JP3280187B2 - Scanning electron microscope - Google Patents

Scanning electron microscope

Info

Publication number
JP3280187B2
JP3280187B2 JP03243495A JP3243495A JP3280187B2 JP 3280187 B2 JP3280187 B2 JP 3280187B2 JP 03243495 A JP03243495 A JP 03243495A JP 3243495 A JP3243495 A JP 3243495A JP 3280187 B2 JP3280187 B2 JP 3280187B2
Authority
JP
Japan
Prior art keywords
sample
objective lens
magnetic pole
magnetic
electron microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03243495A
Other languages
Japanese (ja)
Other versions
JPH08227678A (en
Inventor
裕子 岩淵
佐藤  貢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP03243495A priority Critical patent/JP3280187B2/en
Publication of JPH08227678A publication Critical patent/JPH08227678A/en
Application granted granted Critical
Publication of JP3280187B2 publication Critical patent/JP3280187B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、走査電子顕微鏡に係
り、特に試料傾斜時にも高分解能観察が可能な走査電子
顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning electron microscope, and more particularly to a scanning electron microscope capable of performing high-resolution observation even when a sample is tilted.

【0002】[0002]

【従来の技術】従来の走査電子顕微鏡では、特開昭57
−172643号公報に記載のように、対物レンズの内
側磁極の下面を外側磁極の下面よりも試料側に突出させ
ることでレンズの主面を試料側に移動させ、これによっ
てレンズ収差を低減させて分解能向上を図っていた。
2. Description of the Related Art A conventional scanning electron microscope is disclosed in
As described in JP-A-172643, the main surface of the lens is moved to the sample side by projecting the lower surface of the inner magnetic pole of the objective lens toward the sample side from the lower surface of the outer magnetic pole, thereby reducing the lens aberration. The resolution was improved.

【0003】[0003]

【発明が解決しようとする課題】一般に、このような対
物レンズでは、レンズギャップから発生する磁界が光軸
上では内側磁極に遮断される形状となる。そのため、一
次電子線のフォーカスに必要な軸上磁界強度を得るに
は、レンズギャップ内に非常に強い磁界を発生させる必
要があり、磁路材料の磁気飽和が問題になる。そして試
料の傾斜角度を大きくとるほど、高分解能の実現のため
に内側磁極の下面を外側磁極の下面よりも長く突出させ
る必要があるため、磁路材料の磁気飽和の問題はさらに
深刻になる。
Generally, such an objective lens has such a shape that a magnetic field generated from a lens gap is blocked by an inner magnetic pole on an optical axis. Therefore, in order to obtain the on-axis magnetic field intensity necessary for focusing the primary electron beam, it is necessary to generate a very strong magnetic field in the lens gap, and magnetic saturation of the magnetic path material becomes a problem. As the inclination angle of the sample is increased, the lower surface of the inner magnetic pole needs to protrude longer than the lower surface of the outer magnetic pole in order to realize high resolution. Therefore, the problem of magnetic saturation of the magnetic path material becomes more serious.

【0004】また、電子顕微鏡の加速電圧を高くすると
対物レンズの励磁も強くする必要があるが、試料の傾斜
角度を大きくするほど対物レンズ内の励磁コイルを配置
する領域が小さくなるため、コイルの励磁電流による発
熱も大きな問題になってくる。従って、従来は、このよ
うな対物レンズを用いて試料を広角度傾斜して高分解能
を得るには、1kV未満の極低加速電圧でしか使用でき
ず、絶縁物の高分解能観察に適する1kVから数kVの
加速電圧での観察が困難であり、これまで実用にならな
かった。
When the acceleration voltage of the electron microscope is increased, the excitation of the objective lens also needs to be increased. However, as the tilt angle of the sample increases, the area where the excitation coil is arranged in the objective lens becomes smaller. Heat generation due to the exciting current also becomes a major problem. Therefore, conventionally, in order to obtain a high resolution by tilting a sample at a wide angle using such an objective lens, only a very low accelerating voltage of less than 1 kV can be used, and from 1 kV suitable for high-resolution observation of an insulator. Observation at an acceleration voltage of several kV is difficult and has not been practical until now.

【0005】[0005]

【課題を解決するための手段】上記対物レンズを一般的
な絶縁物試料の高分解能観察に適した1kVから数kV
までの範囲で、比較的短い焦点距離で使用するには、磁
路材料の磁気飽和及び磁路コイルの発熱の両面での考慮
が必要となる。図2に示すように、内側磁極の下面を外
側磁極の端面と同じ位置、又はそれよりも下方(試料
側)に突出させた形状を有する対物レンズ6について、
外側磁路23の傾斜角度θ、及び内側磁極下面の端面と
最も接近した外側磁路23の端面までの距離Gを種々変
えてシミュレーションを行った結果、傾斜角度θが30
°〜60°の範囲において、距離Gを5〜30mmの範
囲に設定すれば、試料の広角度傾斜高分解能観察に対し
て、磁路材料の磁気飽和及び励磁コイルの発熱の両面で
最適になることを発見した。ここで外側磁路の傾斜角度
θとは、レンズ6の中心軸(光軸)20に垂直な平面と
外側磁極23とがなす角度である。
Means for Solving the Problems The objective lens described above is used in a range of 1 kV to several kV suitable for high-resolution observation of a general insulator sample.
For use at a relatively short focal length in the range up to, consideration must be given to both magnetic saturation of the magnetic path material and heat generation of the magnetic path coil. As shown in FIG. 2, regarding the objective lens 6 having a shape in which the lower surface of the inner magnetic pole projects at the same position as the end surface of the outer magnetic pole or below (toward the sample).
As a result of performing various simulations by changing the inclination angle θ of the outer magnetic path 23 and the distance G to the end face of the outer magnetic path 23 closest to the end face of the lower surface of the inner magnetic pole, the inclination angle θ is 30
If the distance G is set in the range of 5 to 30 mm in the range of ° to 60 °, it becomes optimal for both wide-angle tilt and high-resolution observation of the sample in terms of both magnetic saturation of the magnetic path material and heat generation of the exciting coil. I discovered that. Here, the inclination angle θ of the outer magnetic path is an angle formed between a plane perpendicular to the central axis (optical axis) 20 of the lens 6 and the outer magnetic pole 23.

【0006】また、磁気飽和の起こる部分は、磁束の通
過断面積が最も小さい内側磁路21の光軸20に面した
領域に集中しているため、少なくともこの部分(図3に
示す斜線部)をなるべく飽和磁化の高い材料、例えばP
ermendur(商品名)で構成すると有利である。
本発明の対物レンズは、上記形状及び構成にすること
で、励磁コイルの消費電力を抑え、最高の磁界強度が得
られる。
Further, since the portion where magnetic saturation occurs is concentrated in the region facing the optical axis 20 of the inner magnetic path 21 where the cross-sectional area of the magnetic flux is smallest, at least this portion (the hatched portion shown in FIG. 3). A material having a high saturation magnetization, for example, P
Advantageously, it is composed of ermendur (trade name).
With the objective lens of the present invention having the above-described shape and configuration, the power consumption of the exciting coil can be suppressed, and the highest magnetic field strength can be obtained.

【0007】[0007]

【作用】図4は、断面形状を図2に示す対物レンズの磁
路全体を純鉄で構成し、外側磁路の傾斜角度θを45°
とした条件で、前記距離Gと、磁気飽和点で得られる光
軸上の最大磁束密度(実線)及び励磁コイルの単位電力
当たりの軸上磁界発生効率(相対値)のシミュレーショ
ン結果を示している。シミュレーションは、距離Gを5
mmから40mmとした対物レンズに対して行った。
FIG. 4 shows a sectional view of the objective lens whose sectional shape is shown in FIG. 2, in which the entire magnetic path is made of pure iron, and the inclination angle θ of the outer magnetic path is 45 °.
The simulation results of the distance G, the maximum magnetic flux density on the optical axis (solid line) obtained at the magnetic saturation point, and the axial magnetic field generation efficiency per unit power of the exciting coil (relative value) are shown under the following conditions. . In the simulation, the distance G is set to 5
The measurement was performed on an objective lens having a diameter of 40 mm to 40 mm.

【0008】例えば、レジストのような絶縁物の観察で
は、チャージアップを防ぐために、主に1kVから3k
V程度の加速電圧が使用されるが、このような条件にお
いては、光軸上の最大磁束密度が加速電圧1kVで0.
05テスラ、3kVで0.85テスラ以上あれば、ワー
キングデスタンス(WD)が10mm以下の高分解能観
察が可能になる。また、励磁コイルの磁気飽和に着目す
ると、距離Gを狭くすることで単位電力当たりの軸上磁
界発生効率は向上するが、磁気飽和が起きやすくなり、
光軸上の最大磁束密度は低下することになる。また、距
離Gを大きくしすぎても磁路材料が磁気飽和してしまう
ため、光軸上の最大磁束密度は増加しない。しかも、単
位電力当たりの磁界発生効率が低下するため励磁コイル
の消費電力も増加することになり、これによって励磁コ
イルの発熱の問題が起こり、逆効果となってしまう。
For example, when observing an insulating material such as a resist, in order to prevent charge-up, the voltage is mainly 1 kV to 3 kV.
Although an acceleration voltage of about V is used, under such conditions, the maximum magnetic flux density on the optical axis is 0.1 V at an acceleration voltage of 1 kV.
If it is 0.5 Tesla and 0.85 Tesla at 3 kV, high-resolution observation with a working distance (WD) of 10 mm or less becomes possible. Focusing on the magnetic saturation of the exciting coil, the on-axis magnetic field generation efficiency per unit power is improved by reducing the distance G, but the magnetic saturation easily occurs.
The maximum magnetic flux density on the optical axis will decrease. Further, if the distance G is too large, the magnetic path material is magnetically saturated, so that the maximum magnetic flux density on the optical axis does not increase. In addition, since the efficiency of magnetic field generation per unit power is reduced, the power consumption of the exciting coil is also increased. This causes a problem of heat generation of the exciting coil, which has an adverse effect.

【0009】これらを考慮して実用条件を考えた結果、
距離Gは5mmから30mmの範囲であれば良いことが
わかる。外側磁路の傾斜角度θを、試料を傾斜させて観
察を行う場合に実用範囲とされる30°から60°の間
で変化させて同様のシミュレーションを行うと、各々図
3と同様の結果が得られる。なお、外側磁路の傾斜角度
θを60°より大きくすると、高分解能を実現するため
に内側磁極の下面を外側磁極の下面よりも長く突出させ
る必要があるが、レンズギャップから発生する磁界が光
軸上で内側磁極に遮断される形状となるため、一次電子
線のフォーカスに必要な軸上磁界強度を得るには、レン
ズギャップ内に非常に強い磁界を発生させる必要があ
り、好ましくない。また、上記対物レンズ形状では励磁
コイルを配置する領域が小さくなるため、コイルの励磁
電流による発熱が問題となる。外側磁路の傾斜角度θが
30°より小さいと、試料傾斜角度を大きくとることが
できないため実用的ではない。
As a result of considering practical conditions in consideration of these,
It is understood that the distance G should be in the range of 5 mm to 30 mm. When the same simulation is performed by changing the inclination angle θ of the outer magnetic path between 30 ° and 60 °, which is a practical range when observing the sample while tilting the sample, the same results as in FIG. 3 are obtained. can get. If the inclination angle θ of the outer magnetic path is larger than 60 °, the lower surface of the inner magnetic pole needs to protrude longer than the lower surface of the outer magnetic pole to achieve high resolution. Since the shape is cut off by the inner magnetic pole on the axis, it is necessary to generate a very strong magnetic field in the lens gap in order to obtain the on-axis magnetic field intensity necessary for focusing the primary electron beam, which is not preferable. Further, in the above-described objective lens shape, since the area where the exciting coil is disposed becomes small, heat generation due to the exciting current of the coil becomes a problem. If the inclination angle θ of the outer magnetic path is smaller than 30 °, it is not practical because the specimen inclination angle cannot be increased.

【0010】また、図2に示すように、磁気飽和の発生
しやすい、内側磁路の光軸に面した領域(斜線部)を純
鉄よりも飽和磁化の高い材料、例えばPermendu
rで構成した場合、外側磁路の傾斜角度θが45°の条
件で、距離Gと磁気飽和点で得られる光軸上の最大磁束
密度を、図4に破線で示した。磁路全体を純鉄で構成し
た場合(実線)と比較して軸上最大磁束密度は大きくな
り、より低消費電力(低発熱)の状態で数kVの加速電
圧まで高分解能傾斜観察が可能になる。例えば、X線分
析を行う場合に、5kVの加速電圧が使用されるが、こ
の条件において必要とされる光軸上の最大磁束密度1.
11テスラ以上を満足し、高分解能観察及び高感度分析
が可能となる。
As shown in FIG. 2, a region (hatched portion) facing the optical axis of the inner magnetic path where magnetic saturation easily occurs is made of a material having a higher saturation magnetization than pure iron, for example, Permendu.
In the case of the configuration of r, the maximum magnetic flux density on the optical axis obtained at the distance G and the magnetic saturation point under the condition that the inclination angle θ of the outer magnetic path is 45 ° is shown by a broken line in FIG. The maximum on-axis magnetic flux density is larger than when the entire magnetic path is composed of pure iron (solid line), enabling high-resolution tilt observation up to several kV of acceleration voltage with lower power consumption (lower heat generation). Become. For example, when an X-ray analysis is performed, an acceleration voltage of 5 kV is used.
Satisfies 11 Tesla or more, enabling high-resolution observation and high-sensitivity analysis.

【0011】[0011]

【実施例】図1は、本発明による走査型電子顕微鏡の一
実施例の概略構成図である。陰極1と引出し電極3に印
加される電圧V1により陰極1から放出された一次電子
線2は、陰極1と加速電極4の間に印加される印加電圧
Vaccで加速される。一次電子線2は、レンズ制御電
源14で制御された集束レンズ5及び対物レンズ6によ
り細く絞られて試料8上に照射され、偏向器7a及び7
bで試料上を二次元的に走査される。
FIG. 1 is a schematic structural view of one embodiment of a scanning electron microscope according to the present invention. The primary electron beam 2 emitted from the cathode 1 by the voltage V1 applied to the cathode 1 and the extraction electrode 3 is accelerated by the applied voltage Vacc applied between the cathode 1 and the acceleration electrode 4. The primary electron beam 2 is narrowed down by the focusing lens 5 and the objective lens 6 controlled by the lens control power supply 14 and is irradiated onto the sample 8 to be deflected.
The sample is scanned two-dimensionally at b.

【0012】偏向器7a及び7bの走査信号は観察倍率
に応じて偏向制御回路12により制御される。一次電子
線2の照射によって試料8から発生する二次信号15
は、二次信号検出器9により検出されて、CRT等の像
表示装置13に試料の拡大像として表示される。試料ス
テージ10は対物レンズ6に対して水平及び垂直方向に
移動する機構、及び傾斜させる機構を具備している。対
物レンズ6は、図2に示すように、外側磁路の傾斜角度
θを30°≦θ≦60°の範囲とし、内側磁極の下面を
外側磁極の下面と同じ位置、又はそれよりも下方(試料
側)に突出させるとともに、内側磁極下面の端面と最も
接近した外側磁極の端面までの距離Gを5mmから30
mmの範囲とする。
The scanning signals of the deflectors 7a and 7b are controlled by a deflection control circuit 12 in accordance with the observation magnification. Secondary signal 15 generated from sample 8 by irradiation of primary electron beam 2
Is detected by the secondary signal detector 9 and is displayed as an enlarged image of the sample on an image display device 13 such as a CRT. The sample stage 10 has a mechanism for moving in the horizontal and vertical directions with respect to the objective lens 6 and a mechanism for tilting. As shown in FIG. 2, the objective lens 6 sets the inclination angle θ of the outer magnetic path in the range of 30 ° ≦ θ ≦ 60 °, and the lower surface of the inner magnetic pole is at the same position as the lower surface of the outer magnetic pole or below ( The distance G between the end face of the lower surface of the inner magnetic pole and the end face of the outer magnetic pole closest to the outer magnetic pole is 5 to 30 mm.
mm.

【0013】また、図3に斜線で示すように、対物レン
ズ6の磁路のうち磁気飽和の発生しやすい内側磁極を含
む磁路の少なくとも光軸に面した領域を、純鉄より飽和
磁化の高い材料で構成する。この結果、同形状の対物レ
ンズにおいて、図4に破線で示すように、磁路全体を純
鉄で構成した場合よりも軸上最大磁束密度は大きくな
り、より低消費電力(低発熱)の状態で数kVの加速電
圧まで高分解能傾斜観察が可能になる。
As shown by hatching in FIG. 3, at least a region of the magnetic path of the objective lens 6 including the inner magnetic pole where the magnetic saturation is likely to occur and facing the optical axis is made to have a saturation magnetization higher than that of pure iron. Construct with high material. As a result, in the objective lens of the same shape, as shown by the broken line in FIG. 4, the maximum axial magnetic flux density becomes larger than when the entire magnetic path is made of pure iron, and the state of lower power consumption (lower heat generation) is achieved. Thus, high-resolution tilt observation can be performed up to an acceleration voltage of several kV.

【0014】図5は、対物レンズ6及び試料8付近の拡
大図である。対物レンズ6は内側磁極が下方(試料側)
に突出しているため、図に示すように、対物レンズ6よ
り試料8側に磁界分布17が形成される。従って、試料
8を傾斜させて観察を行う場合にも対物レンズ6の焦点
距離fは極めて短くなるため、高分解能観察が可能にな
る。
FIG. 5 is an enlarged view near the objective lens 6 and the sample 8. Objective lens 6 has lower inner magnetic pole (sample side)
As shown in the figure, a magnetic field distribution 17 is formed on the sample 8 side from the objective lens 6. Therefore, even when observing the sample 8 while tilting it, the focal length f of the objective lens 6 becomes extremely short, so that high-resolution observation becomes possible.

【0015】[0015]

【発明の効果】本発明によれば、対物レンズ励磁コイル
の消費電力を抑え、最高の磁界強度を得ることができ
る。しかも、内側磁極の下面が外側磁極の下面よりも下
方(試料側)に突出しているため、試料を傾斜させて観
察を行う場合でも高分解能な像を得ることができる。
According to the present invention, the power consumption of the objective lens exciting coil can be suppressed, and the highest magnetic field strength can be obtained. In addition, since the lower surface of the inner magnetic pole protrudes below the lower surface of the outer magnetic pole (toward the sample), a high-resolution image can be obtained even when observing the sample while tilting it.

【図面の簡単な説明】[Brief description of the drawings]

【図1】走査電子顕微鏡の概略構成図。FIG. 1 is a schematic configuration diagram of a scanning electron microscope.

【図2】対物レンズ形状を示す断面図。FIG. 2 is a sectional view showing the shape of an objective lens.

【図3】磁路の一部を飽和磁化の高い材料で構成した対
物レンズの断面図。
FIG. 3 is a cross-sectional view of an objective lens in which a part of a magnetic path is made of a material having high saturation magnetization.

【図4】対物レンズの磁気飽和特性及び磁界発生効率を
示す図。
FIG. 4 is a diagram showing a magnetic saturation characteristic and a magnetic field generation efficiency of an objective lens.

【図5】対物レンズとその磁界及び試料位置を示す図。FIG. 5 is a diagram showing an objective lens, its magnetic field, and a sample position.

【符号の説明】[Explanation of symbols]

1…陰極、2…電子線、3…引出し電極、4…加速電
極、5…集束レンズ、6…対物レンズ、7a,7b…偏
向器、8…試料、9…二次電子検出器、10…試料ステ
ージ、11…絞り、12…偏向制御回路、13…像表示
装置、14…レンズ制御電源、15…二次信号、16…
飽和磁化の高い材料、17…磁界分布、20…光軸、2
1…内側磁路、23…外側磁路
DESCRIPTION OF SYMBOLS 1 ... Cathode, 2 ... Electron beam, 3 ... Extraction electrode, 4 ... Acceleration electrode, 5 ... Focusing lens, 6 ... Objective lens, 7a, 7b ... Deflector, 8 ... Sample, 9 ... Secondary electron detector, 10 ... Sample stage, 11 ... Aperture, 12 ... Deflection control circuit, 13 ... Image display device, 14 ... Lens control power supply, 15 ... Secondary signal, 16 ...
Material with high saturation magnetization, 17: magnetic field distribution, 20: optical axis, 2
1: inner magnetic path, 23: outer magnetic path

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 細く絞った電子線を試料上で二次元的に
走査し、試料の各走査点から発生する信号を検出する走
査電子顕微鏡において、 対物レンズとして、光軸に垂直な平面に対する外側磁路
の傾斜角度θを30°から60°の範囲とし、内側磁極
の下面を外側磁極の下面と同じ位置、またはそれよりも
下方(試料側)に突出させるとともに、内側磁極下面の
端面と最も近接した外側磁極の端面までの距離Gを5m
mから30mmの範囲とした対物レンズを備えることを
特徴とする走査電子顕微鏡。
1. A scanning electron microscope which two-dimensionally scans a narrowly focused electron beam on a sample and detects a signal generated from each scanning point of the sample. The inclination angle θ of the magnetic path is in the range of 30 ° to 60 °, the lower surface of the inner magnetic pole is projected at the same position as the lower surface of the outer magnetic pole, or below (to the sample side), and the lower surface of the inner magnetic pole is Distance G to the end face of the close outer magnetic pole is 5m
A scanning electron microscope comprising an objective lens in a range from m to 30 mm.
【請求項2】 前記対物レンズは、磁路の光軸に面した
領域が他の領域の材料よりも飽和磁化の高い材料で構成
されていることを特徴とする請求項1記載の走査電子顕
微鏡。
2. The scanning electron microscope according to claim 1, wherein the objective lens has a region facing the optical axis of the magnetic path made of a material having a higher saturation magnetization than a material of another region. .
JP03243495A 1995-02-21 1995-02-21 Scanning electron microscope Expired - Lifetime JP3280187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03243495A JP3280187B2 (en) 1995-02-21 1995-02-21 Scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03243495A JP3280187B2 (en) 1995-02-21 1995-02-21 Scanning electron microscope

Publications (2)

Publication Number Publication Date
JPH08227678A JPH08227678A (en) 1996-09-03
JP3280187B2 true JP3280187B2 (en) 2002-04-30

Family

ID=12358853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03243495A Expired - Lifetime JP3280187B2 (en) 1995-02-21 1995-02-21 Scanning electron microscope

Country Status (1)

Country Link
JP (1) JP3280187B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686385B2 (en) * 2006-03-14 2011-05-25 株式会社日立ハイテクノロジーズ Scanning electron microscope

Also Published As

Publication number Publication date
JPH08227678A (en) 1996-09-03

Similar Documents

Publication Publication Date Title
US4209702A (en) Multiple electron lens
JPH0536371A (en) Corpuscular ray device
JPH11148905A (en) Electron beam inspection method and apparatus therefor
KR100384727B1 (en) Scanning electron microscope and sample observation method using it
US7034297B2 (en) Method and system for use in the monitoring of samples with a charged particle beam
JP3372138B2 (en) Scanning electron microscope
JP3715992B2 (en) Charged particle beam irradiation equipment
US3717761A (en) Scanning electron microscope
EP1354335A2 (en) Sem provided with an adjustable final electrode in the electrostatic objective
US6653632B2 (en) Scanning-type instrument utilizing charged-particle beam and method of controlling same
JP3293724B2 (en) Beam blanking equipment for charged particle beam equipment
JP2002110079A (en) Electron beam device
US6710340B2 (en) Scanning electron microscope and method of detecting electrons therein
US6362486B1 (en) Magnetic lens for focusing a charged particle beam
JP3280187B2 (en) Scanning electron microscope
JPH0935679A (en) Scanning electron microscope
JP2739485B2 (en) Scanning electron beam device
JP6204388B2 (en) Charged particle beam apparatus and scanning electron microscope
JPH06181041A (en) Scanning electron microscope
JP2001057172A (en) Scanning electron microscope
JP3767443B2 (en) Charged particle beam equipment
JP2000182558A (en) Scanning electron microscope
JP2004281334A (en) Scanning electron microscope
JP3288239B2 (en) Electron beam equipment
JPS5978434A (en) Electromagnetic objective

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

EXPY Cancellation because of completion of term