graph 442, the voltage detected between the electrode 24 and the workpiece 3o is shown in a graph 443, and the voltage detected between the electrodes 26 and 30 is shown in a graph 441. A graph 444 shows the voltage detected between the electrodes of the workpiece 3o.
上記4つの電極間電圧441〜444は最低電圧フォロ
ア回路46及び最高電圧フォロア回路56によシ、最も
低い電極間電圧のみ、または最も高い電極間電圧のみ選
択されて、夫々第6図の太線グラフ44L及び44Hが
出力される。The above-mentioned four interelectrode voltages 441 to 444 are selected by the lowest voltage follower circuit 46 and the highest voltage follower circuit 56 to select only the lowest interelectrode voltage or only the highest interelectrode voltage, respectively, as shown in the bold line graph of FIG. 44L and 44H are output.
電極間検出最低電圧及び電極間検出最高電圧である上記
グラフ44L及び44Hの出力は、電極送り方向判定回
路64へ入力される。上記判定回路64では入力される
電極間検出最低電圧44Lを基準電圧V。との差をとり
、その差が負の時は符号を反転させて、スイッチ回路6
6をON動作させ、電極を戻す様上記差に比例した電極
戻し速度指令を電極駆動装置34へ出力する。上記差が
正の時はスイッチ回路70をON動作させて、入力され
る電極間検出最高電圧44Hと基準電圧v。The outputs of the graphs 44L and 44H, which are the lowest voltage detected between the electrodes and the highest voltage detected between the electrodes, are input to the electrode feeding direction determination circuit 64. In the determination circuit 64, the input interelectrode detection lowest voltage 44L is used as a reference voltage V. If the difference is negative, the sign is inverted and the switch circuit 6
6 is turned on, and an electrode return speed command proportional to the above difference is output to the electrode drive device 34 so as to return the electrode. When the above-mentioned difference is positive, the switch circuit 70 is turned ON, and the inter-electrode detection maximum voltage 44H and the reference voltage v are inputted.
との差をとり、その符号を反転して電極を送り込む様上
記差に比例した電極送シ込み速度指令を電極駆動装置3
4へ出力する。The electrode driving device 3 instructs the electrode feeding speed command proportional to the above difference to feed the electrode by taking the difference between the two and reversing its sign.
Output to 4.
第7図のグラフは上記判定回路64から出力された電極
送り指令電圧74を示すもので、第7図において時刻t
1における電極の送シ込み速度は前記第4図に示すよう
になる。本例では4つの電極送シ込み速度のうち最も大
きい速度(”r43)で4つの電極が送や込まれること
を示している。すなわち、最も大きい送シ込み速度の電
極をサーボしている。The graph in FIG. 7 shows the electrode feed command voltage 74 output from the determination circuit 64, and in FIG.
The feeding speed of the electrode in No. 1 is as shown in FIG. 4 above. This example shows that four electrodes are fed at the highest speed ("r43") among the four electrode feeding speeds. That is, the electrode with the highest feeding speed is servoed.
なお、上記実施例では4つの電極について述べたが電極
の個数は何個であってもよい。また、電極送り方向の判
定に基準電圧v0を使用したが、他の判定方法例えば放
電パルス数の単位時間当シの発生頻度を基準とする、あ
るいは、電極間電圧を電圧−周波数変換して、そのパル
ス数をコンピュータ等に入力し、他の電極間パラメータ
で電極送シを判定してもよい。In addition, although four electrodes were described in the above embodiment, the number of electrodes may be any number. In addition, although the reference voltage v0 was used to determine the electrode feeding direction, other determination methods may be used, such as using the frequency of occurrence of the number of discharge pulses per unit time as a reference, or converting the inter-electrode voltage from voltage to frequency. The number of pulses may be input into a computer or the like, and electrode feeding may be determined based on other interelectrode parameters.
以上のように、本発明は各電極の電極間検出電圧がすべ
て基準電圧V。より高く、電極と被加工物間が開放ぎみ
で、放電頻度が少ない時に最も犬きく、かつ、電極間状
態に応じた電極送り速度で同時に電極を送シ込むように
構成したので、放電の頻度が充分多く成る様な電極と被
加工物間との間隙に達するまで電極を送り込むのに時間
を要しない。すなわち、全体の時間の中で放電加工に寄
与する時間の割合いが多くなって放電加工速度が早くな
る。また、各電極間検出電圧の最高電圧と最低電圧との
間には全ての加工電圧が含まれるため、各電極の加工電
圧が揃い加工速度のばらつきが少なく、被加工物の加工
面が均一にな”′る等の効果が得られる。従って、本発
明は電極数の多いダル放電加工装置等の加工に特に適す
るものである。As described above, in the present invention, the interelectrode detection voltage of each electrode is all the reference voltage V. The structure is such that the electrodes are fed at the same time at a speed that corresponds to the electrode-to-electrode condition, and the discharge frequency is the highest when the gap between the electrode and the workpiece is almost open and the discharge frequency is low. It does not take time to feed the electrode until it reaches a gap between the electrode and the workpiece where there is a sufficiently large number of electrodes. That is, the proportion of time contributing to electrical discharge machining in the total time increases, and the electrical discharge machining speed becomes faster. In addition, all machining voltages are included between the highest and lowest voltages detected between each electrode, so the machining voltages of each electrode are the same, there is little variation in machining speed, and the machined surface of the workpiece is uniform. Therefore, the present invention is particularly suitable for machining with a dull electric discharge machining device having a large number of electrodes.
第1図は従来の放電加工装置の回路構成図、第2図は第
1図回路における電極間検出電圧を示す図、第3図は第
1図回路における電圧送シ指令電圧を示す図、第4図は
電極送シ指令電圧と電極送ル指令速度の関係を示す図、
第5図は本発明放電加工装置の回路構成図、第6図は第
5図回路における電極間検出電圧を示す図、第7図は第
5図回路における電極送シ指令電圧を示す図である。
各図中、同一部材には同一符号を付し、10は放電加工
用電源、12.14.16.18.28は給電フィーダ
、20,22.24.26は電極、30は被加工物、3
2は絶縁板、34は電極駆動装置、36.74は電極送
り指令電圧、38は分圧回路、40,42は分圧用抵抗
、44は′電極間検出電圧、46は最低電圧フォロア回
路、48はプロアツブ抵抗、50.60はオペアンプ、
52.62はダイオード、54.64は電極送シ方向判
定回路(レベルシフト回路)、56は最高電圧フォロア
回路、58はプルダウン抵抗、66.70はスイッチ回
路、68.72はオペアンプ回路である。
代理人 弁理士 葛 野 信 −
(ほか−名)
第1図
第2図
第3図
電擾及し一11L
第4図
特許庁長官殿
1.事件の表示 特願昭 57 98318月2
、発明の名利、 敦電′加f装置
3、補正をする者
代表者片山仁へ部
4、代理人
明細:11の発明σ冗T細/1説明、[ツ1面の曲中な
置・+す+の:IY1.1而、。
以上Figure 1 is a circuit configuration diagram of a conventional electric discharge machining device, Figure 2 is a diagram showing the voltage detected between the electrodes in the circuit of Figure 1, Figure 3 is a diagram showing the voltage sending command voltage in the circuit of Figure 1, Figure 4 is a diagram showing the relationship between the electrode feed command voltage and the electrode feed command speed.
FIG. 5 is a circuit configuration diagram of the electric discharge machining apparatus of the present invention, FIG. 6 is a diagram showing the voltage detected between the electrodes in the circuit shown in FIG. 5, and FIG. 7 is a diagram showing the electrode feed command voltage in the circuit shown in FIG. 5. . In each figure, the same members are given the same symbols, 10 is a power source for electric discharge machining, 12.14.16.18.28 is a power feeder, 20, 22.24.26 is an electrode, 30 is a workpiece, 3
2 is an insulating plate, 34 is an electrode drive device, 36.74 is an electrode feed command voltage, 38 is a voltage dividing circuit, 40 and 42 are voltage dividing resistors, 44 is a detection voltage between electrodes, 46 is a minimum voltage follower circuit, 48 is a pro-assembly resistor, 50.60 is an operational amplifier,
52.62 is a diode, 54.64 is an electrode sending direction determination circuit (level shift circuit), 56 is a highest voltage follower circuit, 58 is a pull-down resistor, 66.70 is a switch circuit, and 68.72 is an operational amplifier circuit. Agent Patent Attorney Shin Kuzuno - (and others) Figure 1 Figure 2 Figure 3 Telephone reference 11L Figure 4 Mr. Commissioner of the Patent Office 1. Display of the case Special application No. 57 983 August 2
, Benefits of the invention, Atsushi's addition device 3, Representative Hitoshi Katayama of the person making the amendment Part 4, Agent details: 11 inventions σ red T details / 1 explanation, +su+no: IY1.1. that's all
Claims (1)
縁された複数の電極と同一の被加工物間に夫々独立した
放電加工用電源を接続して、上記被加工物を放電加工す
る放電加工装置において、上記複数の電極と被加工物間
の最高電圧に比例した電圧を出力する最高電圧フォロア
回路と、上記複数の電極と被加工物間の最低電圧に比例
した電圧を出力する最低電圧フォロア回路と、上記最高
電圧フォロア回路から入力された電極間検出最高電圧と
上記最低電圧フォロア回路から入力された電極間検出最
低電圧とを基準電圧と比較して電極送シ方向を決定する
電極送シ方向判定回路とを備え、上記電極送シ方向判定
回路から送シ込みの−・判定があった場合は送り込み速
度の最も大きい速度で全ての電極を駆動し、該電極送シ
方向判定回路から戻しの判定があった場合は戻し速度の
最も太きい速度で全ての電極を駆動する様にしたことを
特徴とする放電加工装置。(1) Electrical discharge in which independent electrical discharge machining power sources are connected between a plurality of electrodes fixed to the same drive shaft and electrically insulated from each other and the same workpiece, and the workpiece is electrically discharged. In the processing device, a highest voltage follower circuit outputs a voltage proportional to the highest voltage between the plurality of electrodes and the workpiece, and a lowest voltage follower circuit outputs a voltage proportional to the lowest voltage between the plurality of electrodes and the workpiece. a follower circuit, and an electrode feeding device that determines the electrode feeding direction by comparing the highest voltage detected between the electrodes input from the highest voltage follower circuit and the lowest voltage detected between the electrodes inputted from the lowest voltage follower circuit with a reference voltage. If the electrode feeding direction judgment circuit determines that the electrode feeding direction is full, all electrodes are driven at the highest feeding speed, and the electrode feeding direction judgment circuit drives the electrodes at the highest feeding speed. An electric discharge machining apparatus characterized in that, when a return is determined, all electrodes are driven at the highest return speed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9831882A JPS58217231A (en) | 1982-06-08 | 1982-06-08 | Electric discharge machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9831882A JPS58217231A (en) | 1982-06-08 | 1982-06-08 | Electric discharge machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58217231A true JPS58217231A (en) | 1983-12-17 |
JPS6331326B2 JPS6331326B2 (en) | 1988-06-23 |
Family
ID=14216559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9831882A Granted JPS58217231A (en) | 1982-06-08 | 1982-06-08 | Electric discharge machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58217231A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009166190A (en) * | 2008-01-17 | 2009-07-30 | Mitsubishi Electric Corp | Wire electric discharge machining apparatus |
JP2014097568A (en) * | 2012-11-14 | 2014-05-29 | General Electric Co <Ge> | Diesinking electric discharge machining device and related method of operation |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51122896A (en) * | 1975-04-18 | 1976-10-27 | Mitsubishi Electric Corp | Electric discharge machining device |
JPS5511451A (en) * | 1978-07-10 | 1980-01-26 | Hitachi Ltd | Roller table |
-
1982
- 1982-06-08 JP JP9831882A patent/JPS58217231A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51122896A (en) * | 1975-04-18 | 1976-10-27 | Mitsubishi Electric Corp | Electric discharge machining device |
JPS5511451A (en) * | 1978-07-10 | 1980-01-26 | Hitachi Ltd | Roller table |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009166190A (en) * | 2008-01-17 | 2009-07-30 | Mitsubishi Electric Corp | Wire electric discharge machining apparatus |
JP2014097568A (en) * | 2012-11-14 | 2014-05-29 | General Electric Co <Ge> | Diesinking electric discharge machining device and related method of operation |
Also Published As
Publication number | Publication date |
---|---|
JPS6331326B2 (en) | 1988-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4071729A (en) | Adaptive control system and method for electrical discharge machining | |
JPH03104517A (en) | Power source device for electric discharge processing | |
US4292490A (en) | Electrical discharge machining power supply with digitally controlled on and off time and protective system | |
US4387285A (en) | Power source for wire-cut electric discharge machines | |
US4479046A (en) | Single power source arc welding apparatus | |
JPS58217231A (en) | Electric discharge machine | |
US3035149A (en) | Discharge machining apparatus and method | |
US3131325A (en) | Arc welding system | |
US4002885A (en) | Servo feed system for a wire electrode type electrical discharge machining apparatus | |
US3390246A (en) | Electrical discharge machining power supply circuit | |
US3775578A (en) | Polarity reversal system for electrical discharge machining apparatus | |
US3727024A (en) | Electrical discharge machining servo control circuit | |
US3511966A (en) | Arc welding control apparatus | |
JPS54156295A (en) | Wire-cut electric discharge machining device | |
US4733043A (en) | Ram stabilizing circuit for electrical discharge machine | |
SU952495A1 (en) | Pulse generator for electric discharge machine | |
JPS6044090B2 (en) | Electric discharge machining equipment | |
JPS59134621A (en) | Electric discharge machine | |
JPS59152017A (en) | Electrical discharge processing device | |
KR950006365B1 (en) | Power switching circuit for a electro discharge machine | |
JPH0230810B2 (en) | ||
JPS59124519A (en) | Wire-cut electro-discharge machining device | |
JPS6057972B2 (en) | Electric discharge machining equipment | |
JPS622926B2 (en) | ||
SU1673327A1 (en) | Installation for electric discharge alloying |