JPS58217224A - Internal surface grinding method - Google Patents

Internal surface grinding method

Info

Publication number
JPS58217224A
JPS58217224A JP9628182A JP9628182A JPS58217224A JP S58217224 A JPS58217224 A JP S58217224A JP 9628182 A JP9628182 A JP 9628182A JP 9628182 A JP9628182 A JP 9628182A JP S58217224 A JPS58217224 A JP S58217224A
Authority
JP
Japan
Prior art keywords
conductive
bands
abrasive
grinding
whetstone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9628182A
Other languages
Japanese (ja)
Inventor
Akio Kuromatsu
黒松 彰雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OYO JIKI KENKYUSHO KK
Original Assignee
OYO JIKI KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OYO JIKI KENKYUSHO KK filed Critical OYO JIKI KENKYUSHO KK
Priority to JP9628182A priority Critical patent/JPS58217224A/en
Publication of JPS58217224A publication Critical patent/JPS58217224A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H5/00Combined machining
    • B23H5/06Electrochemical machining combined with mechanical working, e.g. grinding or honing

Abstract

PURPOSE:To enable a workpiece to be processed with an extremely small current while allowing the processing surface to be always activated by scraping off an oxidized film, etc., produced by an electrolytic action directly after they are produced by dividing a conductive band and allowing non-conductive abrasive bands to exist among said divided conductive bands. CONSTITUTION:The columnar whetstone 1 is formed by sintering non-conductive abrasive grains using a non-conductive binder. A conductive substance is buried in long grooves along the body circumferential surface to form conductive bands 2, and said conductive bands 2 and abrasive bands 3 made of non-conductive abrasive grains are alternately formed longitudinally in approximately parallel to each other. The whetstone 1 is only capable of rotating on its own axis, and rotary feed opposite to the turning direction of a material M to be cut along the wall surface within an opening H is provided. At the instant the material M and the conductive band 2 of the whetstone 1 contact with each other, the surface of the material M is electrolyzed and melted to produce metal ions. Since the abrasive bands 3 pass through the neighborhood of said surface, the abrasive grains scrape off melted portions and an oxidized film.

Description

【発明の詳細な説明】 本発明は電気的作用と機械的作用を交互に行なうことの
できる研削砥石を使用して円筒内面の研削および仕上げ
を行なう内面研削方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an internal grinding method for grinding and finishing the inner surface of a cylinder using a grinding wheel capable of performing electrical and mechanical actions alternately.

円筒内面の工作法には中ぐり、す′−マ通し、研削等が
あるが、これらによる仕上げでは内燃機関のシリンダ内
面や高速軸受面などに対しては精度や表面あらさが十分
ではない。
Machining methods for the inner surface of a cylinder include boring, hammering, and grinding, but these finishing methods do not provide sufficient accuracy or surface roughness for internal combustion engine cylinder inner surfaces, high-speed bearing surfaces, etc.

特に近時開発されている超硬合金に対しては従来の機械
的な研削技術では内面の仕上げ精度や能率に限界があっ
た。
In particular, for recently developed cemented carbides, conventional mechanical grinding techniques had limitations in terms of finishing accuracy and efficiency of the inner surface.

またセラミックにおいて線精密加工時の寸法、形状の制
御の困難さがその応用範囲を制限してしまっていると考
えられている。
Furthermore, it is believed that the difficulty in controlling the dimensions and shape during precision line processing of ceramics limits its range of application.

本発明は以上のような点の改善について、なされたもの
で超硬合金やセラミック等の難削材の孔の内面を能率、
精度良く研削することのでへ′る内面研削方法を提供す
ることを目的とする。
The present invention has been made to improve the above-mentioned points, and improves the efficiency and efficiency of the inner surface of holes in difficult-to-cut materials such as cemented carbide and ceramics.
The object of the present invention is to provide an internal grinding method that enables accurate grinding.

次に実施例について説明する。Next, an example will be described.

〈イ〉 柱状砥石本体 砥石(1)の柱状本体(11)は非導電性の砥粒を非導
電性のバインダーを用いて焼き固めた非導電性の円柱体
である。
<A> Column-shaped grindstone body The column-shaped body (11) of the grindstone (1) is a non-conductive cylindrical body made by baking non-conductive abrasive grains with a non-conductive binder.

砥粒の一例として、グリーンカーHzランダム、ホワイ
トアランダム、ピンクアランダム、シリカ等を使用する
ことができる。
As an example of the abrasive grain, green car Hz random, white alundum, pink alundum, silica, etc. can be used.

〈口〉 導電帯 この円柱状本体(11)の周面には軸心へ向けて一定の
深さの長溝を軸(4)の長手方向に対して平行または一
定の交錯角 ・ を介して等間隔基しくは不等間隔に複
数筒B「開設する。
<Opening> Conductive band A long groove of a certain depth is formed on the circumferential surface of this cylindrical body (11) toward the axis, parallel to the longitudinal direction of the shaft (4) or at a certain intersecting angle. Open multiple cylinders B at regular intervals or at irregular intervals.

長溝内には導電性の物質を埋設し導電帯(2)を形成す
る。
A conductive material is buried in the long groove to form a conductive band (2).

導電性物質としては次のようなものを使用できる。The following materials can be used as the conductive material.

1)金属(ムタ、Ou%Niなど)またはこれらをペー
スにした合金の微粉末を、導電性ペースト(フェノール
エポキシ、アダルライトなど)で固めたもの。
1) Fine powder of metals (Muta, Ou%Ni, etc.) or alloys made of these as a paste is hardened with conductive paste (phenol epoxy, Adalite, etc.).

2)上記1)に下記の硬い非金属化合を混合したもの。2) A mixture of the following hard nonmetallic compound in 1) above.

ダイヤモン)41 カーゼランダム(8i0) 、シリ
カ(5iOz )、窒化ゼロン(BN) (炭化づ?ロ
ン(B2O)など。
Diamond) 41 Case Random (8i0), Silica (5iOz), Zero Nitride (BN) (Carbonized Zero (B2O), etc.).

3)上記1)に下記の超硬物質を混合したもの。3) A mixture of the following superhard substances in 1) above.

アルミナ(k Os ) 、タングステンカーパイ)(
WO)、チタンカーバイト(TiO)、チタンナイトラ
イド(TiN) 、タンタルカーバイド(Tag)、ニ
オブカーバイド(NbO)など。
Alumina (kOs), tungsten carpai) (
WO), titanium carbide (TiO), titanium nitride (TiN), tantalum carbide (Tag), niobium carbide (NbO), etc.

4)上記1)に下記の潤滑性物質を混合したもの。4) A mixture of 1) above with the following lubricating substance.

黒鉛、カーゼン、二硫化モリブデンなど。Graphite, carzene, molybdenum disulfide, etc.

くノ・〉 通電板 本体(11)の端面にはドーナツ状の通電板(5)を装
着するなどして軸(4)と各導電帯(2)の間を電気的
に接続する。
Kuno・〉 A donut-shaped current carrying plate (5) is attached to the end face of the current carrying plate main body (11) to electrically connect between the shaft (4) and each conductive band (2).

その結果円柱状の本体(11)の周囲には通電板(5)
と電気的に接続する導電帯(2)と、非導電性の砥粒で
構成する研摩帯(3)が長手方向にほぼ平行に交互に形
成されることになる。
As a result, a current-carrying plate (5) is placed around the cylindrical main body (11).
Conductive bands (2) electrically connected to the abrasives and polishing bands (3) made of non-conductive abrasive grains are alternately formed substantially parallel to the longitudinal direction.

次に研削方法について説明する。Next, the grinding method will be explained.

〈イ〉 研削用意 被研削物(M) Kはプラスの電極を、開口(n)内に
配置された砥石(1)の軸(4)にはマイナスの電極を
接続し通電する。
<A> Object to be ground prepared for grinding (M) A positive electrode is connected to K, and a negative electrode is connected to the shaft (4) of the grindstone (1) placed in the opening (n), and electricity is applied.

同時に砥石(1)及びまたは被研削物(M)に回転を与
えかつ加工液を供給する。
At the same time, rotation is given to the grindstone (1) and/or the object to be ground (M), and machining fluid is supplied.

砥石(1)には自転だけを与え、あるいは開口(H)内
の壁面にそって被研削物(M)の回転方向とは逆方向の
回転送りを与える。(第4図)その結果被研削物(M)
の接触面においては導電帯(2)と研摩体(3)とが交
互に通過することになる。
The grindstone (1) is given only its own rotation, or is given rotational feed along the wall surface in the opening (H) in a direction opposite to the rotational direction of the object to be ground (M). (Figure 4) As a result, the object to be ground (M)
The conductive band (2) and the abrasive body (3) alternately pass through the contact surface.

また開口(fl)が長い穴のときは砥石(1)K前述の
運動に加えて軸(4)の長手方向の往復動を与える。
Further, when the opening (fl) is a long hole, the grinding wheel (1) K gives reciprocating motion in the longitudinal direction of the shaft (4) in addition to the above-mentioned movement.

〈口〉 電解作用 被研削物(M)と砥石(1)の導電帯(2)とが接−5
= 触した瞬間、被剛材(M)の表面に電気分解が生じ被剛
材(M)の表面が金属イオンとなって溶けだす。
<Mouth> The electrolytically ground object (M) and the conductive band (2) of the grindstone (1) are in contact -5
= At the moment of contact, electrolysis occurs on the surface of the rigid material (M), and the surface of the rigid material (M) turns into metal ions and begins to melt.

金属イオン化しにくい超硬合金0ような金属炭化物の場
合は水の電解により生じた酸素と被剛材(M)が作用し
て金属酸化物が生じる。
In the case of metal carbides such as cemented carbide 0, which are difficult to metal ionize, metal oxides are produced by the interaction of oxygen generated by water electrolysis and the material to be stiffened (M).

ぐ・〉 機械研削作用 この直後に砥石(1)の研摩帯(3)が通過するので砥
粒は溶解部分や酸化膜を削り取ってしまう。すなわち酸
化膜等が発生後直ちに除去されるため常に加工面は活性
化されている。
Mechanical grinding action Immediately after this, the abrasive band (3) of the whetstone (1) passes through, so the abrasive grains scrape off the dissolved parts and oxide film. That is, the processed surface is always activated because the oxide film and the like are removed immediately after they are generated.

そのため小さい電流によって電解が可能となる。Therefore, electrolysis is possible with a small current.

ぐウ 放電加工 従来の電解研削用の砥石と異なり導電帯(2)が不連続
に存在している。
Unlike conventional electrolytic grinding wheels, electrical discharge machining has discontinuous conductive bands (2).

そのためひとつの導電帯(2)は被研削材(M)と−瞬
間接触するだけである。
Therefore, one conductive band (2) only momentarily contacts the material to be ground (M).

その結果パルス電流による放電現象が生じ接触の瞬間両
者間に火花が飛ぶ。
As a result, a discharge phenomenon occurs due to the pulsed current, and sparks fly between the two at the moment of contact.

6一 火花はすぐに細いアークの柱すなわち非常に電流密度の
高い電子の流れとなって被剛材(M)の一点を溶かして
吹き飛ばす。
6. The spark immediately turns into a thin arc column, that is, a flow of electrons with extremely high current density, melting and blowing away one point on the rigid material (M).

このようにして放電加工が行なわれるととKなる。When electrical discharge machining is performed in this manner, K is obtained.

〈3〉  実施例2 前記実施例では直流電流を通電して研削する場合につ込
て説明したが交流電流を使用することも可能である。
<3> Embodiment 2 In the above embodiment, the case where the grinding is carried out by applying a direct current has been explained in detail, but it is also possible to use an alternating current.

交流電流を通電した場合には従来まで加工が不可能とさ
れていた非導電性の研研削物(M)に対しても電気的研
削が可能となる。
When an alternating current is applied, it is now possible to electrically grind non-conductive grinding objects (M), which were conventionally considered impossible to process.

すなわちセラミックは誘電体であり熱の不A導体である
That is, ceramic is a dielectric material and a non-conductor of heat.

そのため高周波電力によって共振作用が起りセラミック
の表面層が導体化される。
Therefore, a resonance effect occurs due to the high frequency power, and the surface layer of the ceramic becomes conductive.

その結果電界及び放電現象が生じ、前記実施例と同様に
研削を行うことができた。
As a result, an electric field and a discharge phenomenon were generated, and grinding could be performed in the same manner as in the previous example.

〈4〉  実施例3 前記各実施例では導電帯と非導電帯(研摩帯)とを交互
に設けた。
<4> Example 3 In each of the above examples, conductive bands and non-conductive bands (abrasive bands) were provided alternately.

しかし非導電帯を設けない完全な導電性砥石を使用して
も前記と同様の研削効果を期待できる。
However, even if a completely conductive grindstone without a non-conductive band is used, the same grinding effect as described above can be expected.

そのためには被研削物(M)と砥石(1′)の間には第
5図に示すような正電圧、負電圧の境に一定時間(1)
零電圧を介した電圧波形を供給する。
To do this, the voltage between the workpiece to be ground (M) and the grinding wheel (1') must be maintained at the boundary between positive and negative voltage for a certain period of time (1) as shown in Figure 5.
Provides a voltage waveform through zero voltage.

同様に零電圧時間を介して正電圧若しくは負電圧のみ全
発生するような電圧波形の供給も考えられる6 (第6
図) 次にこの導電性砥石(1′)を用いて研削する場合につ
いて説明する。
Similarly, it is also possible to supply a voltage waveform in which only positive voltage or negative voltage is generated throughout the zero voltage time6 (6th
(Figure) Next, the case of grinding using this conductive grindstone (1') will be explained.

砥石(1′)および被研削物(M)に作用する運動は前
述の実施例と同様である。
The motion acting on the grinding wheel (1') and the object to be ground (M) is similar to the previous embodiment.

そのため砥石(1′)の回転とともに上記波形の電圧を
印加する。
Therefore, a voltage having the above waveform is applied as the grindstone (1') rotates.

供給電圧が正または負である時間CP=>は砥石(1′
)と被研削物(M)との間に通電が発生し電解作用及び
パルス波による放電が発生する。
The time CP=> when the supply voltage is positive or negative is the grinding wheel (1'
) and the object to be ground (M), and electrolytic action and discharge due to pulse waves occur.

供給電圧が零である時間(1)には通電が発生せず砥石
(1′)の砥粒による機械的な研削が進行する。
During time (1) when the supply voltage is zero, no current is applied and mechanical grinding by the abrasive grains of the grindstone (1') proceeds.

両件用が短時間ののちに交互にくり返えされるため前述
の実施例と同様に極めて効率よく研 −削ができかつ精
度の高い研削面を得ることができる。
Since both operations are repeated alternately after a short period of time, it is possible to perform extremely efficient grinding and obtain a ground surface with high precision, similar to the previous embodiment.

特に提供する電圧波形の周波数を高くすることにより被
研削物(M)がガラス、セラミック、水晶等の非導電性
の素材でも砥石(1′)と被研削物(M)間にいわゆる
静電容量による通電状態を発生し容易に加工することが
できる。
In particular, by increasing the frequency of the voltage waveform provided, even if the object to be ground (M) is a non-conductive material such as glass, ceramic, or crystal, there is a so-called electrostatic capacity between the grinding wheel (1') and the object to be ground (M). It can be easily processed by generating an energized state.

本発明は上記したようになるから次のような効果を期待
することができる 〈イ〉 導電帯が分割されておりその間に非導電性の研
摩帯が存在している。
Since the present invention is as described above, the following effects can be expected. (a) The conductive band is divided into parts, and a non-conductive polishing belt exists between them.

そのため電解作用により生じる酸化膜等は発生した次の
瞬間に削り取られ、加工面は常に活性化している。
Therefore, oxide films and the like produced by electrolytic action are scraped off the moment they occur, and the machined surface is constantly activated.

従って従来の電解研削に比してきわめて小室9− 流で加工が可能となった。Therefore, compared to conventional electrolytic grinding, the It is now possible to process with flow.

〈口〉 導電帯が不連続であるため導電帯は被剛材と瞬
間的に接触するだけである。
<Exposure> Since the conductive band is discontinuous, the conductive band only momentarily contacts the rigid material.

その接触の瞬間に両者間で放電現象を起こし火花が発生
して加工面を溶かして吹き飛ばす放電加工が行なわれる
At the moment of contact, an electrical discharge phenomenon occurs between the two, producing sparks that melt and blow away the machined surface, resulting in electrical discharge machining.

ぐ・〉 このように本発明の方法は■電解、■放電、■
機械、の二作用による研削であるため、きわめて能率的
な内面研削が可能である。
As described above, the method of the present invention consists of ■electrolysis, ■discharge, and ■
Since grinding is performed using two mechanical actions, extremely efficient internal grinding is possible.

ぐシ パルスの発生によって砥石の目づまりが防止され
るため砥賎のスクイ面、ニゲ面は常に確保され最良の状
態で内面研削が行なわれる。
Since the grinding wheel is prevented from clogging due to the generation of pulses, the scooping surface and nibbling surface of the grinding wheel are always secured and internal grinding is performed in the best condition.

【図面の簡単な説明】[Brief explanation of drawings]

第1図:本発明の研削に使用する砥石の一実施例説明図 第2図:第1図の砥石先端の部分断面図第3.4図:研
へ11時の説明図 第5.6図:その他の実施例に使用するパルス波の説明
図 1.1□:砥石     2:釆電帯 10− 3:研摩帯     4:軸 5:通電板 特許出願人 有限会社 応用磁気研究所−11−・ゑ 第4図 H 第5図 トp−12←p→ 笛6図 −トp −+−t −+−p回
Figure 1: An explanatory diagram of one embodiment of the grinding wheel used for grinding according to the present invention. Figure 2: A partial sectional view of the tip of the whetstone in Figure 1. Figure 3.4: An explanatory diagram of the 11 o'clock time to grind. Figure 5.6. : Explanatory diagram of pulse waves used in other examples 1.1 □: Grinding wheel 2: Electromagnetic band 10- 3: Polishing band 4: Shaft 5: Current-carrying plate Patent applicant Applied Magnetic Research Institute Ltd.-11-・ゑFigure 4H Figure 5 p-12←p→ Flute 6-p -+-t -+-p times

Claims (1)

【特許請求の範囲】[Claims] (1)  棒状砥石の局面に非導電性の研摩帯と、導電
性の導電帯とを交互に形成する砥石を使用し、 その砥石の放電帯と、 被研削物との間に、 通電状態を発生せしめて行なうことを特徴とする、 内面研削方法 (お 棒状の導電性砥石を使用し、 当該砥石と、 被研削物との間に、 零電圧を介在させた所定の電圧を印加して行なうことを
特徴とする、 内面研削方法
(1) A grinding wheel is used in which non-conductive polishing bands and conductive bands are alternately formed on the curved surface of the bar-shaped grinding wheel, and a current is applied between the discharge band of the grinding wheel and the object to be ground. An internal grinding method characterized by the fact that a conductive grinding wheel is used, and a predetermined voltage with zero voltage is applied between the grinding wheel and the object to be ground. An internal grinding method characterized by
JP9628182A 1982-06-07 1982-06-07 Internal surface grinding method Pending JPS58217224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9628182A JPS58217224A (en) 1982-06-07 1982-06-07 Internal surface grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9628182A JPS58217224A (en) 1982-06-07 1982-06-07 Internal surface grinding method

Publications (1)

Publication Number Publication Date
JPS58217224A true JPS58217224A (en) 1983-12-17

Family

ID=14160730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9628182A Pending JPS58217224A (en) 1982-06-07 1982-06-07 Internal surface grinding method

Country Status (1)

Country Link
JP (1) JPS58217224A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7726017B2 (en) * 2003-09-24 2010-06-01 Schlumberger Technology Corporation Method of fabricating an electrical feedthru

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142799A (en) * 1974-10-11 1976-04-12 Hitachi Ltd
JPS54112095A (en) * 1978-02-21 1979-09-01 Inoue Japax Res Inc Electrolytic grinding device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142799A (en) * 1974-10-11 1976-04-12 Hitachi Ltd
JPS54112095A (en) * 1978-02-21 1979-09-01 Inoue Japax Res Inc Electrolytic grinding device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7726017B2 (en) * 2003-09-24 2010-06-01 Schlumberger Technology Corporation Method of fabricating an electrical feedthru

Similar Documents

Publication Publication Date Title
Gautam et al. Experimental investigations into ECSD process using various tool kinematics
Jain et al. On the machining of alumina and glass
Sabur et al. Investigation of material removal characteristics in EDM of nonconductive ZrO2 ceramic
KR0154178B1 (en) Method and apparatus for surface treatment by electrical discharge
JP3363284B2 (en) Electrode for electric discharge machining and metal surface treatment method by electric discharge
US4448656A (en) Electrolytic/electric discharge machining of a non-conductive workpiece
Jahan et al. Nanofinishing of hard materials using micro-electrodischarge machining
JPS58217224A (en) Internal surface grinding method
Davim et al. Advanced (non-traditional) machining processes
JP2004358585A (en) Electrode for electrochemical machining, and apparatus and method for electrochemical machining
Srivastava Review of dressing and truing operations for grinding wheels
JPH04256520A (en) Electric discharge machining
Soni et al. Surface characteristics of titanium with rotary EDM
Chak Electro chemical discharge machining: process capabilities
US3474013A (en) Method of and apparatus for the electrochemical machining of a conductive workpiece
JP3530562B2 (en) Lens grinding method
WO2006068277A1 (en) Electrode for electric discharge machining and electric discharge machining method
JPS6411408B2 (en)
Nair et al. Advancements in abrasive electrical discharge grinding (AEDG): a review
Gupta et al. Assisted hybrid machining processes
CN105522237A (en) Online electrospark sharpening method of metal base grinding wheel in reactive sintering SiC ceramic grinding process
JPS58217256A (en) Grinding method of curved surface
CN111058039A (en) Ceramic particle planting process based on spark discharge
Chak Spark-assisted electrochemical drilling of ceramics
US20110049108A1 (en) Electro-Erosion Edge Honing of Cutting Tools