JPS58214913A - Monitor device for fault of robot speed control signal - Google Patents

Monitor device for fault of robot speed control signal

Info

Publication number
JPS58214913A
JPS58214913A JP57097504A JP9750482A JPS58214913A JP S58214913 A JPS58214913 A JP S58214913A JP 57097504 A JP57097504 A JP 57097504A JP 9750482 A JP9750482 A JP 9750482A JP S58214913 A JPS58214913 A JP S58214913A
Authority
JP
Japan
Prior art keywords
speed
circuit
speed control
signal
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57097504A
Other languages
Japanese (ja)
Inventor
Hajime Inaba
稲葉 肇
Hideo Miyashita
宮下 秀雄
Shoichi Otsuka
大塚 昭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Fujitsu Fanuc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp, Fujitsu Fanuc Ltd filed Critical Fanuc Corp
Priority to JP57097504A priority Critical patent/JPS58214913A/en
Publication of JPS58214913A publication Critical patent/JPS58214913A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/408Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by data handling or data format, e.g. reading, buffering or conversion of data
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42309Excess in speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Safety Devices In Control Systems (AREA)

Abstract

PURPOSE:To avoid giving evil effects to an operator and peripheral devices due to a high-speed of a robot shaft which is caused by the runaway of a motor, by using a position control circuit, etc. which receives a shift command given from a software and delivers a speed command. CONSTITUTION:A position control circuit, etc. receives a shift command given from a software and delivers a speed command. For instance, a shift command given from a software is fed to an adder 15 and stored in an error register 12 after calculating the difference to a feedback pulse signal. The contents of the register 12 receive a D/A conversion through a D/A converter 13 and are fed to an LPF2. The output of the LPF2 is supplied to a speed control unit 4 to drive a motor 5 via an operational amplifier, etc. Then a pulse coder 51 generates a pulse signal and supplies it to a phase discriminating circuit 14. The output signal of the circuit 14 is converted into a speed feedback signal via an adder 15 and an F/V converter 3 and supplied to the unit 4 and a speed command is supplied to a comparator 8 via an absolute value circuit 6.

Description

【発明の詳細な説明】 本発明はロボット速度制御信号の異常監視装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an abnormality monitoring device for robot speed control signals.

従来形式のロボット駆動装置の構成の概略が第1図に示
される。ソフトウェアによる移動指令FiV!、位置制
御回路IK、加えられ、加算器15、エラ。
An outline of the configuration of a conventional robot drive device is shown in FIG. Movement command FiV by software! , position control circuit IK, added, adder 15, error.

−レジスタ12、ディジタル−アナログ(1) A )
変換器13および低域フィルタ2を介して速度指令とし
て速度制御ユニット401つの入力端子へ供給される。
-Register 12, Digital-Analog (1) A)
Via the converter 13 and the low-pass filter 2, it is fed as a speed command to one input terminal of the speed control unit 40.

速度指令を受けた速度制御ユニーノド4はロボット制御
のための電動機5を駆動する。
The speed control unit node 4 that receives the speed command drives the electric motor 5 for controlling the robot.

電動機5に連結されたパルスコーダ51は電動機5の回
転に対応してパルス信号を発生し、パルス信号は位置制
御回路1における位相弁別回路14を介して周波数−電
圧(F−V)変換器3に供給される。F−V変換された
パルス信号は速度帰還信号として速度制御ユニット4の
他の入力端子に供給される。
A pulse coder 51 connected to the electric motor 5 generates a pulse signal in response to the rotation of the electric motor 5, and the pulse signal is sent to the frequency-voltage (F-V) converter 3 via the phase discrimination circuit 14 in the position control circuit 1. Supplied. The F-V converted pulse signal is supplied to another input terminal of the speed control unit 4 as a speed feedback signal.

前述の装置においては、誤った移動指令を受けた場合ま
たは位置制御回路1における各要素の不良等により速度
指令が異常値となった場合、電動機が暴走し一ロボット
の軸が高速で動作し、オペレータまたは周辺機器に害を
与えるという問題点があった。ま念パルスコーダ51、
位相弁別回路14ま之1iF4変換器34の不良により
速度帰還信号が異常値となった場合にも同様な問題点が
あった。
In the above-mentioned device, if an incorrect movement command is received or if the speed command becomes an abnormal value due to a defect in each element in the position control circuit 1, the electric motor goes out of control and one robot's axis moves at high speed. There was a problem that it caused harm to the operator or peripheral equipment. Manen Pulsecoder 51,
A similar problem occurs when the speed feedback signal becomes an abnormal value due to a defect in the phase discrimination circuit 14 or the 1iF4 converter 34.

本発明の目的は、前述の従来形式の装置における問題点
にかんがみ、速夏指令信号丑たは速度帰還信号を設定値
と比較し、設51値を超乏−る場合にt’を警報を発生
しロボ−,トを停止Eさせるという構想に基づき、ソフ
トウェアによる移動指令が具常信号を与えた場合または
装置を構成する要素の不良等により、電動機が暴走し、
ロボットの軸が1賄速で動作し、オペレータまたは周辺
機器に害を与えることを防止するにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems in conventional devices, it is an object of the present invention to compare a speed summer command signal or a speed feedback signal with a set value, and to issue a warning when t' exceeds a set value. Based on the concept of stopping the robot when the robot is stopped, the electric motor may run out of control if a movement command by software gives a specific signal or due to a defect in the elements that make up the device.
This is to prevent the robot axis from moving at one speed and causing harm to the operator or peripheral equipment.

本発明においては、ソフトウェアによる移動指令を受は
速度指令を出力する位置制御回路、該速度指令を受ける
速度制御ユニット、該速度制御部コーニットの出力を受
はロボットを制御する電動機、および該電動機に連結さ
れているパルスコーダからの帰還パルス信号を受は一周
波数一胤王変換し、変換された出力を該速度制御ユーッ
トへ帰還する周波数−電[E変換器を備えるロボット速
度制御信号の異常監視装置において、該速度制御ユニッ
トに供給される速1ψ制句入力信号の少、なくとも1つ
を受ける少なくとも1つの絶対晴回路、該絶対1+[回
路の出力が連数の場合は、そのうらの最も大角な屯王値
を有するものを絶対値回路が1つの1合その出力全直接
第1の入力・4子に・受け、かつ設定種1王が男2の入
力11子に供給され、該第1の入力端子の人力?在圧が
該第2の入j〕i瑞fの入力1M、 1.Eを超え次場
合に異常指示およびA′%常処理のための信号を出力す
る比軸器全ル備することを特徴とするロボット速度制?
111信号の異常監視装置が提1↓(される。
In the present invention, a position control circuit receives a movement command by software and outputs a speed command, a speed control unit receives the speed command, an electric motor receives the output of the speed control unit and controls the robot, and the electric motor A robot speed control signal abnormality monitoring device comprising a frequency-to-electronic converter that converts a feedback pulse signal from a connected pulse coder and returns the converted output to the speed control unit. , at least one absolute positive circuit receiving at least one of the speed 1ψ limit input signals supplied to the speed control unit; The absolute value circuit receives the output having a large angle value directly to the first input 4, and the set type 1 is supplied to the input 11 of the male 2, and the Human power for input terminal 1? The current pressure is the input of the second input 1M, 1. A robot speed system characterized by being fully equipped with a ratio axis device that outputs an abnormality indication and a signal for normal processing when E exceeds A'%.
111 signal abnormality monitoring device is installed.

本発明の第1の実施例としてのロボット・・R1制御信
号の異常監視装置の構成を示す回路図が第2図に示され
る。図中第1図における従来形式の装置の溝1戊較素と
同一の要素に9いては1問−の参照数rが用いら11て
いる。本装置は、ソフトウニアレこよる移動指令Fiを
受ける位置制御回路l1位置1ttll (i11回路
回路らの出力を受ける低域フィルり2、低域フィルタ2
の出力を第1の入力端子に受ける速度制御ユニット4、
速度制御コーニット4により駆動される電動機5、電動
1幾5に連結された〕くルスコーダ51、バルスコーダ
51からの信号を位置制御回路1における位相弁別回路
14を介して受けるF −Vf換器3、速1i制御ユニ
ット4の第1の入力端子に入力端−子が接続された絶対
値回路6、外部からのディジタル信号を受は対応−する
アナログ町田を出力するDA変喚器9、絶対値回路6の
出力を非反転入力端子に、l)A変換49の出力を反転
入力端EVc受ける比較器8を具備する。
A circuit diagram showing the configuration of a robot R1 control signal abnormality monitoring device as a first embodiment of the present invention is shown in FIG. In the figure, the reference number r for question 1 is used 11 for the same element as the slot 1 element of the conventional type apparatus in FIG. 1. This device includes a position control circuit l1 position 1ttll which receives a movement command Fi from a software unit (a low-pass filter 2 which receives an output from an i11 circuit, and a low-pass filter 2).
a speed control unit 4 which receives the output of the above at a first input terminal;
an F-Vf converter 3 which receives signals from a pulse coder 51 and a pulse coder 51 connected to an electric motor 5 driven by a speed control unit 4 and an electric motor 5 via a phase discrimination circuit 14 in the position control circuit 1; An absolute value circuit 6 whose input terminal is connected to the first input terminal of the speed 1i control unit 4, a DA converter 9 which receives external digital signals and outputs a corresponding analog Machida signal, and an absolute value circuit. A comparator 8 receives the output of 1) A converter 49 at its non-inverting input terminal, and receives the output of 1) A converter 49 at its inverting input terminal EVc.

位置制御回路IKは、ポジ/コンゲイン設定回路11、
エラーレジスタ12、D A変換器13、位相弁別回路
14および7JO、M:器15が言マれる。絶対1回路
6&i例えば演算項1隔器61および64、抵抗62お
よび63、ダイオード65および66から構成されてい
る。
The position control circuit IK includes a positive/con gain setting circuit 11,
An error register 12, a DA converter 13, a phase discrimination circuit 14, and a 7JO, M: circuit 15 are included. The absolute 1 circuit 6&i is composed of, for example, operand 1 separators 61 and 64, resistors 62 and 63, and diodes 65 and 66.

次に前述の装置の動作について説明する。ソフトウェア
による移動指令は加算器15において帰還パルス信号と
の差を算出されエラーレジスタ12へ与えられる。エラ
ーレジスタ12の内器はDA変換器13によりDA変換
されて低域フィルり2へ供給される。低域フィルタ2の
出力は速度制御ユニット4の第1の入力端子に卯見られ
演算増幅器等を弁して電動機5に、駆動する。電動機5
に連結されたバルスコーダ51は電動1a5の回転に一
対応してパルス信号を発生し、位相弁別101路14に
供給し、位相弁別回路14の出力は7Iu 算器15お
よびF−V変換器3へ供給される。F−V変換されたパ
ルスコーダ51からの信号は速度帰還信号として速度制
御ユニットの第2の入力端子に加えられ、速度指令と速
度帰還信号の差によって1動機5が駆動される。一方速
度指令は絶対値回路6に与えられ、回転方向に無関係で
回転速度に比例した正極性の磁土に変換される。ソフト
ウエアまたは外部信号により与えられる設定値(ディジ
タル値)はロボット動作の高速低速等の動作に合せて切
替え可能であり、速度制御信号異常検出レベル設定値と
してDA変換器90入力に加えられる。DA変換器9に
より変換された設定値は比較器8において速度指令電圧
の絶対値と比較され速度指令電圧の絶対値が設定値を超
えた場合には、比較器8かも速度制御信号異常の信号が
出力され、これを用いて警報器を駆動するtlか速度制
御ユニット4の電源供給回路の遮断をすることができる
Next, the operation of the above-mentioned device will be explained. The difference between the software-based movement command and the feedback pulse signal is calculated in the adder 15, and the result is given to the error register 12. The internal signal of the error register 12 is DA-converted by a DA converter 13 and supplied to the low-pass filter 2. The output of the low-pass filter 2 is applied to a first input terminal of a speed control unit 4, which controls an operational amplifier and the like to drive an electric motor 5. Electric motor 5
The pulse coder 51 connected to generates a pulse signal in response to the rotation of the electric motor 1a5 and supplies it to the phase discrimination circuit 101, and the output of the phase discrimination circuit 14 is sent to the 7Iu calculator 15 and the F-V converter 3. Supplied. The F-V converted signal from the pulse coder 51 is applied as a speed feedback signal to the second input terminal of the speed control unit, and the motor 5 is driven by the difference between the speed command and the speed feedback signal. On the other hand, the speed command is given to the absolute value circuit 6, and is converted into a positive magnetic field that is independent of the rotational direction and proportional to the rotational speed. The setting value (digital value) given by software or an external signal can be switched according to the robot operation, such as high speed or low speed, and is added to the DA converter 90 input as the speed control signal abnormality detection level setting value. The set value converted by the DA converter 9 is compared with the absolute value of the speed command voltage in the comparator 8, and if the absolute value of the speed command voltage exceeds the set value, the comparator 8 also outputs a signal indicating that the speed control signal is abnormal. is output, and can be used to cut off the power supply circuit of the speed control unit 4 or the tl that drives the alarm.

本発明の第2の実施例としてのロボット速度制御信号の
異常監視装置が第3図に示される。本装置においては絶
対値回路70入力にF−V変換器の出力が7m見られて
いる。このほかは第1の実施例と同一である。絶対値回
路7け絶対値回路6と同一の構成である。これにより速
度帰還信号電圧の絶対値が設定値と比較され、設定値を
超えた場合には比較器8から速度制御信号異常の信号が
出力される。
A robot speed control signal abnormality monitoring device as a second embodiment of the present invention is shown in FIG. In this device, the output of the F-V converter is seen at the input of the absolute value circuit 70 for 7 m. The rest is the same as the first embodiment. The seven absolute value circuits have the same configuration as the absolute value circuit 6. As a result, the absolute value of the speed feedback signal voltage is compared with the set value, and if it exceeds the set value, the comparator 8 outputs a signal indicating that the speed control signal is abnormal.

本発明の第3の実施例が第4図に示される。本装置は絶
対値回路6および絶対値回路7を有し、絶対値回路6の
入力へは速度制御ユニット4の第1の入力端子から速度
指令が入力され、絶対値回路7の入力へけF−V変換器
3の出力が入力されている。また絶対値回路7の出力は
速度帰還入力と速度帰還入力との単位回転速度当りの肩
、圧値が異なる場合演算増@器81によってレベルの調
整が行われ、絶対値回路6の出力と態位回転速度当りの
レベルを合せるよう圧しである0絶対値回路6および7
からの出力は比較器8の入力端子において混合され両者
の出力のうち大きい方が比較器8の入力端子圧加えられ
るようになっている。これてよれば〜速度指令を念は速
度帰還信号のいずれか絶対値のより大きい信号が設定値
と比較器8において比較され、該信号の絶対値が設定値
を超えた場合に速度制御信号異常の信号が出力される。
A third embodiment of the invention is shown in FIG. This device has an absolute value circuit 6 and an absolute value circuit 7. A speed command is inputted to the input of the absolute value circuit 6 from the first input terminal of the speed control unit 4, and the speed command is inputted to the input of the absolute value circuit 7 from the first input terminal of the speed control unit 4. The output of the -V converter 3 is input. In addition, if the output of the absolute value circuit 7 has a different pressure value per unit rotational speed between the speed feedback input and the speed feedback input, the level is adjusted by the arithmetic intensifier 81, and the output of the absolute value circuit 6 and the state are adjusted. Zero absolute value circuits 6 and 7 are used to adjust the level per rotational speed.
The outputs from the comparator 8 are mixed at the input terminal of the comparator 8, and the larger of the two outputs is applied to the input terminal of the comparator 8. According to this, when the speed command is set, the signal with the larger absolute value of the speed feedback signal is compared with the set value in the comparator 8, and if the absolute value of the signal exceeds the set value, the speed control signal is abnormal. signal is output.

本発明によれば、ソフトウェアによる移動指令が異常信
号を与えた場合または装置を構成する要素の不良等によ
り、電動機が暴走し一ロボットの軸が高速で動作し、オ
ペレータまたは周辺機器に害を与えることを防止できる
According to the present invention, if a movement command by software gives an abnormal signal or a defect in an element constituting the device causes the motor to run out of control and the axis of one robot to operate at high speed, causing harm to the operator or peripheral equipment. This can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来形式のロボット駆動装置の構成を示す回路
図、iA2図は本発明の第1の実施例としてのロボット
速度制御信号の異常監視装置の構成を示す回路図、鋼3
図は本発明のw42の実施例を示す回路図、第4図は本
発明の第3の実施例を示す回路図である。 l・・・・・・位置制御回路、2・・・・・・低域フィ
ルタ、3・・・・・・F−4変換器、4・・・・・・速
度制御ユニット、5・・・・・・電動機、6.7・・・
・・・絶対値回路、8・・・・・・比H器、9・・・・
・・DA変換!、51・・・・・・パルスコーダ、81
・・・・・・演算増幅器。 特許出願人 帛上1mファナック住い]、会社 特許出願代理人 弁理士 宵 本    朗 弁理士 西 舘 和 之 弁理士 山  口  昭 之
Figure 1 is a circuit diagram showing the configuration of a conventional type robot drive device, Figure iA2 is a circuit diagram showing the configuration of a robot speed control signal abnormality monitoring device as the first embodiment of the present invention,
The figure is a circuit diagram showing an embodiment of w42 of the present invention, and FIG. 4 is a circuit diagram showing a third embodiment of the present invention. l...Position control circuit, 2...Low pass filter, 3...F-4 converter, 4...Speed control unit, 5... ...Electric motor, 6.7...
... Absolute value circuit, 8 ... Ratio H device, 9 ...
...DA conversion! , 51...Pulse coder, 81
・・・・・・Operation amplifier. Patent applicant: 1m FANUC residence], Company patent application agent: Akira Yoimoto, patent attorney, Kazuyuki Nishidate, patent attorney: Akira Yamaguchi

Claims (1)

【特許請求の範囲】[Claims] ソフトウェアによる移動指令を受は速度指令を出力する
位置制御回路、該速度指令を受ける速度制御ユニット、
該速度制御ユニットの出力を受はロボットを制御する電
動機、および該電動機(連結されているパルスコーダか
らの帰還パルス信号を受け、周波数−電圧変換し、変換
され念出力を該速度制御ユニットへ帰還する周波数−電
圧変換器、を備えるロボット速度制御信号の異常監視装
置圧おいて、該速度制御ユニットに供給される速度制御
入力信号の少なくとも1つをそれぞれ受ける少なくと本
1つの絶対値回路、該絶対堕回路の出力のうちの最も大
きな電圧値を有するものを第1の入力端子に受け、かつ
設定電圧が第2の入力端子に供給され、該第1の入力端
子の入力電圧が該@2の入力端子の入力電圧を超えた場
合に興宮指示および異常処理のための信号を出力する比
較器を具備することを特徴とするロボット速度制御信号
の異常監視装置。
A position control circuit that receives a movement command from software and outputs a speed command; a speed control unit that receives the speed command;
The output of the speed control unit is received by an electric motor that controls the robot, and a feedback pulse signal from the connected pulse coder, which converts the frequency and voltage, and returns the converted psychodynamic force to the speed control unit. a frequency-to-voltage converter, at least one absolute value circuit each receiving at least one of the speed control input signals supplied to the speed control unit; The one having the largest voltage value among the outputs of the fallen circuit is received at the first input terminal, and the set voltage is supplied to the second input terminal, and the input voltage of the first input terminal is 1. An abnormality monitoring device for a robot speed control signal, comprising a comparator that outputs an instruction and a signal for abnormality processing when the input voltage of an input terminal is exceeded.
JP57097504A 1982-06-09 1982-06-09 Monitor device for fault of robot speed control signal Pending JPS58214913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57097504A JPS58214913A (en) 1982-06-09 1982-06-09 Monitor device for fault of robot speed control signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57097504A JPS58214913A (en) 1982-06-09 1982-06-09 Monitor device for fault of robot speed control signal

Publications (1)

Publication Number Publication Date
JPS58214913A true JPS58214913A (en) 1983-12-14

Family

ID=14194087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57097504A Pending JPS58214913A (en) 1982-06-09 1982-06-09 Monitor device for fault of robot speed control signal

Country Status (1)

Country Link
JP (1) JPS58214913A (en)

Similar Documents

Publication Publication Date Title
KR970002525A (en) Abnormal detection / diagnosis method and automatic cleaning method of servo control system
KR100732898B1 (en) A device and a method for estimating the speed of a slip ring asynchronous machine
JPS58214913A (en) Monitor device for fault of robot speed control signal
JPH03231317A (en) Motor controller
JPS60176475A (en) Overload detecting method
JPS605797A (en) Overspeed protecting device of motor
JPS58219614A (en) Detector of abnormal speed of operation for robot
JPS59102595A (en) Safety device for robot
JPS6126114A (en) Control device of industrial machine
JPS62221891A (en) Speed detector having overspeed-fault detecting function
JPS6225817A (en) Multi-point ground fault detector for dc circuit
JPS5877488A (en) Preventive device for uncontrolled movement of industrial robot
SU1532674A1 (en) Method and apparatus for controlling the electric drive of excavator
JPS6066680A (en) Abnormality detecting circuit of motor drive controller
JP2576956B2 (en) Industrial robot rotation angle detector
GB2063595A (en) Monitoring electric motors
JPH0374188A (en) Disturbance torque compensator
JPS6329808A (en) Abnormality detector
JPH02303387A (en) Motor controller
SU1552324A1 (en) Dc electric drive with flexible coupling between electric motor and mechanism
JPH0421377A (en) Dynamic brake unit for synchronous motor
JPS6259556B2 (en)
KR890005547Y1 (en) Strange circuit of step feed back
JPS61109487A (en) Speed detecting method of commutatorless motor
JPS58215978A (en) Servo malfunction detecting circuit in robot driving device