JPH06181041A - Scanning electron microscope - Google Patents

Scanning electron microscope

Info

Publication number
JPH06181041A
JPH06181041A JP33408892A JP33408892A JPH06181041A JP H06181041 A JPH06181041 A JP H06181041A JP 33408892 A JP33408892 A JP 33408892A JP 33408892 A JP33408892 A JP 33408892A JP H06181041 A JPH06181041 A JP H06181041A
Authority
JP
Japan
Prior art keywords
sample
secondary electron
objective lens
electron microscope
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33408892A
Other languages
Japanese (ja)
Inventor
Yoichi Ose
洋一 小瀬
Yoshiya Higuchi
佳也 樋口
Kiyomi Yoshinari
清美 吉成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP33408892A priority Critical patent/JPH06181041A/en
Publication of JPH06181041A publication Critical patent/JPH06181041A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a scanning electron microscope in which the yield of a secondary electron can be increased up to 100% and also aberration can be reduced, thereby making it feasible to perform observation with high resolution. CONSTITUTION:A primary electron beam 1 passes through a deflection coil 7 and then is throw on a sample 3. At that time, a magnetic field made by an objective lens is spread over the sample 3 and the upper space and the primary electron beam 1 is focused to a degree of being several nm in diameter. With the primary electron beam thrown on the sample 3, a secondary electron 2 is emitted from the sample 3 with angular distribution. Since the energy of secondary electron 2 is as low as several eV, the secondary electron 2 is twisted about the magnetic flux of the objective lens 5 to go up as it is making spiral motion. The magnetic flux density abruptly goes down apart from the direction of the sample, and the secondary electron is shaked off from the spiral motion to evaporate and then is deflected with the attracting electric field from a secondary electron detector 4 and is caught by the secondary electron detector 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は走査電子顕微鏡に係り、
特に、半導体ウェハ等の薄板状の試料を観察する走査電
子顕微鏡において、高分解能,高感度を保持するに好適
な対物レンズを備える走査電子顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning electron microscope,
In particular, the present invention relates to a scanning electron microscope for observing a thin plate-shaped sample such as a semiconductor wafer, which is equipped with an objective lens suitable for maintaining high resolution and high sensitivity.

【0002】[0002]

【従来の技術】図2に従来の走査電子顕微鏡の全体構成
を示す。フィールドエミッションチップ10からの一次
電子線1はこのチップ10と陽極11間の電界で加速さ
れる。さらに集束レンズ12と対物しぼり13,中間レ
ンズ14によって電子電流とスポットサイズの調整をす
る。中間レンズ14と対物レンズ5の間に一次電子線1
を走査する二段の偏向コイル7が装着され、対物レンズ
5により集束させた一次電子線1を試料3上を走査す
る。二次電子検出器4には10kV程度の高電圧が印加
されており、試料3上で発生した二次電子2を捕獲す
る。対物レンズの収差を低減し高分解能を得るには、対
物レンズ5と試料3の間隔、いわゆるワーキングディス
タンスを狭めることが有効であるが、このような構造で
は二次電子2が対物レンズ5の底面に衝突して失われ、
感度が低下する問題が有る。
2. Description of the Related Art FIG. 2 shows the overall structure of a conventional scanning electron microscope. The primary electron beam 1 from the field emission chip 10 is accelerated by the electric field between this chip 10 and the anode 11. Further, the focusing lens 12, the objective aperture 13 and the intermediate lens 14 adjust the electron current and the spot size. Between the intermediate lens 14 and the objective lens 5, the primary electron beam 1
A two-stage deflection coil 7 for scanning is scanned, and the primary electron beam 1 focused by the objective lens 5 is scanned on the sample 3. A high voltage of about 10 kV is applied to the secondary electron detector 4 to capture the secondary electrons 2 generated on the sample 3. In order to reduce the aberration of the objective lens and obtain high resolution, it is effective to narrow the distance between the objective lens 5 and the sample 3, that is, the so-called working distance, but in such a structure, the secondary electron 2 is the bottom surface of the objective lens 5. Lost to
There is a problem of reduced sensitivity.

【0003】この問題を回避するため、特開昭57−2127
56号公報では対物レンズ5方向に飛行する二次電子2を
反射する電極を試料3に面する対物レンズ5の底部に設
置している。
In order to avoid this problem, Japanese Patent Laid-Open No. 57-2127
In JP 56, an electrode for reflecting the secondary electrons 2 flying in the direction of the objective lens 5 is installed at the bottom of the objective lens 5 facing the sample 3.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術では、反
射した二次電子2が試料3に逆流し、特にワーキングデ
ィスタンスが狭い高分解能の装置では、感度がほとんど
向上しないか、場合によっては逆に低下する。
In the above-mentioned prior art, the reflected secondary electrons 2 flow back to the sample 3, and particularly in a high-resolution apparatus having a narrow working distance, the sensitivity is hardly improved, or conversely, in some cases. descend.

【0005】本発明の目的は、二次電子の感度を向上
し、また、高感度高分解能の走査電子顕微鏡を提供する
ことにある。
It is an object of the present invention to improve the sensitivity of secondary electrons and to provide a scanning electron microscope with high sensitivity and high resolution.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は対物レンズを試料の直下に設置し、対物レ
ンズが生成する磁場が試料上で十分強くなるように、磁
路のギャップを試料の直下に配置する。
In order to achieve the above-mentioned object, the present invention installs an objective lens directly below a sample and sets a gap of a magnetic path so that a magnetic field generated by the objective lens is sufficiently strong on the sample. Is placed just below the sample.

【0007】[0007]

【作用】図3は磁路のギャップを試料の直下、即ち、上
面に配置した場合の対物レンズ周りの構造と、光軸上で
の軸方向磁束密度分布の計算結果を示す。従来の対物レ
ンズの励磁電流並みの1500アンペアターンにより、
試料上で約0.1 テスラとなる。これは従来の対物レン
ズと磁束密度自体も同程度になり、十分な一次電子の集
束作用が得られる。このように対物レンズを試料の下部
に設置したため、試料上面で発生した二次電子は、如何
なる構造物も遮れることなく二次電子検出器に捕獲され
る。
FIG. 3 shows the structure around the objective lens when the gap of the magnetic path is arranged directly below the sample, that is, on the upper surface, and the calculation result of the axial magnetic flux density distribution on the optical axis. With the 1500 ampere turn, which is similar to the excitation current of conventional objective lenses,
It is about 0.1 Tesla on the sample. This makes the magnetic flux density itself comparable to that of a conventional objective lens, and a sufficient primary electron focusing effect can be obtained. Since the objective lens is installed under the sample in this way, the secondary electrons generated on the upper surface of the sample are captured by the secondary electron detector without obstructing any structure.

【0008】[0008]

【実施例】本発明の実施例を、以下、図1の二次電子検
出系の断面図に基づいて説明する。一次電子線1は偏向
コイル7を通過後、試料3上に照射される。この際、対
物レンズ5の作る磁場が試料上及びその上部空間に広が
っているため、一次電子1は直径がナノメートル程度に
収束される。一次電子線1の照射により二次電子2が試
料3から角度分布を持って放出される。二次電子2はエ
ネルギが数eVと低いため、対物レンズ5の磁束に巻き
ついて螺旋運動をしながら上昇する。試料表面から離れ
ると急速に磁束密度が低下し、二次電子2は旋回から振
りほどかれて発散し、二次電子検出器4からの引込み電
界により偏向されて二次電子検出器4に捕獲される。本
実施例では、試料3と二次電子検出器4の間に二次電子
2の飛行を遮る構造が全くないため、二次電子2の収率
をほぼ100%まで向上できる。
Embodiments of the present invention will be described below with reference to the sectional view of the secondary electron detection system shown in FIG. After passing through the deflection coil 7, the primary electron beam 1 is irradiated onto the sample 3. At this time, since the magnetic field generated by the objective lens 5 spreads on the sample and the space above it, the diameter of the primary electron 1 is converged to about a nanometer. By irradiation with the primary electron beam 1, secondary electrons 2 are emitted from the sample 3 with an angular distribution. Since the energy of the secondary electron 2 is as low as a few eV, the secondary electron 2 is wound around the magnetic flux of the objective lens 5 and rises while making a spiral motion. The magnetic flux density rapidly decreases when the sample is separated from the surface of the sample, the secondary electrons 2 are swung away from the swirl and diverge, and are deflected by the electric field drawn from the secondary electron detector 4 and captured by the secondary electron detector 4. It In this embodiment, since there is no structure between the sample 3 and the secondary electron detector 4 to block the flight of the secondary electrons 2, the yield of the secondary electrons 2 can be improved to almost 100%.

【0009】次に、第二の実施例を図4に基づいて説明
する。先の実施例では対物レンズ5の上面を平面上に設
計し、全面が試料3と密着する構造としたが、本実施例
では対物レンズ5の上面の形状を凸形とし、通常は中心
部のみが試料3に密着する構造とした。半導体ウェハ上
のエッチングパターンの観察では、試料を傾けてエッチ
ングパターンの側面を観察する使用法がある。本実施例
の様な凸形状にすることにより、試料を傾けた観察が容
易に実現できる。この場合にも、試料3と二次電子検出
器4間に二次電子2の飛行を遮る構造が全くないため、
二次電子2の収率をほぼ100%を維持できる。
Next, a second embodiment will be described with reference to FIG. In the previous embodiment, the upper surface of the objective lens 5 was designed to be flat, and the entire surface was in close contact with the sample 3. However, in this embodiment, the shape of the upper surface of the objective lens 5 is convex, and normally only the central portion is formed. Was in close contact with Sample 3. In the observation of the etching pattern on the semiconductor wafer, there is a usage method in which the side surface of the etching pattern is observed by tilting the sample. By using the convex shape as in this embodiment, it is possible to easily realize the observation with the sample tilted. Also in this case, since there is no structure between the sample 3 and the secondary electron detector 4 to block the flight of the secondary electrons 2,
The yield of secondary electrons 2 can be maintained at almost 100%.

【0010】[0010]

【発明の効果】本発明によれば、二次電子を遮る対物レ
ンズを試料下部に移動したことにより、二次電子の収率
をほぼ100%に向上できる。また、試料上で対物レン
ズ磁場が最大になるため、収差が低下し、高分解能の観
察が可能となる。これにより、大直径の半導体ウェハの
観察,検査,測長に好適な装置が実現できる。
According to the present invention, the yield of secondary electrons can be improved to almost 100% by moving the objective lens that blocks secondary electrons to the lower part of the sample. Further, since the objective lens magnetic field is maximized on the sample, the aberration is reduced, and high-resolution observation becomes possible. As a result, an apparatus suitable for observing, inspecting, and measuring a large-diameter semiconductor wafer can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例となる走査電子顕微鏡の
二次電子検出系の断面図。
FIG. 1 is a sectional view of a secondary electron detection system of a scanning electron microscope according to a first embodiment of the present invention.

【図2】従来の走査電子顕微鏡の全体構成の断面図。FIG. 2 is a sectional view of the overall configuration of a conventional scanning electron microscope.

【図3】本発明の作用を示す対物レンズ及び磁束密度の
計算結果の説明図。
FIG. 3 is an explanatory diagram of an objective lens and a calculation result of magnetic flux density showing an operation of the present invention.

【図4】本発明の第二の実施例となる試料を傾斜可能な
走査電子顕微鏡の二次電子検出系の断面図。
FIG. 4 is a sectional view of a secondary electron detection system of a scanning electron microscope capable of inclining a sample according to a second embodiment of the present invention.

【符号の説明】 1…一次電子線、2…二次電子、3…試料、4…二次電
子検出器、5…対物レンズ、7…偏向コイル。
[Description of Reference Signs] 1 ... Primary electron beam, 2 ... Secondary electron, 3 ... Sample, 4 ... Secondary electron detector, 5 ... Objective lens, 7 ... Deflection coil.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一次電子照射系からの一次電子線を対物レ
ンズ磁場で集束して試料に照射し、前記試料上から発生
した二次電子を引込み電界により捕獲する二次電子検出
器をもつ走査電子顕微鏡において、前記対物レンズ磁場
を発生する対物ポールピース及び励磁コイルを試料の下
部に配置したことを特徴とする走査電子顕微鏡。
1. A scan having a secondary electron detector that focuses a primary electron beam from a primary electron irradiation system by an objective lens magnetic field to irradiate a sample and captures secondary electrons generated on the sample by an attracting electric field. In the electron microscope, an objective pole piece for generating the magnetic field of the objective lens and an exciting coil are arranged below a sample, which is a scanning electron microscope.
【請求項2】請求項1において、前記対物ポールピース
の前記試料に面する面を凸形状とし、試料傾斜機構を設
けた走査電子顕微鏡。
2. The scanning electron microscope according to claim 1, wherein a surface of the objective pole piece facing the sample is convex and a sample tilting mechanism is provided.
JP33408892A 1992-12-15 1992-12-15 Scanning electron microscope Pending JPH06181041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33408892A JPH06181041A (en) 1992-12-15 1992-12-15 Scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33408892A JPH06181041A (en) 1992-12-15 1992-12-15 Scanning electron microscope

Publications (1)

Publication Number Publication Date
JPH06181041A true JPH06181041A (en) 1994-06-28

Family

ID=18273397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33408892A Pending JPH06181041A (en) 1992-12-15 1992-12-15 Scanning electron microscope

Country Status (1)

Country Link
JP (1) JPH06181041A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6335530B1 (en) 1997-07-31 2002-01-01 Seiko Instruments Inc. Objective lens for scanning electron microscope
JP2007250223A (en) * 2006-03-14 2007-09-27 Hitachi High-Technologies Corp Scanning electron microscope
WO2016121225A1 (en) * 2015-01-30 2016-08-04 松定プレシジョン株式会社 Charged particle beam device and scanning electron microscope
JPWO2016121224A1 (en) * 2015-01-30 2017-12-07 松定プレシジョン株式会社 Charged particle beam apparatus and scanning electron microscope
KR20180089481A (en) 2015-12-03 2018-08-08 마쯔사다 프리지션 인코포레이티드 Charged particle beam device and scanning electron microscope
JPWO2018025849A1 (en) * 2016-08-02 2019-06-13 松定プレシジョン株式会社 Charged particle beam apparatus and scanning electron microscope

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6335530B1 (en) 1997-07-31 2002-01-01 Seiko Instruments Inc. Objective lens for scanning electron microscope
JP2007250223A (en) * 2006-03-14 2007-09-27 Hitachi High-Technologies Corp Scanning electron microscope
CN109585245A (en) * 2015-01-30 2019-04-05 松定精度株式会社 Charged particle line apparatus and scanning electron microscope
US10153129B2 (en) 2015-01-30 2018-12-11 Matsusada Precision, Inc. Charged particle beam device and scanning electron microscope
CN107430971A (en) * 2015-01-30 2017-12-01 松定精度株式会社 Charged particle line apparatus and SEM
JPWO2016121224A1 (en) * 2015-01-30 2017-12-07 松定プレシジョン株式会社 Charged particle beam apparatus and scanning electron microscope
KR20180014884A (en) 2015-01-30 2018-02-09 마쯔사다 프리지션 인코포레이티드 Charged particle beam device and scanning electron microscope
JP2016143513A (en) * 2015-01-30 2016-08-08 松定プレシジョン株式会社 Charged particle beam device
CN107430971B (en) * 2015-01-30 2018-11-09 松定精度株式会社 Charged particle line apparatus and scanning electron microscope
TWI680487B (en) * 2015-01-30 2019-12-21 日商松定精度股份有限公司 Charged particle beam apparatus and scanning electron microscope
WO2016121225A1 (en) * 2015-01-30 2016-08-04 松定プレシジョン株式会社 Charged particle beam device and scanning electron microscope
CN109585245B (en) * 2015-01-30 2021-03-23 松定精度株式会社 Charged particle beam device and scanning electron microscope
KR20190044706A (en) 2015-01-30 2019-04-30 마쯔사다 프리지션 인코포레이티드 Charged particle beam device and scanning electron microscope
US10541106B2 (en) 2015-01-30 2020-01-21 Matsusada Precision, Inc. Charged particle beam device and scanning electron microscope
US10438770B2 (en) 2015-01-30 2019-10-08 Matsusada Precision, Inc. Charged particle beam device and scanning electron microscope
TWI676204B (en) * 2015-01-30 2019-11-01 日商松定精度股份有限公司 Charged particle beam apparatus and scanning electron microscope
KR20180089481A (en) 2015-12-03 2018-08-08 마쯔사다 프리지션 인코포레이티드 Charged particle beam device and scanning electron microscope
US10497535B2 (en) 2015-12-03 2019-12-03 Matsusada Precision, Inc. Charged particle beam device and scanning electron microscope
KR20190039353A (en) 2015-12-03 2019-04-10 마쯔사다 프리지션 인코포레이티드 Charged particle beam device and scanning electron microscope
JPWO2018025849A1 (en) * 2016-08-02 2019-06-13 松定プレシジョン株式会社 Charged particle beam apparatus and scanning electron microscope

Similar Documents

Publication Publication Date Title
JP4215282B2 (en) SEM equipped with electrostatic objective lens and electrical scanning device
JP2919170B2 (en) Scanning electron microscope
US6392231B1 (en) Swinging objective retarding immersion lens electron optics focusing, deflection and signal collection system and method
JP4236742B2 (en) Scanning electron microscope
JP4300710B2 (en) Scanning electron microscope
JP4527289B2 (en) Particle optics including detection of Auger electrons
US4740698A (en) Hybrid charged particle apparatus
US6960766B2 (en) Swinging objective retarding immersion lens electron optics focusing, deflection and signal collection system and method
JP2003109532A (en) Particle beam device
US6580074B1 (en) Charged particle beam emitting device
US20020109089A1 (en) SEM provided with an adjustable final electrode in the electrostatic objective
JP2772821B2 (en) Electron beam equipment
JP2001283759A (en) Scanning electron microscope
JPH06181041A (en) Scanning electron microscope
JPH0935679A (en) Scanning electron microscope
JP2003331770A (en) Electron beam device
JPH08138611A (en) Charged particle beam device
JP2002324510A (en) Scanning electron microscope
JP2005521215A (en) Electro-optical focusing, deflection, signal acquisition system and method for swinging objective decelerating immersion lens
JPH1154076A (en) Objective lens for scanning type electron microscope
JPH11242941A (en) Scanning electron microscope
JP3280187B2 (en) Scanning electron microscope
JP2001057172A (en) Scanning electron microscope
JP2000182558A (en) Scanning electron microscope
JP3494208B2 (en) Scanning electron microscope