JPS59134621A - Electric discharge machine - Google Patents
Electric discharge machineInfo
- Publication number
- JPS59134621A JPS59134621A JP677983A JP677983A JPS59134621A JP S59134621 A JPS59134621 A JP S59134621A JP 677983 A JP677983 A JP 677983A JP 677983 A JP677983 A JP 677983A JP S59134621 A JPS59134621 A JP S59134621A
- Authority
- JP
- Japan
- Prior art keywords
- machining
- pulse
- power source
- processing
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/02—Wire-cutting
- B23H7/04—Apparatus for supplying current to working gap; Electric circuits specially adapted therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は電極と被加工体を対向した間隙にパルス放電を
行なって加工する放電加工装置、ワイヤカット放電加工
装置、放電を利用しICC研削エニー装置改良に係る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrical discharge machining device that processes a gap between an electrode and a workpiece by applying pulsed discharge to face each other, a wire-cut electrical discharge machining device, and an improved ICC grinding any device using electric discharge.
電極、被加工体の加工間隙にパルス放電を゛繰返すとき
、電極加工面に炭化物とか加工屑等が付着して形状変形
により加工精度が低下したり、付着物を介してアーク放
電が発生し加ニーが進まなかった。り断線する。また付
着物により目詰りを起して研削加工が低下するといった
事が起る。When pulse discharge is repeated in the machining gap between the electrode and the workpiece, carbide or machining debris may adhere to the electrode machining surface, deforming the shape and reducing machining accuracy, or arc discharge may occur through the deposits, causing machining. The knee did not progress. The wire breaks. In addition, the grinding process may deteriorate due to clogging due to deposits.
このため従来、加工用電源に被加工体側を陽極とする正
極性パルスと被加工体側を陰極とする負極性パルスとを
有するパルスを供給する電源を用いることが試みられて
いる。しかしながら正極性パルスと負極性パルスの電流
波高値が等しい場合電極の消耗量が増加し、その分波加
工体の加工量が減少して結果的に加工速度が低下する欠
点がある。For this reason, conventionally, attempts have been made to use a power source for machining that supplies pulses having a positive polarity pulse with the workpiece side as an anode and a negative polarity pulse with the workpiece side as a cathode. However, if the current peak values of the positive polarity pulse and the negative polarity pulse are equal, the amount of electrode wear increases, and the amount of machining of the wave-processed object decreases, resulting in a decrease in machining speed.
本発明はこの欠点を除去するために、加工用電源の出力
に出力パルスの正極性パルス電流波高値と負極性パルス
−電流波高値との一方若しくは両方を変更制御する回路
を設けたものである。In order to eliminate this drawback, the present invention is provided with a circuit that changes and controls one or both of the positive pulse current peak value and the negative pulse current peak value of the output pulse in the output of the processing power source. .
以下図面の一実施例により本発明を説明する。The present invention will be explained below with reference to an embodiment of the drawings.
第1図において、1はワイヤ電極で、リール2.から供
給され他方のリール3に巻取られる。4は加工部上下の
ガイドで、リール2から供給されたワイヤ1がこのガイ
ド4間を所定の張力と速度をもって走行移動しリール3
に巻取られる。5がキャプスタン、6がブレーキ、7が
ガイド4間のワイヤ電極1に対向させた被加工体で、通
常図示しないテーブルに固定され、テーブルはNC制御
装置により制御されるX−Y平面方向の送りモータによ
り駆動制御される。8はワイヤ電極1と被加工体7の対
向間隙に正極性パルス及び負極性パルスを交互に供給す
る加工用電源、9はコンデンサ10とスイッチ素子11
との直列回路と、及びダイオード12の単極性1〜リガ
回路とからなる正極性パルス電流波高値の増大制御する
回路で、加工用型#i8の出力に並列接続しである。1
3は加工間隙に並列接−統したコンデンサである。In FIG. 1, 1 is a wire electrode, reel 2. and is wound onto the other reel 3. Reference numeral 4 denotes guides above and below the processing section, and the wire 1 supplied from the reel 2 runs between these guides 4 with a predetermined tension and speed to the reel 3.
It is wound up. 5 is a capstan, 6 is a brake, and 7 is a workpiece opposed to the wire electrode 1 between the guides 4, which is usually fixed to a table (not shown), and the table is controlled by an NC control device in the X-Y plane direction. The drive is controlled by a feed motor. 8 is a processing power source that alternately supplies positive and negative pulses to the opposing gap between the wire electrode 1 and the workpiece 7; 9 is a capacitor 10 and a switch element 11;
This is a circuit for controlling the increase in the peak value of the positive pulse current, which is made up of a series circuit of the diode 12 and a unipolar 1 to RIGA circuit of the diode 12, and is connected in parallel to the output of the processing type #i8. 1
3 is a capacitor connected in parallel to the machining gap.
加工用電源8の出ノjパルスは第2図に示すように正、
逆交互にパルス出力する。出力パルスはワイヤ1と被加
工体7間に加わって放電を行ない相対移動形状の切断加
工が行なわれる。しかるにワイヤと被加工体間に流れる
パルス電流は、加工用電源8から出力するパルスが被加
工体7を陽極とする正極性パルスが出力するときはダイ
オード12を通してスイッチ11にトリガ電圧が加わり
、スイン、チ11オンしてコンデンサ10を充電すると
共に充電電荷の放電が行なわれる。このコンデンサ10
の放電電流は常時充放電を繰返すコンデンサ13の放電
に重畳するから正極パルスの放電電流波高値は増大する
。次に加工用電源8から被加工体7を陰極とする負極性
パルスが出力するときはスイッチ11はトリガされない
からコンデンサ10は充電されずコンデンサ13だけの
放電が行なわれ負極性パルス電流波高値は低く制御され
る。なおコンデンサ10及び13の容量の選択によって
電流波高値は任意に選択制御され、正極性パルス電流波
高値ど負極性パルス電流波高値の変更制御が行なえる。The output j pulse of the machining power supply 8 is positive as shown in FIG.
Pulses are output alternately in reverse. The output pulse is applied between the wire 1 and the workpiece 7 to generate electrical discharge, thereby performing cutting in a relatively moving shape. However, when the pulse current flowing between the wire and the workpiece is outputted from the machining power supply 8 as a positive pulse with the workpiece 7 as the anode, a trigger voltage is applied to the switch 11 through the diode 12, and the switch is switched on. , 11 is turned on to charge the capacitor 10, and at the same time, the charged charge is discharged. This capacitor 10
Since the discharge current is superimposed on the discharge of the capacitor 13, which is constantly charged and discharged, the peak value of the discharge current of the positive pulse increases. Next, when the machining power supply 8 outputs a negative pulse with the workpiece 7 as the cathode, the switch 11 is not triggered, so the capacitor 10 is not charged and only the capacitor 13 is discharged, and the peak value of the negative pulse current is controlled low. The current peak value can be arbitrarily selected and controlled by selecting the capacitances of the capacitors 10 and 13, and the negative pulse current peak value can be controlled to change such as the positive pulse current peak value.
一般に被加工体側を陽極とする正極性パルスだけで加工
した場合、勿論諸種加工条件によって異なるが、例えば
加工平均電流が150A / cm 2の加工において
、被加工体の加工量と電極の消耗量との比率はl :
0,3程度である。従って加工速度への寄与率−は全
加工量(被加工体加工聞+電極消耗量)の約60%程度
にしかならない。そこで逆極性パルスを加えてやれば電
極に金属等の付着があるが、その付@量が増大すること
によって加工速度はかえって低下する。In general, when machining is performed using only positive pulses with the workpiece side as the anode, the amount of machining of the workpiece and the amount of electrode wear are different, for example, in machining where the average machining current is 150A/cm2, although it of course varies depending on various machining conditions. The ratio of l:
It is about 0.3. Therefore, the contribution rate to the machining speed is only about 60% of the total machining amount (workpiece machining time + electrode consumption amount). Therefore, if a reverse polarity pulse is applied, metal etc. will adhere to the electrode, but as the amount of the metal adheres increases, the processing speed will actually decrease.
そこで本発明により正極性パルス電流を大きく負極性パ
ルス電流を小さく制御する。即ち、実施例図におけるコ
ンデンサ10を2μm:とし、コンデンサ13を0.0
1μFとした場合加工速度の率は85%程度になった。Therefore, according to the present invention, the positive pulse current is controlled to be large and the negative pulse current is controlled to be small. That is, the capacitor 10 in the example diagram is 2 μm, and the capacitor 13 is 0.0 μm.
When it was set to 1 μF, the machining speed rate was about 85%.
このように本発明では電極の消耗をなくし、また(=J
看量を少なくして加工速度を高めることが容易にできる
。In this way, the present invention eliminates electrode wear and also (=J
It is easy to reduce the amount of work required and increase the processing speed.
第3図は、パルス放電電流の波高値を変更制御する回路
の他の実施例で、(a ”1図はコンデンサト01とス
イッチ111の直列回路に、スイッチ111に並列にイ
ンダクタンス112を接続した回路である。スイッチ1
11は第1図のスイッチ11と同様に正極性パルスが加
えられたとき導通ずるようゲート回路が形成されている
。(b)図は更にインダクタンス112に並列にコンデ
ンサ113を接続した回路、(C)、(d )図はスイ
ッチ111の代りに単方向性ダイオード114を用いた
例である。Figure 3 shows another embodiment of a circuit that changes and controls the peak value of the pulse discharge current. It is a circuit.Switch 1
Similarly to the switch 11 in FIG. 1, a gate circuit 11 is formed so as to become conductive when a positive pulse is applied. The figure (b) shows a circuit in which a capacitor 113 is further connected in parallel to the inductance 112, and the figures (C) and (d) show examples in which a unidirectional diode 114 is used in place of the switch 111.
次に、具体的に実施例を説明すれば、線径0.2■φの
銅線をワイヤ電極とし、被加工体に8550材の厚さ2
.5 m mの板材のワイヤカットを行なうとき、加工
液には比抵抗が約40x 1(10cmの水を用い、加
工パルスがτon4μS、1p1B0A〒キ嗜、 の条
件で、正極性パルス加工にお
いて加工速度が約3211IIll/minであった。Next, to explain a specific example, a copper wire with a wire diameter of 0.2 φ is used as a wire electrode, and a workpiece is made of 8550 material with a thickness of 2 mm.
.. When wire cutting a 5 mm plate material, the machining fluid has a resistivity of approximately 40 was approximately 3211 IIll/min.
この場合のワイヤ電極の走行移動速度は6m /n+t
nであった。そこで負極性パルスを30%加える加工用
電源を用いたときワイヤの走行速度を2m/minに低
下させることができたが、加工速度は約23mm/mi
nに低下した。In this case, the running speed of the wire electrode is 6m/n+t
It was n. Therefore, when using a machining power supply that applies 30% negative polarity pulses, we were able to reduce the wire running speed to 2 m/min, but the machining speed was approximately 23 mm/min.
It decreased to n.
これを本発明により前記加工用電源の出力に第3図(a
)図の回路を接続し、コンデンサ101に1.4μF
1インダクタンス112に3.6μHを用いスイッチ1
11に高速トランジスタスイッチを用いたとき、加工速
度は約311/1nになった。また第3図(b )図の
回路を用い、コンデンサ113に0.06μFを用いた
ときも加工速度はほとんど同じであった。またいずれの
回路を用いた場合においてもワイヤの走行移動速度は2
111 /minで断線することなく安定した加工が行
なわれた。According to the present invention, this is converted to the output of the processing power source as shown in Fig. 3 (a).
) Connect the circuit shown in the figure and connect the capacitor 101 to 1.4 μF.
Switch 1 using 3.6μH for 1 inductance 112
When a high-speed transistor switch was used for No. 11, the processing speed was approximately 311/1n. Further, when the circuit shown in FIG. 3(b) was used and 0.06 μF was used for the capacitor 113, the processing speed was almost the same. Also, no matter which circuit is used, the running speed of the wire is 2
Stable processing was performed at 111/min without any wire breakage.
以上のように本発明は電極消耗を少なくし且つ加工速度
を高めることができる効果があり、ワイヤカットにおい
てはワイヤの使用量を少なくして能率の高い加工ができ
、また加工形状電極を用いる型彫加工においては電極使
用量を少なくして精度の高い加工ができる等実用上効果
が大ぎい。As described above, the present invention has the effect of reducing electrode wear and increasing machining speed, and in wire cutting, it is possible to reduce the amount of wire used and perform highly efficient machining. In engraving, it has great practical effects, such as reducing the amount of electrodes used and allowing highly accurate machining.
なお加工用電源は矩形波パルスを出力するものに限らず
用いることができ、コンデンサと併用して所定極性パル
ス電流の波高値を変更制御するスイッチ、ダイオード等
も同様の機能素子を適宜用い−ることができる。Note that the processing power source is not limited to one that outputs rectangular wave pulses, and can be used in conjunction with a capacitor to change and control the peak value of a pulse current of a predetermined polarity.Switches, diodes, etc. may also use similar functional elements as appropriate. be able to.
第1図は本発明の一実施例図、第2図はその一部機能の
説明図、第3図は他の実施例の一部回路説明図である。
1・・・・・・・・・ワイヤ電極
7・・・・・・・・・被加工体
8・・・・・・・・・加工用電源
10・・・・・・・・・コンデンサ
11・・・・・・・・・スイッチ
12・・・・・・・・・ダイオード
13・・・・・・・・・コンデンサ
101・・・・・・・・・コンデンサ
111・・・・・・・・・スイッチ
112・・・・・・・・・インダクタンス113・・・
・・・・・・コンデンサ
114・・・・・・・・・ダイオード
特 許 出 願 人
株式会社井上ジャパックス研究所
代表者 井 上 潔
;Tit硝
イ2I男
’jay l謳11
)
2
1’f 2FIG. 1 is a diagram showing one embodiment of the present invention, FIG. 2 is a diagram illustrating some of its functions, and FIG. 3 is a diagram illustrating a partial circuit of another embodiment. 1...Wire electrode 7...Workpiece 8...Machining power source 10...Capacitor 11 ......Switch 12...Diode 13...Capacitor 101...Capacitor 111... ...Switch 112...Inductance 113...
・・・・・・Capacitor 114・・・・・・Diode patent applicant Kiyoshi Inoue Representative of Inoue Japax Institute Co., Ltd. f2
Claims (1)
電加工する放電加工装置において、前記加工間隙に被加
工体側を陽極とする正極性パルスと被加工体側を陰極と
する負極性パルスとを有するパルスを加える加工用電源
を設け、該加工用電源の出力に出力パルスの正極性パル
ス電流波高値と負極性パルス電流波高値との一方若しく
は両方を変更制御する回路を設けたことを特徴とする放
電加工装置。In an electric discharge machining device that performs electrical discharge machining by applying a pulse to a machining gap where an electrode and a workpiece face each other, a positive pulse with the workpiece side as an anode and a negative pulse with the workpiece side as a cathode are applied to the machining gap. A processing power source that applies pulses having a certain amount is provided, and a circuit is provided at the output of the processing power source to change and control one or both of the positive pulse current peak value and the negative polarity pulse current peak value of the output pulse. electrical discharge machining equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP677983A JPS59134621A (en) | 1983-01-18 | 1983-01-18 | Electric discharge machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP677983A JPS59134621A (en) | 1983-01-18 | 1983-01-18 | Electric discharge machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59134621A true JPS59134621A (en) | 1984-08-02 |
Family
ID=11647657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP677983A Pending JPS59134621A (en) | 1983-01-18 | 1983-01-18 | Electric discharge machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59134621A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5874703A (en) * | 1994-09-15 | 1999-02-23 | Agie Sa | Method and apparatus for impulse generator for electroerosive machining of workpieces |
US20110114604A1 (en) * | 2008-07-24 | 2011-05-19 | Mitsubishi Electric Corporation | Electric discharge machining apparatus, electric discharge machining method, and semiconductor substrate manufacturing method |
JP2012125880A (en) * | 2010-12-15 | 2012-07-05 | Tokyo Cathode Laboratory Co Ltd | Multiwire electric discharge machining apparatus and method for manufacturing silicon carbide plate using the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51108397A (en) * | 1975-03-20 | 1976-09-25 | Inoue Japax Res | HODENKAKO SOCHI |
-
1983
- 1983-01-18 JP JP677983A patent/JPS59134621A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51108397A (en) * | 1975-03-20 | 1976-09-25 | Inoue Japax Res | HODENKAKO SOCHI |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5874703A (en) * | 1994-09-15 | 1999-02-23 | Agie Sa | Method and apparatus for impulse generator for electroerosive machining of workpieces |
US20110114604A1 (en) * | 2008-07-24 | 2011-05-19 | Mitsubishi Electric Corporation | Electric discharge machining apparatus, electric discharge machining method, and semiconductor substrate manufacturing method |
US9550245B2 (en) * | 2008-07-24 | 2017-01-24 | Mitsubishi Electric Corporation | Electric discharge machining apparatus, electric discharge machining method, and semiconductor substrate manufacturing method |
JP2012125880A (en) * | 2010-12-15 | 2012-07-05 | Tokyo Cathode Laboratory Co Ltd | Multiwire electric discharge machining apparatus and method for manufacturing silicon carbide plate using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5220036B2 (en) | EDM machine | |
JPWO2002058874A1 (en) | Power supply device for wire electric discharge machining and wire electric discharge machining method | |
JPS59134621A (en) | Electric discharge machine | |
JPS5926414B2 (en) | Electric discharge machining equipment | |
JP5044898B2 (en) | Power supply device for electric discharge machine and wire electric discharge machine | |
JP2696388B2 (en) | Power supply unit for electric discharge machining | |
JPH0474128B2 (en) | ||
KR950006365B1 (en) | Power switching circuit for a electro discharge machine | |
JPS632611A (en) | Electric discharge machining power source | |
JP2649387B2 (en) | Power supply unit for electric discharge machining | |
JPH059209B2 (en) | ||
JPH03208520A (en) | Method for controlling machining pulse for electric discharge machine and device thereof | |
JPS60146624A (en) | Method of electric discharge machining and device therefor | |
KR100436650B1 (en) | grinding machine with variable pulse power | |
JP2984664B2 (en) | Electric discharge machine | |
JP3662291B2 (en) | Electric discharge machining method and electric discharge machining power supply device | |
JPH01234114A (en) | Power supply device for electric discharge machining | |
JPS60118423A (en) | Electric discharge machining power source | |
JP2003181724A (en) | Power supply device for electric discharge machining | |
Shaw | Electronic circuit techniques in electro-discharge machining (EDM) equipment | |
JPH03228521A (en) | Electric discharge machining method | |
JPH01234115A (en) | Power supply device for spark erosion machining | |
JPS59152017A (en) | Electrical discharge processing device | |
JPH0360613B2 (en) | ||
JPS6361128B2 (en) |