JPS58216786A - Method for controlling inflow rate of gas for aeration in sewage treatment - Google Patents

Method for controlling inflow rate of gas for aeration in sewage treatment

Info

Publication number
JPS58216786A
JPS58216786A JP57099355A JP9935582A JPS58216786A JP S58216786 A JPS58216786 A JP S58216786A JP 57099355 A JP57099355 A JP 57099355A JP 9935582 A JP9935582 A JP 9935582A JP S58216786 A JPS58216786 A JP S58216786A
Authority
JP
Japan
Prior art keywords
flow rate
aeration
blower
control
air volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57099355A
Other languages
Japanese (ja)
Inventor
Takao Takeuchi
崇雄 竹内
Akira Usui
宇須井 章
Hideki Kondo
英樹 近藤
Makoto Morikawa
森川 真
Yoshio Matsuo
良夫 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Densan Ltd
Original Assignee
Ebara Corp
Ebara Densan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Densan Ltd filed Critical Ebara Corp
Priority to JP57099355A priority Critical patent/JPS58216786A/en
Publication of JPS58216786A publication Critical patent/JPS58216786A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To make setting of control elements easy by selecting required air quantities stepwise, and determining the set quantities of control elements beforehand with respect to the pattern combining the selected air quantities. CONSTITUTION:In the stage of operation, process states are detected with dissolved oxygen meters 13A, 13B and sewage flowmeters 17A, 17B at every suitable period, and the set air quantities Qa, Qb in accordance with the required air quantities in said states, are calculated with flow rate processing units 16A, 16B and outputted. A centralized control device 18 receives said quantities, and selects the corresponding pattern from the patterns which are made beforehand by selecting various values of required air quantities stepwise and combining the same. the flow rate control valves 7A, 7B for the larger set air quantities are fully opened by the output thereof, and the other is regulated with an air quantity ratio Qa/Qb. In the case of throttling the air quantity, the process is so controlled that the operation for the control mechanism for the flow rate of blower is made preferential.

Description

【発明の詳細な説明】 本発明は、単数又は複数のプロワにより、単数又は複数
の曝気槽に送る曝気用気体の送入量を制御する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the amount of aeration gas sent to one or more aeration tanks using one or more blowers.

この種の制御方法を用いている装置の従来の例を第1図
に示す。ここにIA、IBは曝気槽であシ、被処理水と
しての下水は下水人口2A、2Bから供給される。この
膜気槽IA、IBに曝気用気体(酸素又は空気)を送入
するため、複数(図では2個)のプロワ3A、3Bが、
その吐出側を一本の集合管4に接続されている。プロ9
3k。
A conventional example of a device using this type of control method is shown in FIG. Here, IA and IB are aeration tanks, and sewage water as treated water is supplied from sewage ports 2A and 2B. In order to supply aeration gas (oxygen or air) to the membrane tanks IA and IB, a plurality of blowers 3A and 3B (two in the figure) are used.
Its discharge side is connected to one collecting pipe 4. Pro 9
3k.

5Bの吸込側にはプロワ吐出圧−電制間のための吸込弁
5A、5Bが設けられている。集合管4からは複数本(
2本)の分岐管6A、6Bが分岐し、曝気槽IA、IB
に接続している。分岐管6A。
Suction valves 5A and 5B are provided on the suction side of valve 5B for between the blower discharge pressure and electric control. Multiple pipes from collecting pipe 4 (
2) branch pipes 6A and 6B are branched to form aeration tanks IA and IB.
is connected to. Branch pipe 6A.

6Bには、送入気体の流量を制御する送入流量制御機構
としての流量制御弁7A、7B及び風量計8A 、8B
が設けられている。
6B includes flow rate control valves 7A, 7B as an inlet flow rate control mechanism for controlling the flow rate of inlet gas, and air flow meters 8A, 8B.
is provided.

制御関係としては、プロワ流曾制御機構として、集合管
4の圧力を検出する圧力計9、圧力設定器10からの設
定値と、圧力計9からの検出値とを比較し、その偏差に
よりプロワ流量制御1要素である吸込弁5A、5Bの開
度を調節してプロワ流量を制御し集合管4の圧力を一定
に保つようにする圧力調節計11が設けられている。送
入流量制御機構に関しては、風量計8A、8Bの検出値
と設定値とを比較し、その偏差により送入流量制御要素
である流量制御弁7A、7Bの開度を調節して送入流量
を設定値に保つ流量調節計12A、12Bが設けられ、
さらに、曝気槽IA、IB中の下水の溶存酸素量を検出
する溶存酸素計13A、15B、溶存酸素量設定器14
A、14Bからの設定値と溶存酸素計15A、15Bか
らの検出値とを比較し、その偏差により、流量調節計1
2A 、 12Bに与える流量設定値を変更調節し、カ
スケード制御をする溶存酸素量調節計15A、15Bが
備えられている。
Regarding control, the blower flow control mechanism compares the set value from the pressure gauge 9 and pressure setting device 10 that detects the pressure in the collecting pipe 4 with the detected value from the pressure gauge 9, and adjusts the blower according to the deviation. A pressure regulator 11 is provided which controls the flow rate of the blower by adjusting the opening degrees of suction valves 5A and 5B, which are one element of flow rate control, and keeps the pressure of the collecting pipe 4 constant. Regarding the inlet flow rate control mechanism, the detected values of the airflow meters 8A and 8B are compared with the set values, and the opening degrees of the flow rate control valves 7A and 7B, which are inlet flow rate control elements, are adjusted based on the deviation, thereby controlling the inlet flow rate. Flow rate controllers 12A and 12B are provided to maintain the set value.
Furthermore, dissolved oxygen meters 13A and 15B that detect the amount of dissolved oxygen in the sewage in the aeration tanks IA and IB, and a dissolved oxygen amount setting device 14
The set values from A and 14B are compared with the detected values from dissolved oxygen meters 15A and 15B, and based on the deviation, the flow rate controller 1
Dissolved oxygen amount controllers 15A and 15B are provided to change and adjust the flow rate setting values given to 2A and 12B and perform cascade control.

このように各曝気槽IA、IBの分岐路6A。In this way, the branch path 6A of each aeration tank IA, IB.

6Bごとに単独に送入流量制御ループが設けられており
、各曝気槽IA、IBごとに必要風量が得られるように
これら制御ループによ量制御が行なわれる。一方集合管
4内の圧力は各、送入流量制御グループがそれぞれ相互
干渉がなく独立して流量制御ができるように、少し高目
の圧力に保つように一定圧力制御が行なわれている。
An individual inlet flow rate control loop is provided for each of the aeration tanks IA and IB, and these control loops control the amount of air so that the required air volume is obtained for each of the aeration tanks IA and IB. On the other hand, the pressure in the collecting pipe 4 is controlled at a constant level to maintain a slightly higher pressure so that each inlet flow rate control group can independently control the flow rate without mutual interference.

この一定圧力制御を行なわない場合には、分岐管6A系
の流量制御弁7人の開度操作により集合管4内の圧力が
変化するため、流量制御弁7Bの開度が同じならば分岐
管6B系の送入流量は変化してしまう。そこで流量制御
弁7Bを調節すると同様な現象により分岐管6A系の送
入流量が変ってしまう。このように相互干渉により送入
流量制御ループは安定せず、各々の流量制御弁7A、7
Bは開度操作を繰り返し、不安定となる欠点がある。
If this constant pressure control is not performed, the pressure inside the collecting pipe 4 will change depending on the opening degree of the seven flow control valves in the branch pipe 6A system, so if the opening degree of the flow control valve 7B is the same, the branch pipe The flow rate of the 6B system will change. Therefore, when the flow rate control valve 7B is adjusted, the flow rate fed into the branch pipe 6A system changes due to a similar phenomenon. In this way, due to mutual interference, the inlet flow rate control loop is not stabilized, and each flow rate control valve 7A, 7
B has the drawback of repeating the opening operation and becoming unstable.

従って制御を安定させるためには集合管4の内圧を高い
圧力に一定に保って運転せねばならない。
Therefore, in order to stabilize the control, the internal pressure of the collecting pipe 4 must be maintained at a constant high pressure during operation.

その結果必要風量を得るためには流量制御弁7A。As a result, in order to obtain the required air volume, the flow rate control valve 7A is used.

7Bで流量を絞らねばならない。この絞りはプロワ3A
、3B側から見れば吐出側絞りとなシ余分なプロワ動力
を無駄に消費する欠点を有する。
7B must be used to throttle the flow rate. This aperture is Prowa 3A
, when viewed from the 3B side, it has the disadvantage of wasting unnecessary blower power as it acts as a discharge-side throttle.

しかしてこの欠点を除くため、プロセスの状態を検出し
、これに応じた必要風量を演算して、この演算風量に応
じて、プロワ流量制御機構と送入流量制御機構とを適当
に制(財)するのであるが、必要風量の連続的な範囲に
対して側聞要素設定値を全て定めるには複雑な計算と多
くの確認実験を必要とし、手間を要する。
However, in order to eliminate the disadvantage of levers, the process state is detected, the required air volume is calculated accordingly, and the blower flow rate control mechanism and feed flow rate control mechanism are appropriately controlled (financed) according to the calculated air volume. ), but determining all the side element setting values for a continuous range of required air volume requires complex calculations and many confirmation experiments, which is time-consuming.

本発明は、これを改良するものであり、必要風量を段階
的に選び、これを組合せたノ(ターンに対し予め制御f
Kl費素の設定量を定めておくことにより、設定値を定
めるのが極めて容易な下水処理曝気用気体送入量制御方
法を提供することを目的とするものである。
The present invention improves this by selecting the necessary air volume in stages and combining them (pre-control f for turns).
It is an object of the present invention to provide a method for controlling the amount of gas fed for sewage treatment aeration in which it is extremely easy to determine the set value by determining the set amount of the Kl cost element.

本発明は単数又は複数台のプロワと、単数又は複数個の
曝気槽を備え、前記プロワの吐出側は集合管に接続され
、前記曝気槽は、前記集合管から分岐した分岐管に接続
されて、前記曝気槽に曝気用気体を送入するよう構成さ
れ、前記分岐管には送入気体の流量を制御する送入流量
制御機構が設けられ、前記プロワには、プロワ流量制御
機構が設けられている下水処理用の曝気装置における下
水処理曝気用気体送入量制御方法において、前記各曝気
槽の必要風量を段階的に選び、各曝気槽の必要風量段階
の組み合わせを予め作り、各組み合わせに対応して予め
演算された送入流量制御の制御要素の設定量、及びプロ
ワ流量制御の制御要素の設定量をパターンとして集約制
御機構に記憶せしめ、かつ処理プロセス状態に応じて前
記記憶されたパターンを選択し、該パターンの出力によ
り送入量を制御することを特徴とする下水処理曝気用気
体送入量制御方法である。
The present invention includes one or more blowers and one or more aeration tanks, the discharge side of the blower is connected to a collecting pipe, and the aeration tank is connected to a branch pipe branched from the collecting pipe. , configured to feed aeration gas to the aeration tank, the branch pipe is provided with a feed flow rate control mechanism for controlling the flow rate of the feed gas, and the blower is provided with a blower flow rate control mechanism. In a method for controlling the amount of gas fed for sewage treatment aeration in an aeration system for sewage treatment, the required air volume of each aeration tank is selected in stages, combinations of the required air volume stages of each aeration tank are created in advance, and each combination is The set amounts of the control elements for the feed flow rate control and the set amounts of the control elements for the blower flow rate control, which are correspondingly calculated in advance, are stored as patterns in the integrated control mechanism, and the stored patterns are stored in accordance with the treatment process state. This is a method for controlling the amount of gas fed in for sewage treatment aeration, characterized in that the amount of gas fed in for sewage treatment aeration is controlled by the output of the selected pattern.

本発明の実施例を図面を用いて説明する。第2図におい
て、第1図と同一の符号の部分は同様な構成、作用をな
す。本実施例においては分岐管6A6Bの系ごとの送入
流量制御ループはなく、また集合管4の内圧を一定に保
持するためのブロワ吐出圧一定制御機構も用い゛られて
いない。集合管4は複数本でもよい。
Embodiments of the present invention will be described using the drawings. In FIG. 2, parts with the same reference numerals as in FIG. 1 have the same structure and function. In this embodiment, there is no inlet flow rate control loop for each branch pipe 6A6B system, and no blower discharge pressure constant control mechanism for keeping the internal pressure of the collecting pipe 4 constant is used. There may be a plurality of collecting pipes 4.

16A、16Bは設定風量演算器であり、下水の流入量
を検出する下水流量計17A、17Bからの下水流入量
検出値と、溶存酸素計15A、15Bからの溶存酸素t
(以下DO値という)検出値の何れか一方、或いは両者
の値に基づき、その状態にお゛ける必要風1tQa及び
Qbを演算して設定風量として出力し、集約制御装置1
8に送る。
Reference numerals 16A and 16B are set air volume calculators, which detect the detected amount of sewage inflow from sewage flow meters 17A and 17B that detect the amount of sewage inflow, and the dissolved oxygen t from dissolved oxygen meters 15A and 15B.
Based on one or both of the detected values (hereinafter referred to as DO value), the required airflow 1tQa and Qb in that state is calculated and output as a set air volume, and the central control device 1
Send to 8.

集約制御装置18においては、予め必要風tQa及びQ
bの種々の値を第3図の如く段階的となし、その組め合
わせを第4図の如くパターン化し、送入流量制御機構と
しての流量制御弁7A、7Bの、送入流量制御要素とし
ての弁開度を調節する操作量の値と、ブロワ流量制御機
構のブロワ流量制御要素を調節する操作量の値とを演算
して各パターンに対してそれぞれ記憶しておく。プロワ
流量制御機構としては、吸込弁5A、5B或いはブロワ
インレットベーン又はディフューザーベーン(ブロワ流
量制御要素としてはこれらの開度)、又はブロワ3A、
5Bの回転数制御機構(ブロワ流量制御要素としてはブ
ロワ回転数)、ブロワ5A。
In the central control device 18, the required winds tQa and Q are determined in advance.
The various values of b are set in stages as shown in FIG. 3, and the combinations thereof are patterned as shown in FIG. The value of the manipulated variable for adjusting the valve opening degree and the value of the manipulated variable for adjusting the blower flow rate control element of the blower flow rate control mechanism are calculated and stored for each pattern. The blower flow rate control mechanism includes suction valves 5A, 5B, blower inlet vanes, or diffuser vanes (their opening degrees as blower flow rate control elements), or blower 3A,
5B rotation speed control mechanism (blower rotation speed as a blower flow rate control element), blower 5A.

3Bの台数側(財)機構(プロワ流址制御要素としては
ブロワ台数)、などのブロワ吐出側制御以外の制御方式
が選ばれ、単独或いは併用して適用される。
A control system other than the blower discharge side control, such as 3B's number-side mechanism (the number of blowers is the blower flow control element), is selected and applied alone or in combination.

集約制御機構18において記憶する操作量は、流量制純
弁7A、7Bの開度をできるだけ開いておくように、即
ち、少なくとも一方は必らず全開(必らずしも機械的な
全開ではなく、常用の最大開度を意味する)せしめ、風
量を絞る場合はプロワ流量制御機構の操作を優先して行
なうようにして選択する。
The amount of operation stored in the central control mechanism 18 is such that the opening degree of the flow control valves 7A and 7B is kept as open as possible, that is, at least one is always fully open (not necessarily mechanically fully open). , meaning the maximum opening degree for normal use), and when reducing the air volume, prioritize the operation of the blower flow rate control mechanism.

運転に当たっては、適当な制御周期ごとにプロセス状態
の検出として溶存酸素計15A、15B、下水流量計1
7A、17Bの検出を行ない、その状態での必要風量に
基づく設定風量Qa、Qbを設定風量演算器16A、1
6Bにて演算して出力する。
During operation, dissolved oxygen meters 15A and 15B and sewage flow meter 1 are used to detect process conditions at appropriate control intervals.
7A, 17B, and set air volume Qa, Qb based on the required air volume in that state. Air volume calculators 16A, 1
6B calculates and outputs.

集約制御装置18においてはこれを受け、第4図の如き
パターンから該当パターンを選び出し、その出力により
設定風量の大きい方の流量制御弁7人又は7Bの開度は
全開となり、他方の開度は風景比Q a/Q b  に
応じて決まシ、配分比が定まり、絶対に世をプロワ流量
側間の作用により制御してQa+Qb が得られる。
In response to this, the central control device 18 selects the corresponding pattern from the patterns shown in FIG. 4, and depending on its output, the opening degree of the flow control valve 7 or 7B with the larger set air volume is fully opened, and the opening degree of the other one is The distribution ratio is determined according to the landscape ratio Q a /Q b , and Qa+Qb can be obtained by controlling the flow rate by the action between the blower flow rates.

従って、分岐管6A、6Bの風量は相互に干渉すること
なく安定して所定の必要風量が得られ、しかも流量制御
弁1人、7Bの開度はできるだけ大きく開かれているの
で動力の損失が少ない。
Therefore, the required air volume of the branch pipes 6A and 6B can be stably obtained without mutual interference, and since the flow rate control valve 7B is opened as wide as possible, there is no loss of power. few.

設定風量演算器16A 、 16Bにおける動作の例を
示せば、実際のDO値とその設定値の偏差を例えば比例
中積分動作で出力された値と、下水流入量に定数を乗じ
た値とを加算する値を演算して設定Kfとして出力する
。このとき下水流入量にむだ時間要素を加えて演算して
もよい。また他の例としては、現在の実際のDO値、下
水流入量及びIN 瞳から曝気槽における下水処理の反
応プロセスのモデルをもとに予測制御する方法を用いて
もよい。
To give an example of the operation of the set air volume calculators 16A and 16B, the deviation between the actual DO value and its set value is calculated by adding, for example, the value outputted by the proportional-to-integral operation and the value obtained by multiplying the sewage inflow amount by a constant. The value is calculated and output as the setting Kf. At this time, the calculation may be performed by adding a dead time element to the sewage inflow amount. As another example, a method of predictive control based on a model of the reaction process of sewage treatment in the aeration tank based on the current actual DO value, sewage inflow amount, and IN pupil may be used.

段階的パターンにつき説明すれば、下水流入量にほぼ比
例して設定風量を段階的に第3図の如く決めておき、実
際の下水流入量から第3図をもと   ′に設定風量の
段階を決定する。さらに実際のI)0値とDOの設定値
を比較し、DO値の偏差に応じて下水流入量から求めた
設定風量の段階を修正する。
To explain the stepwise pattern, the set air volume is determined in stages as shown in Figure 3 in approximately proportion to the amount of sewage inflow, and the set air volume is determined in stages according to the actual amount of sewage inflow based on Figure 3. decide. Furthermore, the actual I)0 value and the set value of DO are compared, and the stage of the set air volume determined from the amount of sewage inflow is corrected according to the deviation of the DO value.

すなわち、実際のDO値がDoの設定値より小であれば
設定風量の段階をより大風量側の段階に修正し、実際の
DO値がDoの設定値より大であれば小風量側の段階に
修正する。図中、■〜■は設定風量の段階を示す段階の
数は任意であるが3〜10段階程度とする制御周期はあ
る時刻に行った風量制御の効果が十分光われるまでの時
間経過後、次の風量制御をするように制御周期を決定す
る。
In other words, if the actual DO value is smaller than the set value of Do, the set air volume level is revised to a higher air volume level, and if the actual DO value is greater than the set value of Do, the set air volume level is adjusted to a smaller air volume level. Correct it to In the figure, ■ to ■ indicate the stages of the set air volume.The number of stages is arbitrary, but it is about 3 to 10 stages.The control cycle is set after a period of time has elapsed until the effect of the air volume control performed at a certain time becomes fully visible. The control cycle is determined to perform the next air volume control.

この制−周期は固定でもよいが、設定風量変化の変化率
に応じて可変とすればさらに良質の処理下水が得られる
This control period may be fixed, but if it is made variable according to the rate of change in the set air volume, even better quality treated sewage can be obtained.

設定風量演算器16A、16Bは通常釜々の曝気槽IA
、IBごとに設けるものとする。しかし、どちらか一方
の設定風量の演算で他方の設定風置も代表でき・:・る
場合にはどちらか一方に設定風量演算器を設ければよい
The setting air volume calculators 16A and 16B are normally used in the aeration tank IA of the pot.
, shall be provided for each IB. However, if the calculation of the set air volume for either one can represent the set air volume for the other, it is sufficient to provide a set air volume calculator for either one.

集約制御機Ifs18における記憶内容は各設定風量Q
a  Qbに連続的に対応する操作量が出力されるよう
なアナログ量を記憶せしめてもよいが、第4図に示す如
く、設定風量Qa、Qbを段階的に(この例では7段階
)分けて組み合わせ、各組み合わせに対して、流量制御
弁7A、7Bの開度、プロワ5A、5Bの台数、吸込弁
5A、5Bの開度、などの設定値を決めたパターンを記
憶せしめておいてもよい。例えばQ8:6、Qb=1の
如きパターンに対してはプロワの台数は1台、流量制御
弁7Aの開度は100チ、7Bの開度は50qb、吸込
弁5Aの開度は95チ、などの如く定めておく。
The memory content in the central controller Ifs18 is each set air volume Q.
Although it is possible to store an analog value such that the manipulated variable corresponding to a Qb is output continuously, the set air volume Qa and Qb can be divided into stages (7 stages in this example) as shown in Fig. 4. It is also possible to memorize a pattern in which set values such as the opening of the flow control valves 7A, 7B, the number of blowers 5A, 5B, the opening of the suction valves 5A, 5B, etc. are determined for each combination. good. For example, for a pattern such as Q8:6, Qb=1, the number of blowers is 1, the opening degree of flow control valve 7A is 100cm, the opening degree of 7B is 50qb, the opening degree of suction valve 5A is 95cm, It is determined as follows.

以上の説明では曝気槽IA、IBは2個、プロワ5A、
3Bは2台であったが、それぞれ一つ又は三つ以上の複
数でもよい。
In the above explanation, there are two aeration tanks IA and IB, blower 5A,
Although 3B has two units, it may be one unit or a plurality of three or more units.

送風する空気の温度が変っても風量制量開度、インレッ
トベーン開度が同一である場合は、空気の密度が変り、
プロワ駆動用電動機かオーバーロードとなることがある
。従ってこれを防ぐため、温度を検出してパターンにお
ける風量段階を修正する。
Even if the temperature of the air being blown changes, if the air volume control opening and inlet vane opening remain the same, the density of the air will change,
The blower drive electric motor may be overloaded. Therefore, to prevent this, the temperature is detected and the air volume stages in the pattern are corrected.

本発明により、制−要素の設定が容易となり、特に設定
値を変更する場合など極めて簡単に行なえる下水曝気用
気体送入量制御方法を提供することができ、実用上極め
て大なる効果を有するものである。
ADVANTAGE OF THE INVENTION According to the present invention, it is possible to provide a method for controlling the amount of gas injected for sewage aeration, which makes it easy to set control elements and can be performed extremely easily, especially when changing set values, and has extremely great practical effects. It is something.

従来の方式は集合管内一定風圧制呻を加えることで、相
互干渉を防止していたのに対して、本発明では一定風圧
制帥なしで、相互干渉をなくすことができる。したがっ
て、流量制御弁の開度を大としてプロワ吐出側の絞りに
よる圧力損失を小とし、省エネルギーとなっている。
While the conventional system prevents mutual interference by applying constant wind pressure control in the collecting pipe, the present invention can eliminate mutual interference without constant wind pressure control. Therefore, the opening degree of the flow rate control valve is increased to reduce the pressure loss due to the throttle on the discharge side of the blower, thereby saving energy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例のフロー図、第2図は本発明の実施例の
フロー図、第3図は設定風量の段階的な設定を示すグラ
フ、第4図は二つの設定風量の組合せパターンのグラフ
である。 IA、IB・・・曝気槽、2A、2B・・・下水入口、
3A′1〜6B・・・プロワ、4・・・集合管、5A、
5B・・・吸込弁、6A 、6B・・・分岐管、7A、
7B・・・流量制御弁、8A 、8B・・・風量計、9
・・・圧力計、10・・・圧力設定器、11・・・圧力
調節計、12A、12B・・・流を調節計、13A、1
5B・・・溶存酸素計、14A。 14B・・・溶存酸素量設定器、15A、15B・・・
溶存酸素f調節計、16A、16B・・・設定風量演算
器、17A、17B・・・下水流蓋計、18・・・集約
制御装置。 特許出願人  株式会社荏原製作所
Fig. 1 is a flowchart of the conventional example, Fig. 2 is a flowchart of the embodiment of the present invention, Fig. 3 is a graph showing the stepwise setting of the set air volume, and Fig. 4 is a graph showing the combination pattern of the two set air volume. It is a graph. IA, IB...Aeration tank, 2A, 2B...Sewage inlet,
3A'1-6B... Prower, 4... Collecting pipe, 5A,
5B... Suction valve, 6A, 6B... Branch pipe, 7A,
7B...Flow rate control valve, 8A, 8B...Air flow meter, 9
...Pressure gauge, 10...Pressure setting device, 11...Pressure regulator, 12A, 12B...Flow regulator, 13A, 1
5B...Dissolved oxygen meter, 14A. 14B...Dissolved oxygen amount setting device, 15A, 15B...
Dissolved oxygen f controller, 16A, 16B... Setting air volume calculator, 17A, 17B... Sewage flow cap meter, 18... Central control device. Patent applicant: Ebara Corporation

Claims (1)

【特許請求の範囲】 t 単数又は複数台のプロワと、単数又は複数個の曝気
槽を備え、前記プロワの吐出側は集合管に接続され、前
記曝気槽は、前記集合管から分岐した分岐管に接続され
て、前記曝気槽に曝気用気体を送入するよう構成され、
前記分岐管には送入気体の流量を制御する送入流量制御
機構が設けられ、前記プロワには、プロワ流量制御機構
が設けられている下水処理用の曝気装置における下水処
理曝気用気体送入量制御方法において、 前記各曝気槽の必要風量を段階的に選び、各曝気槽の必
要風量段階の組み合わせを予め作り、各組み合わせに対
応して予め演算された送入流量側−の制御要素の設定量
、及びプロワ流蓋制御の制御要素の設定量をパター/と
して集約制御機構に記憶せしめ、 かつ処理プロセス状態に応じて前記記憶されたパターン
を選択し、該パターンの出力により送入量を制御するこ
とを特徴とする下水処理曝気用気体送入量制御方法。
[Claims] t. One or more blowers and one or more aeration tanks, the discharge side of the blower is connected to a collecting pipe, and the aeration tank is a branch pipe branched from the collecting pipe. connected to the aeration tank to supply aeration gas to the aeration tank,
The branch pipe is provided with an inlet flow rate control mechanism for controlling the flow rate of the inlet gas, and the blower is provided with a blower flow rate control mechanism for supplying gas for sewage treatment aeration in an aeration system for sewage treatment. In the volume control method, the required air volume of each aeration tank is selected in stages, combinations of the required air volume stages of each aeration tank are created in advance, and control elements on the feed flow rate side calculated in advance corresponding to each combination are selected. The set amount and the set amount of the control element of the blower flow lid control are stored in the integrated control mechanism as a putter, and the stored pattern is selected according to the treatment process state, and the feed amount is controlled by the output of the pattern. A method for controlling the amount of gas fed in for sewage treatment aeration.
JP57099355A 1982-06-11 1982-06-11 Method for controlling inflow rate of gas for aeration in sewage treatment Pending JPS58216786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57099355A JPS58216786A (en) 1982-06-11 1982-06-11 Method for controlling inflow rate of gas for aeration in sewage treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57099355A JPS58216786A (en) 1982-06-11 1982-06-11 Method for controlling inflow rate of gas for aeration in sewage treatment

Publications (1)

Publication Number Publication Date
JPS58216786A true JPS58216786A (en) 1983-12-16

Family

ID=14245285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57099355A Pending JPS58216786A (en) 1982-06-11 1982-06-11 Method for controlling inflow rate of gas for aeration in sewage treatment

Country Status (1)

Country Link
JP (1) JPS58216786A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199097A (en) * 1982-05-17 1983-11-19 Ebara Corp Method for controlling feed rate of gas for aeration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199097A (en) * 1982-05-17 1983-11-19 Ebara Corp Method for controlling feed rate of gas for aeration

Similar Documents

Publication Publication Date Title
JPS5841116B2 (en) Sewage treatment feed gas control method
JPS58216786A (en) Method for controlling inflow rate of gas for aeration in sewage treatment
CN113803121B (en) Automatic control method and system for low-pressure steam turbine and power generation system
JP3759461B2 (en) Ozone water production equipment
JPH025157B2 (en)
CN114249424A (en) Multi-stage AO pool aeration rate control method and system
CN106762774A (en) The control method of multi-stage centrifugal air compressor constant pressure air feeding
CN108591040B (en) Control method, device and the feed-water pump of anti-snatch water in the operation of water supply pumping system
JP2001027104A (en) Condensate flow control method for condensate steam turbine
JPS6256739A (en) Delivering hot-water temperature control device
JP3540627B2 (en) Distributing valve control device
JPS58216787A (en) Method for controlling inflow rate of gas for aeration in sewage treatment
JP2000274603A (en) Water supply controller
JPS60102997A (en) Energy-conserving type controlling method for aerating air quantity
JPH0157806B2 (en)
JPH0157804B2 (en)
JPH02194897A (en) Do control apparatus
JPS5947331B2 (en) flow control device
JP3098721B2 (en) Combined combustion device
JPH0410361B2 (en)
JPH06109325A (en) Control method of petroleum hot-water supplier
JP2000075934A (en) Steam header pressure controller
JPS6099392A (en) Air blast controller in sewage treating plant
JPH0471691A (en) Device for controlling dissolved oxygen concentration
SU906587A1 (en) Method of automatic control of multistage evaporation plant