JPS5821306A - Magnetizing method by opposed type multiple poles - Google Patents

Magnetizing method by opposed type multiple poles

Info

Publication number
JPS5821306A
JPS5821306A JP11959681A JP11959681A JPS5821306A JP S5821306 A JPS5821306 A JP S5821306A JP 11959681 A JP11959681 A JP 11959681A JP 11959681 A JP11959681 A JP 11959681A JP S5821306 A JPS5821306 A JP S5821306A
Authority
JP
Japan
Prior art keywords
magnet
magnetization
smaller
poles
magnetizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11959681A
Other languages
Japanese (ja)
Inventor
Tadaharu Tomita
富田 忠治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP11959681A priority Critical patent/JPS5821306A/en
Publication of JPS5821306A publication Critical patent/JPS5821306A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/003Methods and devices for magnetising permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To realize multiple pole magnetization for a magnet with a coersive force equal to or larger than 3KOe by a method wherein magnetizing poles are arranged opposed to each other inside and outside a cylindrical magnet with a coersive force not smaller than 3KOe. CONSTITUTION:Magnetizing poles 1 and 5, wound with Cu wires 2 and 4, are arranged facing each other, inside and outside a cylindrical magnet 3 with a coersive force not smaller than 3KOe, and the multiple poles composing the magnet 3 are subjected to magnetization. High efficiency is attained when the distance BH between inner and outer yokes is equal to or smaller than the line segment BD, where B, E, H, and L are the midpoints of the line segments AB, DF, GT, and KN along the magnetizing pole surface. The magnet 3 is fully magnetized radially when the distance BH is equal or smaller than the line segment CD. On the contrary, magnetizing efficiency is low when the permeance of the distance BH is smaller than that of the line segment BD.

Description

【発明の詳細な説明】 本員明は;高保犠力磁石の多極着磁に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to multipolar magnetization of a high coercive force magnet.

周知の通り、第1図に示す如き形状のラジアル異方性磁
石は、低保磁力のアルニコ磁石、バリウムフェライト磁
石及びストロンチ為−ムフェライト畿石で作られてきた
が、高保磁力の希土類コバルト系磁石tは未だ作られて
いない。
As is well known, radially anisotropic magnets having the shape shown in Figure 1 have been made using low coercive force alnico magnets, barium ferrite magnets, and strontium ferrite magnets, but rare earth cobalt magnets with high coercive force are used. Magnet t has not yet been made.

このl由は 一円筒型磁石を焼結法希土類コバル)系磁石を作ること
が難かしいこと。
The reason for this is that it is difficult to make rare earth (cobal) based magnets by sintering a single cylindrical magnet.

2 肉厚の厚い円筒型磁石では着磁しても磁化が不十分
であること!ある。
2. Even if a thick cylindrical magnet is magnetized, the magnetization is insufficient! be.

前記の原因は、焼結法希土IIコバルト系磁石の機械的
強度が低いからであシ、後記の原因は焼結法希土類磁石
の保磁力iHaが510・以上とアルニコ磁石IKOe
、フェライト磁石2.5KOeと比較し高いことと高保
磁力の多極磁石の着磁方法が非合理的であるからである
The above cause is due to the low mechanical strength of the sintered rare earth II cobalt magnet, and the cause described later is that the coercive force iHa of the sintered rare earth magnet is 510 or more and the alnico magnet IKOe.
This is because the magnetization is higher than that of a ferrite magnet of 2.5 KOe, and the method of magnetizing a multipolar magnet with a high coercive force is irrational.

鰺者は、樹脂結合型物±lII′:1パルト系磁石を用
い薄肉の円筒型磁石を作る方法を編み出した。しかし従
来の多極着磁方法で着磁して4十分な磁化は得らhなか
った。
Ajiya devised a method for making thin-walled cylindrical magnets using resin-bonded ±lII':1 part type magnets. However, sufficient magnetization could not be obtained by magnetizing using the conventional multi-pole magnetization method.

従来の方法とは、第2図に示す方法である。第211は
着磁冒−りの水平断面〇一部を示すものである。1は曹
−夕、2は一線である。銅線で発生した磁界は冒−夕を
通って、ムBO,DIνかも磁石5に引加される。
The conventional method is the method shown in FIG. No. 211 shows a part of a horizontal cross section of the magnetization. 1 is Cao-Yu, 2 is line. The magnetic field generated by the copper wire passes through the space and is also applied to the magnet 5.

一方空間のパー電アンスP社 P耽μ・8/j jO:空気の透磁率 8:空間12′)lPi面積 t:空間の磁路長 で表わされる・即ちパーオアンスは磁路長が短かくなる
程大きくなる。従って磁路長の短かい空間が磁力線の密
度が高い、銅線2に電流を流すと、ABC,DIIFK
それぞれN、B極が発生する。
On the other hand, the permeability of the space is expressed by the magnetic path length of the space.In other words, the permeability of the space is expressed by the magnetic path length of the space. It gets bigger. Therefore, the space with a short magnetic path length has a high density of magnetic lines of force.When a current is passed through the copper wire 2, ABC, DIIFK
N and B poles are generated, respectively.

−力mは09間で密で、BIC間慣疎であ°る。磁石3
はiHaがIKOe以下の場合B1間でも完全に磁化さ
れる。又1Ecが2.5KOes変の7工ライト磁石の
場合完全とはいかず不十分な磁化がされる。
- The force m is dense between 09 and inert between BIC. magnet 3
is completely magnetized even between B1 when iHa is less than IKOe. In addition, in the case of a 7-engine light magnet where 1Ec changes to 2.5KOes, the magnetization is not perfect and is insufficient.

しかし、 1IIaが5KO・以上の希土類コバルト系
磁石では磁化が全く不十分になる。1!−りの位曾ムB
、O,D、’罵、νに対応する磁石の位曾を同一記号で
表わすと、表面磁石密度は第4図の如(な、る、EちB
、M付近で低くなる。この傾向はiHaが7.9,11
.1510・以上となると原着となりIHoが10!0
・以上ではB、B点がほば◎となる。
However, in rare earth cobalt magnets with 1IIa of 5KO. or more, magnetization is completely insufficient. 1! - Ri no Izumu B
, O, D, 'Excuse, If the position of the magnet corresponding to ν is expressed by the same symbol, the surface magnet density is as shown in Figure 4.
, becomes low near M. This trend is 7.9,11 for iHa
.. If it is 1510 or more, it will be original delivery and IHo will be 10!0
・In the above, B and B points are almost ◎.

周知の通に1円筒履希土□類コバルト系磁石を多極着磁
した実例は未だない、これは焼結法によっては厚ふが2
wm以下の円筒希土類コバルト磁石はこれ唾で製作で傘
なかったからである。瞭者は初めて円1iIWI希土類
コバ身ト系磁石を樹脂結合法によって製造し、多極着磁
するととKよって従来の方法では十分に磁化しないこと
を初めて見いだした。鎖者は着磁めあい路を琳決するた
めK、磁気回路の解析を行ない、十分に磁化できる多極
着磁の方法を見いだした。その−例をmS図に示す。
As is well known, there is no actual example of multi-polar magnetization of a single cylindrical rare earth type cobalt magnet.
This is because cylindrical rare earth cobalt magnets with a size smaller than Wm were made on a whim and there was no umbrella. I was the first to manufacture a 1iIWI rare earth copper magnet using a resin bonding method, and discovered for the first time that if it was multi-pole magnetized, it would not be sufficiently magnetized by conventional methods due to K. In order to determine the magnetization matching path, the Chainman analyzed the magnetic circuit and discovered a method of multi-pole magnetization that could be sufficiently magnetized. An example of this is shown in the mS diagram.

本発明の基本をなすり、リテリアは、着磁の磁束が相i
ie接する磁極(諺2図では、CからB、Dから1へ)
へ流れ着磁効率を下げゐごとを防止すること、即ち内側
と外側に着磁目−りをセットするととによりて相lI接
する磁極よシ相対する磁極、(83図でムからe、Bか
らII、OからJ、DかbK。
The basis of the present invention is that the magnetic flux of magnetization is
ie touching magnetic poles (in proverb 2 diagram, C to B, D to 1)
In other words, by setting magnetization marks on the inside and outside, magnetic poles that are in contact with each other and opposite magnetic poles (from M to e and from B in Fig. 83) can be prevented. II, O to J, D or bK.

Eからり、rからN)へ磁力線を流し着磁効率を高める
ことKある。
It is possible to increase the magnetization efficiency by flowing magnetic lines of force from E to r to N).

本発明の有効範囲について第511を一例とし言及する
。第3図において線分ムB、 l)シ、G丁。
Regarding the effective scope of the present invention, reference will be made to No. 511 as an example. In Figure 3, line segments MU B, l) shi, G d.

KMの中点をそれぞれB、I、H,Lとする。内外ツー
ク間の距11BHがBDよシ値かい場合効果が大である
。 BH≦ODの場合、磁石3Fiラジアル方向に完全
に着磁する。縦軸K11面磁束密度、横軸に磁石局方向
位奮をとゐと第4図の如くなる。
Let the midpoints of KM be B, I, H, and L, respectively. The effect is great if the distance 11BH between the inner and outer Zugs is greater than BD. When BH≦OD, the magnet 3Fi is completely magnetized in the radial direction. When the vertical axis is the magnetic flux density in the K11 plane and the horizontal axis is the magnet local direction excitation, the result is as shown in Fig. 4.

磁石の表面磁束密度分布は台形になる。The surface magnetic flux density distribution of the magnet becomes trapezoidal.

次K OD < BH≦BD の場合、磁石周方向の表
面磁束密度分布は、縦軸にII!面磁束密度、−軸に磁
石馬方向位雪をとぬと第5図の如くなる。磁石の犀さB
Hがl1w間ODよ砂大きくなるに従りて[5閣のB点
で!!IA大さくなる。 BDが大きくしかもBD40
B゛艶れば鮪5図(1)B点の表面磁束は0に近づく、
上記の傾向は1liaが5KO・以上になると顕著とな
ゐことが実験及び理論解析から判゛―シた。
When K OD < BH ≦ BD, the surface magnetic flux density distribution in the circumferential direction of the magnet is expressed as II! on the vertical axis. The surface magnetic flux density becomes as shown in Fig. 5 when the snow is placed in the direction of the magnet on the - axis. Magnetic rhinoceros B
As H becomes larger than OD during l1w [at point B of 5 cabinets! ! IA becomes larger. BD is big and BD40
B゛If it shines, the tuna Figure 5 (1) The surface magnetic flux at point B approaches 0.
It has been determined from experiments and theoretical analysis that the above-mentioned tendency becomes more noticeable when 1lia reaches 5 KOs or more.

−例をあげると一115×−1&5X2mの円惰瀾磁石
を内外周着畿曹−夕で電圧SKY、コンデンサ+、 4
00 Aνで24極着磁を行なった。iHam7KO・
であるがBE < CDであ如完全磁化ができ第4al
t)n、aO*Ii磁束は1500,1’/つjCであ
った。一方−1&5×φ&5×2■O円筒m磁石を同様
に着磁はがBH> CDであ)着磁波形は第5図のよう
になシ1点の表面磁束は900ガウス、一方従来の方法
(外周着磁)ではIII!lll1で全体の曲線が下が
るとともKB点O表面磁束は100ガウス寝度であった
- For example, a circular magnet of 115 x -1 & 5 x 2 m is attached to the inner and outer circumferences, and the voltage SKY and the capacitor +, 4.
24-pole magnetization was performed at 00 Av. iHam7KO・
However, if BE < CD, complete magnetization can be achieved and the 4th al
t) n, aO*Ii magnetic flux was 1500,1'/tjC. On the other hand, -1 & 5 x φ & 5 x 2 ■ O cylindrical m magnet is similarly magnetized with BH > CD) The magnetization waveform is as shown in Figure 5. The surface magnetic flux at one point is 900 Gauss, while the conventional method (Outer circumference magnetization) then III! As the entire curve decreased at 111, the surface magnetic flux at KB point O was 100 Gauss.

iHeが異なる磁粉で製造した円筒Ws石を本発明にな
る内外周着磁と従来法の外周着磁法で実験した結果をそ
れぞれ第19に示す0着磁性能を表わす値K1点と0点
とのll!藺磁束(密度)−の比を用いた0本発明Fi
iHcが5KO@以上を原著に有効になることが判かる
The results of experiments using cylindrical Ws stones manufactured using magnetic powder with different iHe using the inner and outer periphery magnetization according to the present invention and the conventional outer periphery magnetization method are shown in No. 19, respectively, as the values K1 point and 0 point representing 0 magnetization performance. Noll! 0 Invention Fi using the ratio of magnetic flux (density) -
It can be seen that iHc becomes effective for 5 KO@ or more.

第1表 本発明において一極着磁とは、多極のラジアル方向着磁
をさす、そして極数は2極以上である。
Table 1 In the present invention, single-pole magnetization refers to multi-pole radial direction magnetization, and the number of poles is two or more.

第S図から鱗かる通に極数が小さいsBDが長くなシ、
従来の外周着磁法ではB点の磁化が不十分になる。極数
の上限は、im石0崗厚BHがBDより小さければ十分
に磁化で會るわ社であに、24゜48.100極等いず
れでも良<、a定されない即ち極数社2以上?′ある。
As can be seen from Figure S, the sBD with a small number of poles is long.
In the conventional outer periphery magnetization method, magnetization at point B becomes insufficient. The upper limit of the number of poles is 24°, 48.100 poles, etc., which can be sufficiently met by magnetization if the stone thickness BH is smaller than BD. ? 'be.

一方これ壜での説明がら解かゐ通fiBH>BDであれ
゛ば本発明の効果は薄くなる。この点について更に厳密
にいえば、 BHのパーtアンスがBDのパーiアンス
よル著しく′小さい時効果が小さくなる。
On the other hand, if fiBH>BD, which is not clear from the explanation in this bottle, the effect of the present invention will be diminished. To be more precise about this point, the effect becomes smaller when the BH part t is significantly smaller than the BD part i.

本発明にシいて磁石Fi、R2テ1マ磁石(R:希土類
元素、Y、 I+a、  Os”、 Pr、 N6. 
8m、  mu、  G(1゜Tb、 Dy、  He
、 Ier 、 Tm、 yb、 Lu、 ? :  
遷移金属、Co、 νe、 11. Ou、 Ti、 
Zr、 Et、 V。
According to the present invention, magnets Fi, R2 and magnets (R: rare earth element, Y, I+a, Os'', Pr, N6.
8m, mu, G (1°Tb, Dy, He
, Ier, Tm, yb, Lu, ? :
Transition metal, Co, νe, 11. Ou, Ti,
Zr, Et, V.

Wb、Ta、Or、Mo、W、Mn、 ムg、 Zn、
  Ofl )、Rテ、磁石、 R1テマ磁石、フェラ
イト磁石、Mn−ムを一〇磁石、ν@ −co −Or
−ムj−Ni系磁石尋で1116>5106以上をさす
Wb, Ta, Or, Mo, W, Mn, Mug, Zn,
Ofl ), Rte, magnet, R1 tema magnet, ferrite magnet, Mn-mu 10 magnet, ν@ -co -Or
-It refers to 1116>5106 or more in Ni-based magnets.

本発明は、これまで多極着磁ができなかりたAH@ン3
 K O・ の磁石を多極着磁できるようにしたことに
工業的価値があシ、工業の進歩に寄与する所大である。
The present invention has developed an AH
The fact that the KO magnet can be magnetized with multiple poles has industrial value and will greatly contribute to the progress of industry.

【図面の簡単な説明】[Brief explanation of drawings]

館tallは、多極着磁した円筒層磁石の極を模型的K
ll示したものである。 謔2図は、これまで行なわれてきた外周着磁法の部分図
である。 第3図は、本発明になる内・外周着磁法の部分図である
。 94図、#15m+は、多1#磁石の表面磁束密度の波
形の一部を表わす。 以  上 出履人 株式会社 諏訪精工舎 代1人 弁理士 最上 務 第4図
Tall is a model of the poles of a multi-pole magnetized cylindrical layer magnet.
This is what is shown. Figure 2 is a partial diagram of the outer periphery magnetization method that has been used up to now. FIG. 3 is a partial diagram of the inner/outer circumferential magnetization method according to the present invention. In Fig. 94, #15m+ represents a part of the waveform of the surface magnetic flux density of the multi-1# magnet. Author: Suwa Seikosha Co., Ltd. (1 person) Patent attorney: Tsutomu Mogami Figure 4

Claims (1)

【特許請求の範囲】[Claims] 保−が5KO・以上の円筒磁石の内側と外側の双方に着
磁極を対向させて設置して多極を着磁することを特徴と
する対向蓋多極着磁法。
A facing lid multi-pole magnetization method characterized by magnetizing multi-poles by placing magnetized poles facing each other on both the inside and outside of a cylindrical magnet having a holding power of 5 KO· or more.
JP11959681A 1981-07-30 1981-07-30 Magnetizing method by opposed type multiple poles Pending JPS5821306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11959681A JPS5821306A (en) 1981-07-30 1981-07-30 Magnetizing method by opposed type multiple poles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11959681A JPS5821306A (en) 1981-07-30 1981-07-30 Magnetizing method by opposed type multiple poles

Publications (1)

Publication Number Publication Date
JPS5821306A true JPS5821306A (en) 1983-02-08

Family

ID=14765296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11959681A Pending JPS5821306A (en) 1981-07-30 1981-07-30 Magnetizing method by opposed type multiple poles

Country Status (1)

Country Link
JP (1) JPS5821306A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477107A (en) * 1988-07-28 1989-03-23 Seiko Epson Corp Magnetizer and magnetization
JPS6477105A (en) * 1988-07-28 1989-03-23 Seiko Epson Corp Cylindrical multipole-magnetized magnet
JPH0728529U (en) * 1993-06-28 1995-05-30 孝子 中村 Night sanitary napkin with enhanced bleeding leakage prevention

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5293997A (en) * 1976-01-31 1977-08-08 Kasei Co C I Method of magnetizing sheettshaped magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5293997A (en) * 1976-01-31 1977-08-08 Kasei Co C I Method of magnetizing sheettshaped magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477107A (en) * 1988-07-28 1989-03-23 Seiko Epson Corp Magnetizer and magnetization
JPS6477105A (en) * 1988-07-28 1989-03-23 Seiko Epson Corp Cylindrical multipole-magnetized magnet
JPH0728529U (en) * 1993-06-28 1995-05-30 孝子 中村 Night sanitary napkin with enhanced bleeding leakage prevention

Similar Documents

Publication Publication Date Title
JPWO2005008862A1 (en) Thin hybrid magnetized ring magnet, thin hybrid magnetized ring magnet with yoke, and brushless motor
TWI400857B (en) Rotor-stator structure for electrodynamic machines
CN1934662B (en) Radial anisotropic cylindrical sintered magnet and permanent magnet motor
WO2006068188A1 (en) Magnetizing method for permanent magnet
WO2012090841A1 (en) Arc-shaped magnet having polar-anisotropy orientation, method of manufacturing for same, and die for manufacturing same
JPH0789728B2 (en) Motor
JPS5821306A (en) Magnetizing method by opposed type multiple poles
JPS60261344A (en) Motor
JPS6156857B2 (en)
JPS629202B2 (en)
JPH01284573A (en) Ferromagnetic adhesive
JP3719782B2 (en) Manufacturing method of surface multipolar anisotropic ring magnet
JPS62235704A (en) Anisotropic resin magnet
JPH05152122A (en) Cylindrical multipole-magnetized magnet
JPS62235703A (en) Anisotropic resin magnet
JP2008278746A (en) Radial anisotropic sintered magnet, magnet rotor, and motor
JP2563404B2 (en) Anisotropic permanent magnet
JPS5947940B2 (en) Permanent magnet synchronous machine rotor
JPH0810981B2 (en) Permanent magnet type DC rotating electric machine
RU1793485C (en) Work-coil for magnetization of multipole rotor magnets
JPH0695813B2 (en) motor
JPS62232107A (en) Anisotropic resin magnet
JPS6221206A (en) Manufacture of ring-shaped multipolar magnet
JPH05144628A (en) Magnetic field generator
JPH02140907A (en) Magnetization in radial direction