JPS5821579B2 - Fukugousekisoutaino Seikeihouhou - Google Patents
Fukugousekisoutaino SeikeihouhouInfo
- Publication number
- JPS5821579B2 JPS5821579B2 JP49145764A JP14576474A JPS5821579B2 JP S5821579 B2 JPS5821579 B2 JP S5821579B2 JP 49145764 A JP49145764 A JP 49145764A JP 14576474 A JP14576474 A JP 14576474A JP S5821579 B2 JPS5821579 B2 JP S5821579B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- resin composition
- micro hollow
- layer
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Laminated Bodies (AREA)
Description
【発明の詳細な説明】
本発明は、軽量にして高強度の熱硬化性樹脂複合積層体
の成形方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for molding a lightweight, high-strength thermosetting resin composite laminate.
近年、不飽和ポリエステル樹脂、エポキシ樹脂などの熱
硬化性樹脂液を繊維材料に含浸し、硬化せしめて得られ
る繊維強化プラスチックス(以下FRPと略省する)は
、成形が容易で、かつ軽量にして高強度であるために構
造材料として各種用途に利用されている。In recent years, fiber-reinforced plastics (hereinafter abbreviated as FRP), which are obtained by impregnating fiber materials with thermosetting resin liquids such as unsaturated polyester resins and epoxy resins and curing them, have become easy to mold and lightweight. Because of its high strength, it is used for various purposes as a structural material.
しかし、か〜るFRPもアルミニウム材、鋼材などの金
属材料と比較した場合に、剛性の点で劣り、またコスト
高になる点に問題を残している。However, such FRP also has problems in that it is inferior in rigidity and high in cost when compared to metal materials such as aluminum and steel.
FRPの剛性改良を目的として、FRPと他の材料とを
用いてサンドイッチ構造体とすることはよく知られてい
る。It is well known to use FRP and other materials to form a sandwich structure for the purpose of improving the rigidity of FRP.
たとえば、FRPにポリ塩化ビニルフオーム、ポリラン
タンフオームなどの樹脂発泡体またはペーパーハニカム
の如き構造を芯材として接合する方法、予め成形された
固体フオーム芯材にFRPを積層して成形する方法、あ
るいは予め成形されたFRP成形体の間隙に芯材となる
発泡性樹脂を注入する方法などがよく知られている。For example, there are methods in which a resin foam such as polyvinyl chloride foam or polylanthanum foam or a structure such as paper honeycomb is bonded to FRP as a core material, a method in which FRP is laminated and molded on a pre-formed solid foam core material, or A well-known method is to inject a foamable resin serving as a core material into the gap between a pre-formed FRP molded body.
しかし、かかるサンドイッチ構造体についても、製品設
計上の制限、製品の均一化、生産性などに多くの問題を
残している。However, such sandwich structures still have many problems such as limitations in product design, product uniformity, and productivity.
また、FRP成形体の機械的、電気的特性を改良するた
めに、樹脂に炭酸カルシウム、シリカ、クレーなどの充
填材を混合して成形することもよく知られている。Furthermore, in order to improve the mechanical and electrical properties of FRP molded bodies, it is well known that fillers such as calcium carbonate, silica, and clay are mixed with resin and then molded.
こへに用いられる充填材は、通常10ミクロン以下の微
粉末で、樹脂と均一に混合され、樹脂と一体となって繊
維補強材層の中へ含浸してゆき、樹脂を含む充填材層の
分離は起らない。The filler used here is usually a fine powder of 10 microns or less, which is mixed uniformly with the resin and impregnated into the fiber reinforcing material layer as one with the resin, and the filler layer containing the resin is impregnated into the fiber reinforcement layer. No separation occurs.
すなわち、得られたFRP成形体は比較的に比重の大き
い一層から構成されているものである。That is, the obtained FRP molded body is composed of a single layer having a relatively high specific gravity.
本発明は、FRP積層体の剛性の向上と軽量化、生産性
の向上を意図したもので、以下に説明する如く極めてユ
ニークな複合積層体の成形方法に関する。The present invention is intended to improve the rigidity, reduce the weight, and improve the productivity of FRP laminates, and relates to a very unique method for forming composite laminates as described below.
すなわち、平均粒径30〜500ミクロンの微小中空球
を10〜60容量チ配合して得られる液状熱硬化性樹脂
組成物を繊維補強材に塗布して、該樹脂組成物の樹脂成
分を繊維補強材に浸透させると共に樹脂組成物が繊維補
強材表面に残存した状態で加圧硬化せしめることを特徴
とする微小中空球を充填材とするシンタクチックフオー
ム層と繊維を補強材とする微小中空球充填材を含まない
FRP層とが交〃に積層された複合層体の成形方法に関
する。That is, a liquid thermosetting resin composition obtained by blending 10 to 60 volumes of micro hollow spheres with an average particle size of 30 to 500 microns is applied to a fiber reinforcement material, and the resin component of the resin composition is used for fiber reinforcement. A syntactic foam layer containing micro hollow spheres as a filler and a micro hollow sphere filling containing fibers as a reinforcing material, which is characterized by infiltrating the material and curing under pressure while the resin composition remains on the surface of the fiber reinforcing material. The present invention relates to a method of forming a composite layered body in which FRP layers containing no material are alternately laminated.
本発明の複合積層体の成形方法について更に説明すれば
、所定の大きさに切断された1141mの大きい、たと
えばガラス繊維補強材を成形用型に載置し、その上に微
小中空球充填材を配合した液状樹脂組成物を塗布し、該
樹脂組成物中の樹脂成分を繊維補強材に浸透させると共
に樹脂組成物が繊維補強材表面に残存した状態で、さら
にその上にガラス繊維補強材を載置した後、通常のFR
P成形の手法、たとえば、プレスによって樹脂の硬化と
成形を行う。To further explain the method for molding the composite laminate of the present invention, a large piece of glass fiber reinforcing material, for example, 1141 m long cut into a predetermined size, is placed in a mold, and a micro hollow sphere filler is placed on top of it. The blended liquid resin composition is applied, and the resin component in the resin composition is permeated into the fiber reinforcing material, and the glass fiber reinforcing material is further placed on top of the resin composition remaining on the surface of the fiber reinforcing material. After placing the normal FR
The resin is cured and molded using a P molding method, for example, by pressing.
得られた成形体は、第1図に示す如く断面がシンタクチ
ックフオーム層と微小中空球充填材を含まないガラス繊
維補強樹脂層とからなるサンドインチ構造の複合体とな
る。As shown in FIG. 1, the obtained molded body is a composite body having a sandwich structure in cross section consisting of a syntactic foam layer and a glass fiber-reinforced resin layer that does not contain a microscopic hollow sphere filler.
必要に応じてシンタクチックフオーム層と微小中空球充
填材を含まないガラス繊維補強樹脂層とを交互に積重ね
て成形することにより、強度の大きな多層サンドイッチ
構造体とすることもできる。If necessary, a multilayer sandwich structure with high strength can be obtained by alternately stacking and molding syntactic foam layers and glass fiber reinforced resin layers that do not contain micro hollow sphere fillers.
また、複合積層体の表面層をシンタクチックフオーム層
とするか、微小中空球充填材を含まないFRP層とする
かは任意に選択できる。Furthermore, it is possible to arbitrarily select whether the surface layer of the composite laminate is a syntactic foam layer or an FRP layer that does not contain a micro hollow sphere filler.
第2図に多層複合積層体の断面を例示する。FIG. 2 illustrates a cross section of a multilayer composite laminate.
本発明に用いられる樹脂は、硬化剤の添加または/′お
よび加熱により硬化する液状熱硬化性樹脂であればよく
、たとえば、不飽和ポリエステル樹脂、エポキシ樹脂な
どが用いられる。The resin used in the present invention may be any liquid thermosetting resin that can be cured by adding a curing agent or /' and heating, and examples thereof include unsaturated polyester resins and epoxy resins.
勿論、これ・らの樹脂中に通常用いられている顔料、染
料などを添加することも可能である。Of course, it is also possible to add commonly used pigments, dyes, etc. to these resins.
液状熱硬化性樹脂に配合される30〜500ミクロンの
中空球の配合率は、容積比10〜60係の範囲内である
。The proportion of hollow spheres of 30 to 500 microns in the liquid thermosetting resin is within a volume ratio of 10 to 60.
配合率が10係以下では十分な・効果が認められず、ま
た60係以上では大部分の樹脂がシンタクチックフオー
ム層の固化のためにのみ消費され、繊維補強材層に含浸
する樹脂量が少くなるために繊維補強層に樹脂含浸の不
良部分を発生し、ために積層体の性能低下を招くことが
あり、また樹脂組成物の粘度が高くなるために成形作業
が困難となる。If the blending ratio is less than 10 parts, no sufficient effect will be observed, and if it is more than 60 parts, most of the resin will be consumed only for solidifying the syntactic foam layer, and the amount of resin impregnated into the fiber reinforcement layer will be small. This may cause defective resin impregnation in the fiber reinforcing layer, which may lead to deterioration in the performance of the laminate, and the increased viscosity of the resin composition makes molding work difficult.
本発明に用いらする微小中空球充填材は、使用するマト
リックス樹脂に溶解しないものであれば材質の無機質、
有機質の別を問わない。The micro hollow sphere filler used in the present invention can be made of inorganic material, as long as it does not dissolve in the matrix resin used.
It doesn't matter whether it's organic or not.
具体的には、ガラス質微小中空球(例えば、米国エマー
ソンアンドカミング社の ガラスマイクロバルーンIG
IOI)、天然無機質微小中空球(例えば、岡崎工業(
株)の シラスバルーン)、カーボン質微小中空球(例
えば、米国ゼネラルテクノロジー社の カーボスフェア
ー)、合成樹脂系微小中空球(例えば、米国ユニオンカ
ーバイト社の フェアノールマイクロバルーン)、その
他を使用することができる。Specifically, glass micro hollow spheres (for example, glass micro balloon IG manufactured by Emerson & Cumming Co., Ltd., USA) are used.
IOI), natural inorganic micro hollow spheres (e.g. Okazaki Kogyo (
(Shirasu Balloon from U.S. Co., Ltd.), carbon micro hollow spheres (e.g. Carbo Sphere from General Technology Co., Ltd.), synthetic resin micro hollow balls (e.g. Fëanol Micro Balloon from Union Carbide Co., U.S.), and others. be able to.
これらの微小中空球は、粒の平均真比重が0.01〜0
.80で、平均粒径が30〜500ミクロンのものが使
用される。These micro hollow spheres have an average true specific gravity of 0.01 to 0.
.. 80 with an average particle size of 30 to 500 microns.
この粒径が小さすぎると炭酸カルシュームなどの充填材
と同様に繊維補強材へ浸入が起り、微小中空球充填材を
含まないFRP層とシンタクチックフオーム層との2層
分離が不完全となり、かつ微小中空球自体の密度が高い
ため軽量化の点でも不利である。If this particle size is too small, it will penetrate into the fiber reinforcement material in the same way as fillers such as calcium carbonate, and the two-layer separation of the FRP layer that does not contain the micro hollow sphere filler and the syntactic foam layer will be incomplete, and Since the micro hollow spheres themselves have a high density, they are also disadvantageous in terms of weight reduction.
逆に球径が大きすぎると、微小中空球自体の強度が極端
に低下し、樹脂との混合操作時あるいは成形時に破壊さ
れるものが多くなり、シンタクチックフオーム層の強度
低下、さらに比重増の原因となるので好ましくない。On the other hand, if the sphere diameter is too large, the strength of the micro hollow spheres themselves will be extremely reduced, and many will be broken during mixing with resin or during molding, resulting in a decrease in the strength of the syntactic foam layer and an increase in specific gravity. This is not desirable as it may cause
すなわち、本発明の目的である微小中空球充填材を含ま
ないFRP層とシンタクチックフオーム層からなる軽量
にして強度のある複合体を得るためには、微小中空球充
填材の平均粒径が30〜500ミクロンの範囲内にある
ことが最も望ましい。That is, in order to obtain a lightweight and strong composite consisting of an FRP layer and a syntactic foam layer that do not contain a micro hollow sphere filler, which is the object of the present invention, the average particle diameter of the micro hollow sphere filler must be 30. Most preferably in the range of ~500 microns.
本発明に用いられる繊維補強材料は、たとえばガラス繊
維、カーボン繊維などであり、特に制限されるものでは
ない。The fiber reinforcing material used in the present invention is, for example, glass fiber, carbon fiber, etc., and is not particularly limited.
その形状はマット、クロス、ロービングなど目的に応じ
て選択でとる。The shape can be selected depending on the purpose, such as mat, cloth, or roving.
勿論、ガラス繊維を主としたカーボン繊維など他繊維と
の混合補強材であってもよいことは本発明の主旨からも
明らかである。Of course, it is clear from the gist of the present invention that the reinforcing material may be a mixture of glass fibers and other fibers such as carbon fibers.
本発明による複合積層体の成形方法は、微小中空球充填
材を配合した樹脂組成物を繊維補強材((塗布して、該
樹脂組成物中の樹脂成分を繊維補強材に浸透させると共
に樹脂組成物を繊維補強材表面に残存させた後、加熱プ
レス成形、コールドブシス成形、圧力バック成形、手積
成形、連続含浸成形体の形状、生産量に応じて選択実施
することができる。The method for forming a composite laminate according to the present invention involves applying a resin composition containing a micro hollow sphere filler to a fiber reinforcement material ((()) to allow the resin component in the resin composition to permeate into the fiber reinforcement material and to form a resin composition. After the material remains on the surface of the fiber reinforcing material, hot press molding, cold bush molding, pressure back molding, hand molding, or continuous impregnation can be selected depending on the shape of the molded product and production volume.
得られた成形体は軽量にして高強度の複合積層体である
が、同時に内部に気泡を含むために、すぐれた防音性、
遮音性を有するものである。The resulting molded product is a lightweight and high-strength composite laminate, but at the same time, because it contains air bubbles, it has excellent soundproofing properties.
It has sound insulation properties.
従って、その用途は船舶用構造材、家具、建築用パネル
、コンテナー用構造材、その他に広く利用することがで
きる。Therefore, it can be widely used in structural materials for ships, furniture, construction panels, structural materials for containers, and others.
以下に実施例を用いて本発明を説明する。The present invention will be explained below using Examples.
実施例 1
不飽和ポリエステル樹脂(昭和高分子(株)製すゴシッ
ク2063)100重量部に微小中空球(シラスバルー
ン、平均粒径150ミクロン、粒の平均密度0.34/
crn2) 20重量部、硬化触媒としてベンゾイルパ
ーオキシド1部を配合したるヨ゛樹脂組成物Aを準備す
る。Example 1 100 parts by weight of an unsaturated polyester resin (Gothic 2063 manufactured by Showa Kobunshi Co., Ltd.) was mixed with micro hollow spheres (Shirasu Balloon, average particle size 150 microns, average particle density 0.34/
crn2) A resin composition A containing 20 parts by weight and 1 part of benzoyl peroxide as a curing catalyst is prepared.
該樹脂組成物A中の微小中空球の配合量は容積比で約4
0係である。The amount of micro hollow spheres in the resin composition A is approximately 4 by volume.
I am in charge of 0.
110℃に加熱された表面積約800crn2のお盆状
成形金型の下型(雄型)表面にガラスマット(ICIn
2当りの重量が約450gのチョツプドストランドマッ
ト)を1プライ載置し、その上に樹脂組成物A230g
を注ぎのせる。A glass mat (ICIn
One ply of chopped strand mat (having a weight of approximately 450 g per layer) is placed, and 230 g of resin composition A is placed on top of it.
Pour it on top.
さらにその上にガラスマットlプライを載置して、上下
O型を閉じ、20に9/crn2で4分間加圧する。Furthermore, 1 ply of glass mat was placed on top of it, the upper and lower O-types were closed, and pressure was applied at 9/crn2 for 4 minutes.
得られた複合成形体は、断面が微小中空球を含まないF
RP層(0,6turn厚さ)−シンタクチックフオー
ム層(1,si岬1)−微小中空球を含まないFRP層
(0,6m−さ)からなるサンドイッチ構造体である。The obtained composite molded body has a cross section of F that does not contain micro hollow spheres.
It is a sandwich structure consisting of RP layer (0,6 turns thick) - syntactic foam layer (1, si cape 1) - FRP layer (0,6 m-thick) without micro hollow spheres.
複合成形体より切り取った試験片を用いて行った物性試
験結果は第1表に示す通りである。Table 1 shows the results of physical property tests conducted using test pieces cut from the composite molded bodies.
実施例 2
実施例1と同じ成形金型の下型(雄型)にガラスマット
lプライ、ガラスロービングクロス(1m2当りの重量
60og)iプライ、ガラスマット1プライを載置し、
その上に実施例1の樹脂組成物A300.!9を塗布す
る。Example 2 A glass mat l ply, a glass roving cloth (weight 60 og per 1 m2) i ply, and a glass mat 1 ply were placed on the lower mold (male mold) of the same molding mold as in Example 1,
On top of that, the resin composition A300 of Example 1. ! Apply 9.
さらにその上にガラスマットlプライ、ガラスロービン
グクロス1プライ、ガラスマットlプライを載置し、成
形圧力40kg/cm2で7分間加圧し、厚さ8mmの
サンドイッチFRP複合体を得た。Further, 1 ply of glass mat, 1 ply of glass roving cloth, and 1 ply of glass mat were placed thereon, and pressurized at a molding pressure of 40 kg/cm 2 for 7 minutes to obtain a sandwich FRP composite with a thickness of 8 mm.
この複合体の断面は微小中空球を含まないFRP層(1
,5mm厚さ)−シンタクチックフォーム層(5mml
厚さ)−微小中空球を含まないFRP層(1゜5朋厚さ
)からなる。The cross section of this composite is an FRP layer (1
, 5mm thick) - syntactic foam layer (5mml
Thickness) - Consists of an FRP layer (1°5 mm thick) that does not contain micro hollow spheres.
複合成形体の物性測定結果は第1表に示す通りである。The results of measuring the physical properties of the composite molded product are shown in Table 1.
実施例 3
不飽和ポリエステル樹脂(リボラック15813Q’l
’)100重量部、微小中空球(シラスバルーン 平均
粒径250ミクロン、粒の平均密度0.3097cm2
) 20重量部、硬化触媒としてメチルエチルクトンバ
ーオキシドO15部を配合したる樹脂組成物Bを準備す
る。Example 3 Unsaturated polyester resin (Rivolac 15813Q'l
') 100 parts by weight, micro hollow spheres (shirasu balloons, average particle size 250 microns, average particle density 0.3097 cm2)
) Prepare a resin composition B containing 20 parts by weight and 15 parts of methyl ethyl lactone peroxide O as a curing catalyst.
該樹i旨組成物B中の微小中空球の配合量は容積比約4
5係である。The amount of micro hollow spheres in the tree composition B is approximately 4 by volume.
This is Section 5.
長さ44crn1 巾36a1深さ16cInの箱型容
器のコールドブVス成形用樹脂型の雄型に重量的150
gの予備成形されたガラス繊維補強材(ガラスロービン
グを切断した樹脂バインダーでプリフォームしたガラス
チョップ)を置き、その上に樹脂組成物Bを1300.
9塗布する。A male mold of a resin mold for cold bath V molding of a box-shaped container with a length of 44crn1, a width of 36a1, and a depth of 16cIn has a weight of 150.
g of preformed glass fiber reinforcement (glass chops preformed with a resin binder cut from glass roving) is placed, and resin composition B is poured onto it at 1300 g.
9 Apply.
さらにその上にガラス繊維補強材を載置し、上下の型を
閉じ、3に9/’cm”で約40分間加圧した。Further, a glass fiber reinforcing material was placed on top of the mold, the upper and lower molds were closed, and pressure was applied at 3 to 9 cm'' for about 40 minutes.
得られた複合成形体の断面は微小中空球を含まないFR
P層(0,7mm厚さ)−シンタクチックフオーム層(
2,6厚さ一微小中空球を含まないFRP層(0,7m
m厚さ)からなる。The cross section of the obtained composite molded body is FR which does not contain micro hollow spheres.
P layer (0.7 mm thickness) - syntactic foam layer (
2.6 thick FRP layer (0.7 m) that does not contain minute hollow spheres
m thickness).
この複合成形体の物性測定結果は第1表に示す通りであ
った。The physical properties of this composite molded article were measured as shown in Table 1.
実施例 4
エポキシ樹脂(エピコート828)lOON量部に硬化
剤として無水メチルノ・イミツク酸90重量部、硬化促
進剤としてベンジルメチルアミン1重量部、微小中空球
(ガラスマイクロバルーンIG 101、平均粒径7
0ミクロン、粒の平均密度0.33)22重量部を配合
したる樹脂組成物Cを準備する。Example 4 One part of epoxy resin (Epicote 828) was added to 90 parts by weight of methylimic anhydride as a curing agent, 1 part by weight of benzylmethylamine as a curing accelerator, and micro hollow spheres (glass microballoon IG 101, average particle size 7).
A resin composition C containing 22 parts by weight of 0 micron and average particle density of 0.33 is prepared.
該樹脂組成物C中の微小中空球の配合量は容積比で約3
0係となる。The amount of micro hollow spheres in the resin composition C is approximately 3 by volume.
Becomes 0 person.
樹脂組成物Cとガラスマット4プライを用いて、長さ6
0cfn。Using resin composition C and 4 plies of glass mat, length 6
0cfn.
巾30cIr1、厚さ0.7cInの平板を次の手順で
成形した。A flat plate having a width of 30 cIr1 and a thickness of 0.7 cIn was molded using the following procedure.
成形下型にガラスマット1プライを置き、ついで樹脂組
成物Cを塗布する。One ply of glass mat is placed on the lower mold, and then resin composition C is applied.
さらにその上にガラスマット1プライを置き、同様に樹
脂組成物Cを塗布する、順次同様の操作を繰返して所定
の構成まで終了する。Further, one ply of glass mat is placed on top of the mat, and resin composition C is applied in the same manner.Sequentially, the same operation is repeated until a predetermined structure is obtained.
塗布操作終了時にガラス繊維層ははy完全に樹脂含浸さ
れていた。At the end of the coating operation, the glass fiber layer was completely impregnated with resin.
複合成形体表面の平滑性を得るために成形上型を載せ、
硬化炉中でそれぞれ90℃で2時間、120℃で2時間
、180℃で8時間加熱した後、硬化物を取り出した。In order to obtain smoothness of the surface of the composite molded product, place the molding upper mold,
After heating in a curing furnace at 90°C for 2 hours, 120°C for 2 hours, and 180°C for 8 hours, the cured product was taken out.
この硬化物は断面が第2図に示すような微小中空球を含
まないFRP層−シンタクチックフオーム層の繰返しか
らなる多層サンドインチ構造の複合積層体である。This cured product has a cross section as shown in FIG. 2, and is a composite laminate with a multilayer sandwich structure consisting of repeated FRP layers and syntactic foam layers that do not contain micro hollow spheres.
第1図および第2図は本発明方法により得られる複合積
層体の断面を例示した図である。
図中の1は微小中空球充填材を含まないFRP層、2は
シンタクチックフオーム層を示す。FIGS. 1 and 2 are diagrams illustrating a cross section of a composite laminate obtained by the method of the present invention. In the figure, 1 indicates an FRP layer that does not contain a micro hollow sphere filler, and 2 indicates a syntactic foam layer.
Claims (1)
0ミクロンの微小中空球充填材を10〜60容量係配合
して得られる樹脂組成物を繊維補強材に塗布して、該樹
脂組成物中の樹脂成分を繊維補強材に浸透させると共に
樹脂組成物が繊維補強材表面に残存した状態で加圧硬化
せしめることを特徴とするシンタクチックフオーム層と
微小中空球充填材を営まない繊維強化プラスチックス層
とが交互に積層された複合積層体の成形方法。1 Uncured liquid thermosetting resin with an average particle size of 30 to 50
A resin composition obtained by blending 10 to 60 volumes of a micro hollow sphere filler with a diameter of 0 micron is applied to the fiber reinforcement material, and the resin component in the resin composition is permeated into the fiber reinforcement material, and the resin composition is A method for forming a composite laminate in which syntactic foam layers and fiber-reinforced plastics layers without micro hollow sphere fillers are alternately laminated, characterized by curing under pressure while remaining on the surface of the fiber reinforcing material. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP49145764A JPS5821579B2 (en) | 1974-12-20 | 1974-12-20 | Fukugousekisoutaino Seikeihouhou |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP49145764A JPS5821579B2 (en) | 1974-12-20 | 1974-12-20 | Fukugousekisoutaino Seikeihouhou |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5173089A JPS5173089A (en) | 1976-06-24 |
JPS5821579B2 true JPS5821579B2 (en) | 1983-05-02 |
Family
ID=15392609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP49145764A Expired JPS5821579B2 (en) | 1974-12-20 | 1974-12-20 | Fukugousekisoutaino Seikeihouhou |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5821579B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4034137A (en) * | 1976-12-06 | 1977-07-05 | John Z. Delorean Corporation | Composite sheet structure and method for manufacturing same |
US6042936A (en) * | 1997-09-23 | 2000-03-28 | Fibermark, Inc. | Microsphere containing circuit board paper |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49113886A (en) * | 1973-03-05 | 1974-10-30 |
-
1974
- 1974-12-20 JP JP49145764A patent/JPS5821579B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49113886A (en) * | 1973-03-05 | 1974-10-30 |
Also Published As
Publication number | Publication date |
---|---|
JPS5173089A (en) | 1976-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0370148B1 (en) | Impact resistent composites | |
US5773121A (en) | Syntactic foam core incorporating honeycomb structure for composites | |
US3707434A (en) | Rigidified resinous laminate | |
US5888642A (en) | Syntactic foam core material for composite structures | |
AU2001293967B9 (en) | Sheet moulding compound (SMC) with ventilating structure for entrapped gases | |
US4163824A (en) | Fiber foam and process | |
US20220001349A1 (en) | Composition and Method to Form a Composite Core Material | |
JPS60233254A (en) | Wall element | |
US3193598A (en) | Process of molding laminating preforms of foamed polyurethane having open, connected cells | |
US3193440A (en) | Laminated articles and laminating preforms therefor | |
CN101475738B (en) | Glass fibre reinforced plastic and leisure seat made thereof | |
CN110295408A (en) | A kind of aramid fiber 1313 reticular fibre and preparation method thereof, aramid fiber epoxide-resin glue and preparation method thereof | |
US4401715A (en) | Fiber reinforced plastic molded articles and process for the production thereof | |
WO1999038683A1 (en) | Composite panels with class a surfaces | |
JPS5821579B2 (en) | Fukugousekisoutaino Seikeihouhou | |
GB764330A (en) | ||
JP2014193539A (en) | Method of producing composite molding | |
GB2259667A (en) | Method for manufacturing an integral moulded body | |
JP2009019089A (en) | Fiber-reinforced plastic and reinforced heat-insulating composite material using the same | |
JP3124301B2 (en) | Manufacturing method of composite molded products | |
JP6231313B2 (en) | Composite molded body | |
JPS6258285B2 (en) | ||
JP7473442B2 (en) | Fiber Reinforced Sandwich Composites | |
JPS5874346A (en) | Core material for fiber reinforced plastic and manufacture of core material for fiber reinforced plastic | |
JPS6224521Y2 (en) |