JPS5821064Y2 - Denshisenouchi - Google Patents

Denshisenouchi

Info

Publication number
JPS5821064Y2
JPS5821064Y2 JP1974070864U JP7086474U JPS5821064Y2 JP S5821064 Y2 JPS5821064 Y2 JP S5821064Y2 JP 1974070864 U JP1974070864 U JP 1974070864U JP 7086474 U JP7086474 U JP 7086474U JP S5821064 Y2 JPS5821064 Y2 JP S5821064Y2
Authority
JP
Japan
Prior art keywords
lens
electron beam
stage
magnification
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1974070864U
Other languages
Japanese (ja)
Other versions
JPS50157856U (en
Inventor
副島啓義
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP1974070864U priority Critical patent/JPS5821064Y2/en
Publication of JPS50157856U publication Critical patent/JPS50157856U/ja
Application granted granted Critical
Publication of JPS5821064Y2 publication Critical patent/JPS5821064Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Description

【考案の詳細な説明】 本考案は試料の微小部分を分析し或は観察するための走
査型電子顕微鏡に関する。
[Detailed Description of the Invention] The present invention relates to a scanning electron microscope for analyzing or observing a minute portion of a sample.

即ち電子線をレンズにより試料上のきわめて小さな点に
収束させて試料面を走査し、試料から出る種々な放射線
を捕捉する装置である。
In other words, it is a device that converges an electron beam onto an extremely small point on a sample using a lens, scans the sample surface, and captures various types of radiation emitted from the sample.

この型の装置では電子線を小さく絞る程高分解能即ち高
倍率の像が得られる。
In this type of device, the smaller the electron beam is focused, the higher the resolution, that is, the higher the magnification image can be obtained.

この種の電子線装置は電子線を収束させるレンズ系の構
成によって二段収束型と三段収束型とがあり、後者は前
者よりも電子線をより小さな点に収束させることが容易
なので高倍率の装置に適している。
This type of electron beam device is divided into two-stage convergence type and three-stage convergence type depending on the configuration of the lens system that converges the electron beam, and the latter has a higher magnification because it is easier to converge the electron beam to a smaller point than the former. Suitable for this equipment.

他方二段型はレンズ系の軸合せの調整が三段型に比し容
易であり従って使い易い。
On the other hand, the two-stage type allows easier adjustment of the axis alignment of the lens system than the three-stage type, and is therefore easier to use.

またこの種の装置では比較的低倍率から高倍率まで一つ
の装置で使えるようにしたいと云う要求もある。
There is also a demand for this type of device to be able to be used with a single device from relatively low to high magnifications.

しかるに二段型、三段型夫々に上述したよ5 tx利害
得失があるので、二段型を採用するにしても三段型を採
用するにしても共に充分満足のできる装置は得られなか
った。
However, as mentioned above, each of the two-stage and three-stage types has advantages and disadvantages, so whether a two-stage or a three-stage type is adopted, it is not possible to obtain a fully satisfactory device. .

本考案はこのような状況に鑑みレンズ構成としては三段
型でありながら軸調整が容易であり、比較的低倍率から
高倍率までカバーできるような走査型電子顕微鏡を提供
しようとするものである。
In view of this situation, the present invention aims to provide a scanning electron microscope that has a three-stage lens structure, yet has easy axis adjustment, and can cover a range from relatively low to high magnifications. .

第1図は縦軸に電子線の収束径を採り、横軸に電子線電
流(試料電流)を採って二段型と三段型の比較をしたも
ので、イが二段型の特性曲線、口が三段型の特性曲線で
ある。
Figure 1 compares the two-stage type and the three-stage type, with the vertical axis representing the convergence diameter of the electron beam and the horizontal axis representing the electron beam current (sample current). A is the characteristic curve of the two-stage type. , the mouth is a three-stage characteristic curve.

イの曲線を電子線電流Oの所まで外挿してみれば判るよ
うに二段型は電子線を絞る能力において三段型より劣っ
ている。
As can be seen by extrapolating the curve A to the electron beam current O, the two-stage type is inferior to the three-stage type in its ability to narrow down the electron beam.

こSで走査型電子顕微鏡のような電子線装置の特性を第
1図のように電子線電流と電子線径との関係として表わ
すのは次のような点で便利だからである。
Expressing the characteristics of an electron beam device such as a scanning electron microscope as a relationship between electron beam current and electron beam diameter as shown in FIG. 1 is convenient for the following reasons.

第2図は走査型電子顕微鏡の電子光学系を示し、1.2
.3は上から順に第1.第2.第3レンズでGは電子線
源、Sは試料である。
Figure 2 shows the electron optical system of a scanning electron microscope, 1.2
.. 3 is number 1 from the top. Second. In the third lens, G is an electron beam source and S is a sample.

今第2レンズ2を透過する電子線量が=定とすると、電
子線径を小さくしようとすると縮小投影の縮小率を小さ
くするわけだから、第2レンズによる電子線束の収束点
は上方に移動し第2レンズに近くなる。
Now, assuming that the amount of electron beam transmitted through the second lens 2 is constant, trying to reduce the diameter of the electron beam will reduce the reduction ratio of the reduction projection, so the convergence point of the electron beam flux by the second lens will move upward and It becomes close to 2 lenses.

それにつれてこの収束点における電子線束の広り角が大
きくなり、第3レンズ3の絞り(第3レンズの下に示さ
れており符号なし)を通過できる電子線量が少くなり、
電子線電流が減少する。
As the spread angle of the electron beam at this convergence point increases, the amount of electron beam that can pass through the aperture of the third lens 3 (shown below the third lens, no reference numeral) decreases.
Electron beam current decreases.

即ち電子線径と電子線電流とは関数関係にあり、他方試
料から放出される2次電子の検出信号によって映像を構
成する場合には電子線電流は少くてもよいが、試料から
出るX線を分光して検出して映像信号とする場合等には
電子線電流は大きいことが望まれる。
In other words, there is a functional relationship between the electron beam diameter and the electron beam current.On the other hand, when an image is constructed using detection signals of secondary electrons emitted from the sample, the electron beam current may be small, but the A large electron beam current is desired when spectroscopically detecting and generating a video signal.

このため成る電子線電流でどの位の電子線径が得られる
かと云うことが一つの関心事となる。
Therefore, one concern is how much electron beam diameter can be obtained with the electron beam current.

また上述したように電子線径を小さく絞ろうとすると電
子線電流が減少すると云う特性を示すが、二段型と三段
型を比較する場合、第2図によって説明すると、第2図
で点線は第ルンズ1を使用しない場合の電子線束を示し
ており、実線が第ルンズを用いた場合の電子線束を示し
、第ルンズによってg点に収束し、線源Gから開き角す
で出た線束の開き角はg点で角度aに拡大される。
Furthermore, as mentioned above, when trying to reduce the electron beam diameter, the electron beam current decreases, but when comparing the two-stage type and the three-stage type, the dotted line in Figure 2 is explained using Figure 2. The solid line shows the electron beam flux when the first lunus is not used, and the solid line shows the electron beam flux when the first lunus is used. The opening angle is expanded to angle a at point g.

一般に各レンズとも絞りを有し、開き角がaに拡大され
た電子線束は外周部分が第2レンズの絞りFでカントさ
れる結果、G点から絞りFを望む開き角θ内に含まれる
電子線束でも(第ルンズがなければ全部第2レンズを透
過できるのに)外周部分は第2レンズを透過できなくな
り、同じ縮小率とした場合でも電子線電流は二段型より
少(なり、第1図イ9口のような関係になる。
In general, each lens has an aperture, and the outer peripheral portion of the electron beam whose aperture angle is expanded to a is canted by the aperture F of the second lens. As a result, the electrons contained within the aperture angle θ looking from the point G to the aperture F Even though the beam flux could pass through the second lens without the first lens, the outer peripheral part cannot pass through the second lens, and even if the reduction ratio is the same, the electron beam current will be smaller than that of the two-stage type (and the first lens will pass through the second lens). The relationship is as shown in Figure A9.

所で第1図で縦軸は電子線径であるが、電子線径によっ
て鮮鋭な像が得られる限界倍率が走るので、縦軸は倍率
をも表わしており、下の方程高倍率が実現できる。
By the way, in Figure 1, the vertical axis is the electron beam diameter, but since the limit magnification at which a sharp image can be obtained is determined by the electron beam diameter, the vertical axis also represents the magnification, and higher magnification can be achieved towards the bottom. .

そこで図で特性曲線イの左端の黒丸を付した点Aにおけ
る電子線径より上(即ち低倍率側)では三段型を用いる
意味はなく二段型で充分なことが判る。
Therefore, it can be seen that above the electron beam diameter at point A marked with a black circle at the left end of the characteristic curve A in the figure (ie, on the low magnification side), there is no point in using the three-stage type, and the two-stage type is sufficient.

またA点より下(高倍率側)でも倍率を連続的に可変と
することを考えず、唯特性曲線口の左端の黒丸を付した
B点における電子線径に対応する倍率だけを実現するこ
とにすれば、三段レンズの中の一つはそれに電流を通す
か通さないか(電磁レンズの励磁電流)の切換えのみと
し、Aより低倍率側では実質的に二段型として使用し、
三段型ではBに相当する倍率だけを得ることにすれば、
少くとも低倍率側における軸合せの調整は二段型と同程
度に容易になる。
Also, without considering continuously varying the magnification below point A (on the high magnification side), only the magnification corresponding to the electron beam diameter at point B, which is marked with a black circle at the left end of the characteristic curve opening, is realized. In this case, one of the three-stage lenses can only be switched between passing current through it (excitation current of the electromagnetic lens), and on the lower magnification side than A, it is essentially used as a two-stage lens,
If we decide to obtain only the magnification corresponding to B in the three-stage type,
Adjustment of axis alignment at least on the low magnification side becomes as easy as with the two-stage type.

これが本考案の第一の原理である。This is the first principle of this invention.

次に本考案では高倍率のときのみ通電するレンズを第1
レンズ1ち電子銃に最も近いレンズとした。
Next, in this invention, the first lens is a lens that is energized only when the magnification is high.
Lens 1 was chosen as the lens closest to the electron gun.

この構成で通常は第ルンズは通電されず、第2.第3レ
ンズのみによる二段型として使われ、軸合せの調整は電
子銃と第2のレンズに対してのみ行なわれる。
In this configuration, the first lunus is normally not energized and the second lunz is not energized. It is used as a two-stage type with only the third lens, and alignment adjustment is performed only for the electron gun and the second lens.

(第3のレンズはレンズ鏡筒に対して固定される)。(The third lens is fixed to the lens barrel).

次に第ルンズに通電した場合、第ルンズは厳密には軸合
せがしてないから、第ルンズによる電子線源の像は、電
子線源と第2、第3レンズを連ねる光軸より若干ずれた
位置に結ばれることになるが、第1〜第3レンズは各段
とも縮小投影系なので、このずれの影響は第2゜第3レ
ンズを経る毎に縮小されるから問題とならない。
Next, when power is applied to the second lun, since the axis of the first lun is not strictly aligned, the image of the electron beam source by the first lun will be slightly shifted from the optical axis connecting the electron beam source and the second and third lenses. However, since each stage of the first to third lenses is a reduction projection system, the effect of this shift is not a problem because it is reduced each time it passes through the second and third lenses.

第ルンズによって収束された電子線束の発散角が(縮小
投影されているので)大きく、従って上記ずれがあって
も確実に第2.第3レンズと電子線は通って行くことが
できる。
The divergence angle of the electron beam converged by the second lens is large (because it is projected in a reduced size), so even if there is the above-mentioned deviation, the second beam is reliably converged by the second lens. The third lens and the electron beam can pass through it.

この関係が第2図に示されている。This relationship is shown in FIG.

点線で示す電子線束は第ルンズを使わないとき、実線の
電子線束は第ルンズも使つときで、第ルンズ1の軸調整
が不充分であるので、線源Gの像はgにできており、光
軸Xよりeだけずれている。
The electron beam flux shown by the dotted line is when the 1st lunus is not used, and the electron beam shown by the solid line is when the 1st lunus is also used.Since the axis adjustment of the 1st lunula is insufficient, the image of the source G is formed at g. , is shifted by e from the optical axis X.

また縮小投影系であるからgにおける電子線束の発散角
aは電子線源Gにおける電子線の発散角すより大きいか
ら、eのずれがあっても電子線束は第2.第3レンズを
通過できる。
Also, since it is a reduced projection system, the divergence angle a of the electron beam at g is larger than the divergence angle of the electron beam at the electron beam source G, so even if there is a shift in e, the electron beam flux will be the second. It can pass through the third lens.

またeのずれは第2.第3レンズの投影縮小率を1/A
、1/Bとすれば試料上ではe/A−Bのずれになる
に過ぎない。
Also, the deviation of e is the second. The projection reduction ratio of the third lens is 1/A.
, 1/B, the deviation on the sample is only e/A-B.

次に実施例によって本考案を説明する。Next, the present invention will be explained by examples.

第3図で4は電子銃外筒、5はフィラメント、6は加速
電極で、これらによって電子線源部が構成され、電子線
源部と第ルンズ1とは一体的に結合され、レンズ鏡筒7
に位置調整可能に固着されている。
In FIG. 3, 4 is an electron gun outer cylinder, 5 is a filament, and 6 is an accelerating electrode, which constitute an electron beam source section.The electron beam source section and the first lens 1 are integrally connected, and the lens barrel 7
It is fixed in an adjustable position.

第1レンズ1は磁極が上下非対称で比較的大きな開口に
も拘らずパワーが強い特徴を有する。
The first lens 1 has magnetic poles that are vertically asymmetrical and has a strong power despite its relatively large aperture.

第2レンズ2は鏡筒7に対し位置の微調整機構を有する
The second lens 2 has a position fine adjustment mechanism with respect to the lens barrel 7.

この機構の代りに磁石を用いてもよい。第3レンズ3は
鏡筒7に対して固定されており、他の線源部、第2レン
ズの位置調整において位置の基準となる。
A magnet may be used instead of this mechanism. The third lens 3 is fixed to the lens barrel 7, and serves as a position reference when adjusting the positions of the other radiation source sections and the second lens.

第ルンズ1は第2.第3レンズ2゜3とは独立のスイッ
チ8によって電源Eに接続され、スイッチ8によって二
段型、三段型の切換えが行われる。
The first run is the second run. It is connected to the power source E by a switch 8 independent of the third lens 2.degree. 3, and the switch 8 switches between a two-stage type and a three-stage type.

以上の構成で、軸合せの調整は第ルンズ1に通電しない
二段型の状態で電子線源部と第ルンズ1の結合体及び第
2レンズ2の位置の微調整によって行われ、電子線源部
4と第ルンズ1との間は工作精度に任せた嵌合によって
相対的に位置が固定している。
With the above configuration, alignment adjustment is performed by finely adjusting the positions of the combination of the electron beam source and the second lunion 1 and the second lens 2 in a two-stage state in which the second lunion 1 is not energized. The position between the part 4 and the first lunula 1 is fixed relative to each other by fitting depending on the machining accuracy.

本考案は上述したような構成で、三段のレンズのうち第
1段をオンオフ型として、低倍率域では第ルンズは通電
せず二段型として用いることにより、三段型における軸
合せ調整の困難さを排除し、しかも三段型の高倍率をも
得ることができ、簡単な調整で広い倍率範囲をカバーで
きる電子線装置を得ることができる。
The present invention has the above-mentioned configuration, and the first stage of the three-stage lens is an on-off type, and in the low magnification range, the first lens is not energized and is used as a two-stage type, thereby making it possible to adjust the axis alignment in the three-stage lens. It is possible to eliminate the difficulties, obtain a three-stage high magnification, and obtain an electron beam device that can cover a wide magnification range with simple adjustment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は収束電子線の径と電子線電流の関係を示すグラ
フ、第2図は本考案の作用を説明する図、第3図は本考
案の一実施例装置の側面図である。 1・・・・・・第ルンズ、2・・・・・・第2レンズ、
3・・・・・・第3レンズ、4・・・・・・電子銃外筒
、I・・・・・・鏡筒、8・・・・・・電子線装置の二
段、三段切換スイッチ、G・・・・・・電子線源、S・
・・・・・試料。
FIG. 1 is a graph showing the relationship between the diameter of a convergent electron beam and the electron beam current, FIG. 2 is a diagram illustrating the operation of the present invention, and FIG. 3 is a side view of an apparatus according to an embodiment of the present invention. 1... Second lens, 2... Second lens,
3... Third lens, 4... Electron gun outer cylinder, I... Lens barrel, 8... Two-stage, three-stage switching of electron beam device. Switch, G...Electron beam source, S...
·····sample.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電子線源部と第ルンズと第2レンズと第3レンズとをこ
の順に配置して電子線の縮小投影系を構威し、電子線源
部と第ルンズとを一体的に結合してこの結合体と第2レ
ンズとをレンズ鏡筒に対し軸合せ位置調整可能とし、第
2.第3レンズに対して独立なスイッチを介して第ルン
ズを電源に接続し、第1.第2.第3の各レンズとも通
電の状態と、第ルンズのみ不通電の状態が得られるよう
にすると共に、第ルンズの励磁電流は一−’)の電流値
のみ可能とし、第2.第3レンズの励磁電流は調節可能
とした走査型電子顕微鏡。
An electron beam reduction projection system is constructed by arranging the electron beam source, the second lun, the second lens, and the third lens in this order, and the electron beam source and the second lun are integrally combined. The alignment position of the body and the second lens can be adjusted with respect to the lens barrel, and the second lens is adjustable. The third lens is connected to a power source via a switch independent of the third lens; Second. Each of the third lenses is energized, and only the third lens is de-energized, and the excitation current for the third lens is only allowed to have a current value of 1-'). A scanning electron microscope in which the excitation current of the third lens is adjustable.
JP1974070864U 1974-06-17 1974-06-17 Denshisenouchi Expired JPS5821064Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1974070864U JPS5821064Y2 (en) 1974-06-17 1974-06-17 Denshisenouchi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1974070864U JPS5821064Y2 (en) 1974-06-17 1974-06-17 Denshisenouchi

Publications (2)

Publication Number Publication Date
JPS50157856U JPS50157856U (en) 1975-12-27
JPS5821064Y2 true JPS5821064Y2 (en) 1983-05-04

Family

ID=28240030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1974070864U Expired JPS5821064Y2 (en) 1974-06-17 1974-06-17 Denshisenouchi

Country Status (1)

Country Link
JP (1) JPS5821064Y2 (en)

Also Published As

Publication number Publication date
JPS50157856U (en) 1975-12-27

Similar Documents

Publication Publication Date Title
CA1110781A (en) Electron microscope (comprising an auxiliary lens)
US4983832A (en) Scanning electron microscope
US5490193A (en) X-ray computed tomography system
JPH036615B2 (en)
JPS5821064Y2 (en) Denshisenouchi
US6307312B1 (en) Immersion lens and electron beam projection system using the same
JP3351647B2 (en) Scanning electron microscope
US4933553A (en) Focusing apparatus of electron microscope
US4097739A (en) Beam deflection and focusing system for a scanning corpuscular-beam microscope
JP2957610B2 (en) Scanning electron microscope
US4205253A (en) Elimination of landing errors in electron-optical system of mixed field type
US6933512B2 (en) Charged particle beam instrument
US4121100A (en) Electron microscope
JPH0227494Y2 (en)
JPH05258700A (en) Scanning image observing method and scanning electron microscope
JP3280187B2 (en) Scanning electron microscope
JPS6364255A (en) Particle beam radiating device
JPH01146238A (en) Electron beam device
JPH07201299A (en) Method and device for focusing in charged particle beam device
JPS6324617Y2 (en)
JPH0352169B2 (en)
JPS63198246A (en) Electron beam focusing device
JPS5942945B2 (en) cathode ray tube device
JPH0124837Y2 (en)
JPH0917368A (en) Single magnetic pole type objective lens and scanning electron microscope