JPS6125723A - Method and device for controlling electric discharge processing power supply - Google Patents

Method and device for controlling electric discharge processing power supply

Info

Publication number
JPS6125723A
JPS6125723A JP14137984A JP14137984A JPS6125723A JP S6125723 A JPS6125723 A JP S6125723A JP 14137984 A JP14137984 A JP 14137984A JP 14137984 A JP14137984 A JP 14137984A JP S6125723 A JPS6125723 A JP S6125723A
Authority
JP
Japan
Prior art keywords
current
electric discharge
counter
output
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14137984A
Other languages
Japanese (ja)
Other versions
JPH0429492B2 (en
Inventor
Yoshio Ozaki
尾崎 好雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14137984A priority Critical patent/JPS6125723A/en
Publication of JPS6125723A publication Critical patent/JPS6125723A/en
Publication of JPH0429492B2 publication Critical patent/JPH0429492B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
    • B23H1/022Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges for shaping the discharge pulse train

Abstract

PURPOSE:To enable the optional alteration of the peak value and rise ratio per unit time of the amplitude of electric discharge current pulse, by performing binary addition to an electrical current at the least significant bit of a counter to set other electrical currents at the more significant bits thereof. CONSTITUTION:When electric discharge is caused, the output of the electrical current pulse width setting unit 5 of a control means for the processing power supply of an electric discharge processing quipment takes a level H, a train of pulses is sent out from a NAND element 4, a counter 8 starts counting, outputs corresponding to a number of pulses are sent out from output terminals A0-D0, and an electrical current is stepwise increased as an inter-electrode current wave form. When the output of the counter 8 which corresponds to the current in the gap between electrodes has reached a value set by a current peak value setting unit 12, a condition for the element 4 is blocked to stop the passage of the train of pulses. The peak value and rise ratio per unit time of the amplitude of electric discharge current pulse can thus be optionally altered.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、加工電極と被加工物との間隙に間欠放電ケ
発生させ、被加工物を加工する放電加工装置の加工用電
源の制御方法および装置に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for controlling a machining power source of an electric discharge machining device that machines a workpiece by generating intermittent electric discharge in the gap between a machining electrode and a workpiece, and It is related to the device.

〔従来技術〕[Prior art]

従来、この踵の放電加工装置用電源としては。 Conventionally, as a power source for this heel electrical discharge machining device.

特公昭44−13195号公報に示すものがあった、こ
の装置は、加工電極と被加工物との間に電FE’&印加
して放電させ、放電が発生したのち所定時間電流を流し
、そののち所定時間休止とする装置である。
This device, which was disclosed in Japanese Patent Publication No. 44-13195, applies an electric current FE'& between the machining electrode and the workpiece to cause a discharge, and after the discharge occurs, a current is passed for a predetermined period of time. This is a device that then shuts down for a predetermined period of time.

この装置によれば、電流パルス中と電流波高値な適半に
すれば、電極消耗の少ない加工ケ行えることが知られて
いる。しかしながら、この装置では。
According to this apparatus, it is known that processing can be performed with less electrode wear if the current pulse and current peak values are set at an appropriate level. However, with this device.

銅を加工電極に鉄系?被加工物として、かつ電極を正電
位とする例にとれば、電極重量消耗率にて1〜5%程度
まで低減できるが、それ以下の消耗率は電流パルス巾を
著しく長くすることに工ってQ】み得られ、この条件で
は放電周波数が高くならないので、加工速度が極端に低
下する等の不都合があった。
Processing copper with iron-based electrodes? If we use the workpiece as an example and the electrode is at a positive potential, the electrode weight consumption rate can be reduced to about 1 to 5%, but a consumption rate lower than that will require a significant increase in the current pulse width. Q] Under these conditions, the discharge frequency could not be increased, so there were disadvantages such as an extremely low machining speed.

また、他の例として特公昭47−2840−g公報に示
すものがあり、この装置では電極重量消耗率を0.1チ
もしくはそわ以下にできることが知られてい也この装置
では、電流パルスの前縁お工び後縁の立上り及び立下り
を急にすると共に、パルス持続時間中、その電流振巾値
乞増大させることにより電極消耗ケ少なくする方法で、
(イ)パルス電流振中値の初期値お工びこの電流振中値
の単位時間当りの上昇率を調整できる工5にする。(o
lインダクタンス及び抵抗な可変のものとする。(ハ)
放電空隙と並列に、コンデンサ及び第1ゲートを直列に
接続しこの直列回路とインダクタンス及び抵抗の並列回
路との接続点YliE2l第1ゲート加工物に接続する
6(−1:l第1ゲートと並列に一方向導電素子を一力
の制御整流器に対して逆並列に接続するn等で構成され
ている。
Another example is the one shown in Japanese Patent Publication No. 47-2840-g, in which it is known that the electrode weight consumption rate can be reduced to less than 0.1 inch or less. A method of reducing electrode wear by making the rising and falling edges of the trailing edge steeper and increasing the current amplitude during the pulse duration,
(a) Setting the initial value of the pulse current oscillation value This step 5 is used to adjust the rate of increase per unit time of the current oscillation value. (o
The inductance and resistance shall be variable. (c)
A capacitor and a first gate are connected in series in parallel with the discharge gap, and a connection point between this series circuit and a parallel circuit of an inductance and a resistance is connected to the first gate workpiece 6(-1:l in parallel with the first gate). The rectifier is constructed by connecting a one-way conductive element in antiparallel to a single-power control rectifier.

一般に、前者01装置は、その変形、改良を含めてよく
利用されているが、後者の装置は殆んど利用さねでいな
い。また、低電極消耗加工が必要なとぎでも、前者の装
置により加工速度な中性ζこして使用しているが通例で
ある。後者の装置b″−−使用!−ねていない理由とし
ては、回路がコンデンサ。
In general, the former 01 device is often used, including its modifications and improvements, but the latter device is hardly used. In addition, even for sharpening tools that require low electrode consumption processing, the former device is usually used to obtain a neutral ζ strainer that increases the processing speed. The reason why the latter device is not used is because the circuit is a capacitor.

インダクタンス及び抵抗を含み複雑であること、加工条
件馨変更するにはコンデンサ、インダクタンス及び抵抗
を変更する必要があり、踵々Q)用途及び加工内容に適
した値を選択することが困難であること、ピーク電流が
高くなりすぎ低面粗度1ご適さない等がある。
It is complex, including inductance and resistance, and changing the processing conditions requires changing the capacitor, inductance, and resistance, making it difficult to select values suitable for the application and processing details. , the peak current becomes too high and low surface roughness level 1 is not suitable.

〔発明の概要〕[Summary of the invention]

この発明は、上記の工5な従来のもCD O)欠点を除
去するためになさ第1たもので、カウンタと、このカウ
ンタのバイナリ出力端子に対応するスイッチング素子を
有し、かつカウンタ0ノ最下位ビットの電流値loに対
し、上位置ビットになるにつれてio×2nとし、各電
流を2進加算することに工す、放電電流パルス波形の振
中値の単位時間当り0)上昇率及びピーク値を任意に、
しかも簡単に変更回部とする放電加工装置の加工用電源
制御方法および装置を提供するものである。
This invention has been made to eliminate the drawbacks of the conventional CDO described above, and has a counter and a switching element corresponding to the binary output terminal of the counter, 0) Rise rate per unit time of the midpoint value of the discharge current pulse waveform, which is calculated by adding io×2n to the current value lo of the least significant bit and adding each current in binary as the upper bits move up. set the peak value arbitrarily,
Furthermore, the present invention provides a machining power supply control method and apparatus for an electrical discharge machining apparatus that can be easily changed.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明による一実施例ケ図について説明する。 Hereinafter, one embodiment of the present invention will be explained.

第1図において、(1)はクロック信号発生器、(2)
はバイナ1)・レートマルチプライヤ(例えばSN 7
497)、(6)はスロープ率設定器で、バイナリ信号
ケバイナリ・レートマルチプライヤ(2)に入力する。
In FIG. 1, (1) is a clock signal generator, (2)
is a binary 1) rate multiplier (e.g. SN 7
497) and (6) are slope rate setters, which are input to the binary rate multiplier (2).

 [41はNAND素子、(5)は電流パルス巾設定器
、(6)は電圧パルス中設定器、(ハはワンショット・
マルチバイブレータ、(8)はカウンタ、(9)ハ初期
電流設定器で、バイナリ信号tカウンタ(8)に入力す
る。
[41 is a NAND element, (5) is a current pulse width setter, (6) is a voltage pulse width setter, (C is a one-shot
The multivibrator, (8) is a counter, and (9) C is an initial current setting device, which inputs a binary signal to the counter (8).

(10)ハハ′ワー素子ドライブ回路で、カウンタ(8
)の各バイナリ出力に対応した信号なパワー素子に伝え
、スイッチングン行わせる回路1・ある、、(11)は
ディジタルコンパレータ(例えば三菱電機M74L88
5P)、  (12)は電流ピーク値設定器である。
(10) In the power element drive circuit, the counter (8
) is a circuit that transmits the signal corresponding to each binary output to the power element and performs switching.
5P), (12) is a current peak value setter.

第2図は、電流パルス巾設定器(51と電圧)くルス巾
設定器(6)馨説明するブロック図であり、(13)i
ま被加工物、(14)は加工電極、  (15)は極間
冨Ff、Y検出し分圧するための抵抗、(16)はコン
パレータで、基草電圧と極間3f、Eの分圧値とを比較
する。 (17)ハワンショット・マルチバイブレータ
、(18)ijNOT 素子、(19111電流パルス
巾力ウント回路で。
FIG. 2 is a block diagram illustrating the current pulse width setting device (51 and voltage), the pulse width setting device (6), and (13) i
The workpiece, (14) is the machining electrode, (15) is the resistor for detecting the gap between the electrodes Ff and Y and dividing the voltage, and (16) is the comparator, which is the base voltage, the gap between the electrodes 3f, and the partial pressure value of E. Compare with. (17) Hawanshot multivibrator, (18) ijNOT element, (19111 current pulse width und circuit).

放電電流のパルス巾Y設定する機峠な有し、カウンタ等
で構成される。
It consists of a device that sets the pulse width Y of the discharge current, a counter, etc.

第6図は、パワースイッチング回路で、抵抗R1〜B@
、スイッチング素子TR4〜TR,(トランジスタ)と
で構成され、(21)は直流電圧源、  (io)はノ
くワー素子ドライブ回路、(13)は被加工物、  (
14)は加工電極であり、抵抗11,1〜T(、はその
値がR,−=Ri/2″(y+=1〜8)となる工5に
決められている。
Figure 6 shows a power switching circuit with resistors R1 to B@
, switching elements TR4 to TR, (transistors), (21) is a DC voltage source, (io) is a blower element drive circuit, (13) is a workpiece, (
14) is a machining electrode, and the resistances 11,1 to T(,) are determined to be a machining electrode whose value is R, -=Ri/2'' (y+=1 to 8).

次に、第4図のタイミングチャー)7参照しながら、動
作について駅間する。先ず第2図において、幇王パルス
中設定器(6)の出力がHレベルのとき、即ち極間に電
E’に印加している状態で、このとき放電が発生すると
極間間隙の′t71FE、が低下し、こし乞コンパレー
タ(16)がとらえ、ワンショット・マルチバイブレー
タ(17)エリパルス出力が発生する。そ【、て、7流
パルス1]設定器(5)は、NOT素子(18)エリ放
電発生のタイミングな受けとり、電流パルス巾カウント
回路(19)’l’動作させて所定の電流ハルス巾をカ
ウントし、カウント後電流パルス発振器(5)に出力す
ると同時に電工パルス発振器(6)に出力し、固設定器
の出力YLレベルにし、これにより極間間隙への電圧印
加を停止する。休止パルス巾カウント回路(20)は、
電圧パルス中設定器(6)の信号により動作を開始し、
所定休止時間カウント後、′kx8:パルス巾設定器(
6)の出力yrHレベルとし、再び極間間隙に電圧が印
加さねる。第1図において、電圧パルス巾設定器(61
の出力がLレベルのとぎ、カウンタ(8)の出力端子A
。+ Bo + (−o +D0は全てLレベルとなり
、パワー素子ドライブ回路(10)lばパワー素子TR
,1〜TR,8ケ全てOFF’にする、一方、電圧パル
ス巾設定器(6)の出力がHレベルになると、カウンタ
(8)はパルス入力端子(CD)の入力が可能となり、
またワンシフソト・マルチパイブレーC71,cりのパ
ルス信号にロード端子(LO)に受け、初期電流値設定
器(9)の出力を読み込み、出力端子A6 、B6 、
C(1、Doに出力する。例えば、初期電流値設定器(
9)のデータがDA、DBb″−Hレベル、 DC,D
DがLレベルとすると、パワー素子TR,、、TR・2
がオン5TP3〜TR8がオフとなり、これにより抵抗
R,l、R,,が極間に接続される。また、バイナリ・
レートマルチプライヤ(2)の出力は、スロープ率設定
器(81に1って設定された周波数をもつパルス列とな
り、NAND素子(41へ出力されているが、電流パル
ス中設定器(51の出力がLレベルのときはNAND条
件が成立せず、カンタ(8)にはパルス列は出力されな
い。
Next, while referring to the timing chart (7) in FIG. 4, we will discuss the operation. First, in Fig. 2, when the output of the O-pulse setter (6) is at H level, that is, when the voltage E' is being applied between the electrodes, if a discharge occurs at this time, 't71FE' of the gap between the electrodes will change. , decreases, is detected by the comparator (16), and an elipulse output from the one-shot multivibrator (17) is generated. The [7 current pulse 1] setting device (5) receives the timing of the occurrence of electric discharge from the NOT element (18) and operates the current pulse width counting circuit (19) 'l' to obtain a predetermined current Halus width. After counting, it is output to the current pulse oscillator (5) and at the same time, it is output to the electrical pulse oscillator (6) to set the output of the fixed setting device to YL level, thereby stopping the voltage application to the gap between the poles. The pause pulse width count circuit (20) is
Starts operation by the signal from the voltage pulse setting device (6),
After counting the predetermined rest time, 'kx8: Pulse width setting device (
6), and no voltage is applied to the gap between the electrodes again. In FIG. 1, the voltage pulse width setting device (61
When the output of the counter (8) reaches L level, the output terminal A of the counter (8)
. + Bo + (-o All +D0 become L level, and the power element drive circuit (10) becomes the power element TR.
, 1 to TR, all 8 are turned OFF'. On the other hand, when the output of the voltage pulse width setting device (6) becomes H level, the counter (8) becomes possible to input the pulse input terminal (CD),
In addition, the load terminal (LO) receives the pulse signal of the one-shift multi-pipe brake C71, c, reads the output of the initial current value setter (9), and outputs the output terminals A6, B6,
C(1, output to Do. For example, initial current value setter (
9) Data is DA, DBb″-H level, DC, D
When D is at L level, power elements TR,..., TR・2
are turned on, and 5TP3 to TR8 are turned off, thereby connecting the resistors R, l, R, , between the poles. Also, binary
The output of the rate multiplier (2) becomes a pulse train with a frequency set to 1 in the slope rate setter (81), and is output to the NAND element (41), but the output of the current pulse setter (51) is output to the NAND element (41). When it is at L level, the NAND condition is not satisfied and no pulse train is output to the counter (8).

放電が発生すると、電流パルス巾設定器(5)の出力は
Hレベルとなり、パルス列がNAD素子(4)工す出力
され、カウンタ(8)はカウントを開始しパルス数に応
じて出力端子AO# BO@ C0e D(lエリ出力
さね1、第4図に示される極間電流波形の工うに階段状
に電流が増加する。一方、カウンタ(81の出力端子は
、ディジタルコンパレータ(11トも出力されており。
When discharge occurs, the output of the current pulse width setting device (5) becomes H level, a pulse train is output to the NAD element (4), the counter (8) starts counting, and the output terminal AO# is output according to the number of pulses. BO@C0e D(lEri output level 1) The current increases in a stepwise manner according to the current waveform between the poles shown in Figure 4.On the other hand, the output terminal of the counter (81) is connected to the digital comparator (11 It has been done.

ディジタルコンパレータ(11)は電流ピーク値設定器
(12′y/)出力と比較し、カウンタ(8)の出力が
小さい間は出力端子YHレベルとし、逆にカウンタ(8
)の出力が等しくなるか、もしくは大きくなるとLレベ
ルとし、NAND素子(4)へ出方し、即ち極間間隙の
電流に対応するカウンタ(8)の出力が電流ピーク値設
定器(12)で設定さねた値に到達すると、NAND素
子(41の条件を阻止【、てパルス列の通過を止める。
The digital comparator (11) compares the output of the current peak value setter (12'y/) and sets the output terminal YH level while the output of the counter (8) is small;
) becomes equal or becomes larger, it is set to L level and output to the NAND element (4), that is, the output of the counter (8) corresponding to the current in the gap between the electrodes is set at the current peak value setting device (12). When the set value is reached, the NAND element (blocks the condition 41) stops the pulse train from passing.

第5図は極間のwFE波形fal、電流波形fblIc
 ツイテ、 電[パルス巾設定器(6)出力tel (
!: 1M流パルス巾設定器(5)出力[dlとの対応
を示したものである、 上記実施例においては、電流ステップに相当するパルス
列ケバイナリ・レートマルチプライヤを用いて発生させ
たが、周波数可変の発信器?用いても良い。また、電流
ピーク値設定?ディジメルコンパレータで行ったが、カ
ウンタ等に工っても構成可能である。さらに初期電流設
定?カウンタに初期設定することに裏って行ったが、軍
王パルス巾設定器の出力に直接応答するパワー素子ドラ
イブ回路及びパワー素子を備えてもよい。さらにまた、
上記実施例では、定電圧源と電流制御抵抗な用いてスイ
ッチング回路を構成したが、定電流源を用いて構成して
も上記の実施例と同一の効果以上のように、この発明に
ょわば、カウンタと該カウンタの各出力に対応するスイ
ッチング素子?有し、かつカウンタの最下位ビットの電
流値10に対して上位ビットになるにつむで16X2n
となるようにし、カウンタのカウント動作な放電が発生
した時点より開始するようtこ構成したので、電流パル
ス波形の振幅値の単位時間当りの上昇率おLヒヒーク値
を任意に、しかも簡単に変更することができ、また富、
流ピーク値な一定に維持して面粗度の悪化を防止するこ
とができる。
Figure 5 shows the wFE waveform fal and the current waveform fblIc between the poles.
Tweet, Telephone [Pulse width setting device (6) output tel (
! : This shows the correspondence with the 1M current pulse width setter (5) output [dl. In the above example, a pulse train equivalent to a current step was generated using a binary rate multiplier, but a variable frequency transmitter? May be used. Also, current peak value setting? Although this was done using a Digimel comparator, it can also be configured using a counter, etc. Further initial current setting? Although the counter is initially set, a power element drive circuit and a power element that directly respond to the output of the Gunou pulse width setter may be provided. Furthermore,
In the above embodiment, the switching circuit is configured using a constant voltage source and a current control resistor, but even if the switching circuit is configured using a constant current source, the present invention has the same effect as the above embodiment. , a counter and a switching element corresponding to each output of the counter? and the current value of the least significant bit of the counter is 10, and the current value of the upper bit is 16×2n.
Since the counter is configured so that the counting operation of the counter starts from the moment when the discharge occurs, the rate of increase per unit time of the amplitude value of the current pulse waveform and the low leakage value can be arbitrarily and easily changed. can also be wealth,
It is possible to maintain a constant flow peak value and prevent deterioration of surface roughness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による加工用電源側倒装置の
構成ブロック図、第2図は加工用電源のパルス発振器の
一部回路図、第3図は本発明のパワー回路図、第4図は
タイミングチャート図、第5図は極間¥tIE波形と電
流波形を示す波形図である、 (1)・・・クロック信号発生器、]2)・・・バイナ
リ・レ−トマルチプライヤ、(3)・・・スロープ率設
定器、(4)・・・NANJ)SC−7%(51・・・
電流パルス中設定器、(6)・・・電圧パルス中設定器
、+7ト・・ワンショット・マルチバイブレータ、(8
)・・・カウンタ、(9)・・・初期電流値設定器。 (10)・・・パワー素子ドライブ回路、(11)・・
・ディジタルコンパレータ、(12)・・・電流ピーク
値設定5−(13)・・・被加工物、(14)・・・加
工両極、(15)・・・抵抗、(16)・・コンパレー
タ、  (17)・・・ワンショット・マルチバイブレ
ータ、(18)・・・NOT素子、(19)・・・電流
パルス巾カウント回路+  (20)・・・休止パルス
巾カウント回路、(21)・・・直流電圧源、第5図に
おいて、fal・・・椿間市圧波形、(bl・・・極間
電流波形、(cl・・・電圧パルス巾設定器出力、Td
l・・・電流パルス巾設定器出力、なお、図中同一符号
は同−又は相当部分ケ示すものとする。 代理人 弁理士 木 村 三 朗 111図 L            j 第2図 第3図 第4図 第5図
FIG. 1 is a block diagram of the configuration of a machining power source tilting device according to an embodiment of the present invention, FIG. 2 is a partial circuit diagram of a pulse oscillator of the machining power source, and FIG. 3 is a power circuit diagram of the present invention. Figure 4 is a timing chart, and Figure 5 is a waveform diagram showing interpolation \tIE waveform and current waveform. (1) Clock signal generator, ]2) Binary rate multiplier , (3)... Slope rate setting device, (4)... NANJ) SC-7% (51...
Current pulse setting device, (6)... Voltage pulse setting device, +7...One-shot multivibrator, (8
)...Counter, (9)...Initial current value setter. (10)...Power element drive circuit, (11)...
・Digital comparator, (12)...Current peak value setting 5-(13)...Workpiece, (14)...Both machining poles, (15)...Resistance, (16)...Comparator, (17)... One-shot multivibrator, (18)... NOT element, (19)... Current pulse width counting circuit + (20)... Rest pulse width counting circuit, (21)...・DC voltage source, in Fig. 5, fal...Tsubaki market pressure waveform, (bl...Central current waveform, (cl...Voltage pulse width setting device output, Td
l... Output of current pulse width setting device. Note that the same reference numerals in the drawings indicate the same or corresponding parts. Agent Patent Attorney Sanro Kimura 111 Figure L j Figure 2 Figure 3 Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)加工電極と被加工物との間隙に電圧を印加して間
欠放電を発生させることにより上記被加工物を加工する
放電加工装置において、上記間隙に流す電流の初期値を
定め、放電加工を開始するときに上記初期値の電流を流
し、所定の周期で上記電流値を順次階段状に増加させて
上記電流値が所定のピーク値に達すると上記電流値の増
加を停止することを特徴とする放電加工装置の加工用電
源制御方法。
(1) In an electric discharge machining device that processes the workpiece by applying a voltage to the gap between the machining electrode and the workpiece to generate intermittent discharge, the initial value of the current flowing through the gap is determined, and the electric discharge machining A current having the initial value is passed when starting the process, and the current value is sequentially increased stepwise at a predetermined period, and when the current value reaches a predetermined peak value, the increase in the current value is stopped. A power supply control method for machining of an electrical discharge machining device.
(2)スイッチング素子と電流制限抵抗とを直列に接続
する多数対のスイッチング回路と2進カウンタとを備え
、上記各スイッチング回路が上記2進カウンタのバイナ
リ出力端子に応答するとともに上記各スイッチング回路
の電流値を上記バイナリ出力のビットに対応して初期電
流値i_0×2^nとし、かつ2進カウンタが放電の発
生時点よりパルス列により駆動することを特徴とする放
電加工装置の加工用電源制御装置。
(2) A binary counter and a plurality of pairs of switching circuits each having a switching element and a current limiting resistor connected in series are provided, and each of the switching circuits responds to the binary output terminal of the binary counter, and each of the switching circuits responds to the binary output terminal of the binary counter. A machining power supply control device for an electric discharge machining apparatus, characterized in that the current value is set to an initial current value i_0×2^n corresponding to the bit of the binary output, and the binary counter is driven by a pulse train from the time of occurrence of electric discharge. .
JP14137984A 1984-07-10 1984-07-10 Method and device for controlling electric discharge processing power supply Granted JPS6125723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14137984A JPS6125723A (en) 1984-07-10 1984-07-10 Method and device for controlling electric discharge processing power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14137984A JPS6125723A (en) 1984-07-10 1984-07-10 Method and device for controlling electric discharge processing power supply

Publications (2)

Publication Number Publication Date
JPS6125723A true JPS6125723A (en) 1986-02-04
JPH0429492B2 JPH0429492B2 (en) 1992-05-19

Family

ID=15290623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14137984A Granted JPS6125723A (en) 1984-07-10 1984-07-10 Method and device for controlling electric discharge processing power supply

Country Status (1)

Country Link
JP (1) JPS6125723A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952790A (en) * 1986-12-12 1990-08-28 Institute Of Technology Precision Electrical Discharge Works Electrical discharge machining control circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641367A (en) * 1979-09-10 1981-04-18 Hitachi Chem Co Ltd Electroless plating method
JPS5854938U (en) * 1981-10-12 1983-04-14 株式会社クボタ Dump truck bed side plate mounting structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854938B2 (en) * 1973-03-14 1983-12-07 三菱電機株式会社 Electric discharge machining control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641367A (en) * 1979-09-10 1981-04-18 Hitachi Chem Co Ltd Electroless plating method
JPS5854938U (en) * 1981-10-12 1983-04-14 株式会社クボタ Dump truck bed side plate mounting structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952790A (en) * 1986-12-12 1990-08-28 Institute Of Technology Precision Electrical Discharge Works Electrical discharge machining control circuit

Also Published As

Publication number Publication date
JPH0429492B2 (en) 1992-05-19

Similar Documents

Publication Publication Date Title
JP2939310B2 (en) Electric discharge machine
US3705287A (en) Process for shaping workpiece by electrical discharge and apparatus therefor
US4945199A (en) Electric discharge machining method and device
US4695696A (en) Electric discharge machine with control of the machining pulse's current value in accordance with the delay time
JPH0338053B2 (en)
US4117384A (en) Tachogenerator processing circuits and motor speed control systems including such circuits
JPS6125723A (en) Method and device for controlling electric discharge processing power supply
US3518434A (en) X-ray tube rotatable anode control circuit with means to sense and control anode motor current
US3809847A (en) Method and apparatus for electrical discharge machining
US3781640A (en) Arc working power supply with saturable reactor current control
JPS5911792A (en) Drive control circuit for motor
JPS61182721A (en) Electric discharge circuit of electric discharge machine
USRE29361E (en) Process for shaping workpiece by electrical discharge and apparatus therefor
JP3343025B2 (en) Power supply device for electric discharge machine and control method thereof
JPH07290317A (en) Electric discharge machining method and device therefor
JPH0329530B2 (en)
JPH02294269A (en) Power supply device
JP3019670B2 (en) Electric discharge machine
JP2684918B2 (en) EDM control device
JPS6367439B2 (en)
JPS58217231A (en) Electric discharge machine
JPS6057972B2 (en) Electric discharge machining equipment
JPH0450124B2 (en)
JPH0234732B2 (en) HODENKAKOYODENGENNOSEIGYOHOHO
JP2739221B2 (en) Discharge current supply device for electric discharge machine