JP2007250223A - Scanning electron microscope - Google Patents

Scanning electron microscope Download PDF

Info

Publication number
JP2007250223A
JP2007250223A JP2006068484A JP2006068484A JP2007250223A JP 2007250223 A JP2007250223 A JP 2007250223A JP 2006068484 A JP2006068484 A JP 2006068484A JP 2006068484 A JP2006068484 A JP 2006068484A JP 2007250223 A JP2007250223 A JP 2007250223A
Authority
JP
Japan
Prior art keywords
magnetic pole
sample
objective lens
scanning electron
electron microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006068484A
Other languages
Japanese (ja)
Other versions
JP4686385B2 (en
Inventor
Toru Ishitani
亨 石谷
Mitsugi Sato
貢 佐藤
Koichiro Takeuchi
恒一郎 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2006068484A priority Critical patent/JP4686385B2/en
Publication of JP2007250223A publication Critical patent/JP2007250223A/en
Application granted granted Critical
Publication of JP4686385B2 publication Critical patent/JP4686385B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To materialize high resolving power (low aberration) in an objective in which a sample is disposed on the further electron gun side than the inside magnetic pole and the outside magnetic pole of the objective. <P>SOLUTION: A keynote for designing the magnetic field type lens is how to strengthen B in a magnetic flux distribution B(z) on the optical axis of the lens, and how to thin the thickness of the lens (that is, the z width of the B distribution). For this purpose, a magnetic field is required to be concentrated on the vicinity of an electron beam irradiating portion on a sample by reviewing the shape and disposition of the inside magnetic pole and the outside magnetic pole of the objective 13. For this purpose, first the inside magnetic pole 13a is formed into a truncated cone as shown in Fig. 4, and the sample 12 is disposed near the base side of the truncated cone. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、走査電子顕微鏡(Scanning Electron Microscope:以下、SEMと略す)に関わり、特に低加速時における高分解能観察が可能なSEM技術に関する。   The present invention relates to a scanning electron microscope (hereinafter abbreviated as SEM), and more particularly to an SEM technique capable of high-resolution observation at low acceleration.

従来のSEMでは磁界型の対物レンズが採用され、高分解能化の観点からはレンズの短焦点化に工夫が成されている。   A conventional SEM employs a magnetic field type objective lens, and is devised to shorten the focal length of the lens from the viewpoint of high resolution.

特許文献1では、試料は対物レンズの磁極間に配置され、短焦点化が図られている。また薄膜試料の場合はSEM画像ばかりでなくSTEM(透過型走査電子顕微鏡;Scanning Transmission Electron Microscope)画像が有用であることが開示されている。特許文献2では、対物レンズの内側磁極および外側磁極のいずれもが試料に対し、電子銃側に配置され、試料は両磁極が試料側に形成する漏洩磁界(あるいは磁束)の中に配置される。特許文献3では、図2に示すように対物レンズ13の内側磁極13aおよび外側磁極13bのいずれもが試料12に対し、電子銃とは反対側に配置されている。これにより、対物レンズ13が発生する磁場強度を試料上で十分強くなるように磁路ギャップを配置している。また、対物レンズの試料搭載側部を平面形状から凸形状にすることにより半導体ウエハ試料などが傾斜できることも開示されている。いずれの形状の対物レンズにおいても、試料12と二次電子検出器10の間に二次電子の飛行を遮る構造物が全く無いため、二次電子の収集率としてほぼ100%を達成している。特許文献4では、図2と同様な対物レンズ、つまり、試料に対し電子銃と反対側に設置されており、その内側磁極は試料に向かってと突き出している対物レンズが開示されている。しかし、外側磁極に接続された試料側の金属板はステンレススチルのような非磁性材料であり、磁束を試料近傍に制限する構造となっていない。   In Patent Document 1, the sample is arranged between the magnetic poles of the objective lens to shorten the focus. In the case of a thin film sample, it is disclosed that not only an SEM image but also a STEM (Scanning Transmission Electron Microscope) image is useful. In Patent Document 2, both the inner magnetic pole and the outer magnetic pole of the objective lens are arranged on the electron gun side with respect to the sample, and the sample is arranged in a leakage magnetic field (or magnetic flux) formed by both magnetic poles on the sample side. . In Patent Document 3, as shown in FIG. 2, both the inner magnetic pole 13a and the outer magnetic pole 13b of the objective lens 13 are arranged on the opposite side of the sample 12 from the electron gun. Thereby, the magnetic path gap is arranged so that the magnetic field intensity generated by the objective lens 13 is sufficiently strong on the sample. It is also disclosed that a semiconductor wafer sample or the like can be inclined by changing the sample mounting side portion of the objective lens from a planar shape to a convex shape. In any shape of the objective lens, there is no structure that blocks the flight of secondary electrons between the sample 12 and the secondary electron detector 10, so that the collection rate of secondary electrons is almost 100%. . Patent Document 4 discloses an objective lens similar to that shown in FIG. 2, that is, an objective lens that is installed on the opposite side of the sample from the electron gun and whose inner magnetic pole protrudes toward the sample. However, the sample-side metal plate connected to the outer magnetic pole is a non-magnetic material such as stainless steel, and does not have a structure that restricts the magnetic flux to the vicinity of the sample.

非特許文献1では、図3に示すようにシュノーケルレンズと記載されているレンズが本発明に関連する従来対物レンズであり、そこには内側磁極13aの端部近傍の磁束密度を増大するために円錐台形状にすることが開示されている。   In Non-Patent Document 1, a lens described as a snorkel lens as shown in FIG. 3 is a conventional objective lens related to the present invention, in order to increase the magnetic flux density near the end of the inner magnetic pole 13a. A frustoconical shape is disclosed.

特開平2004−214065号公報Japanese Patent Application Laid-Open No. 2004-214065 特開平8−227678号公報JP-A-8-227678 特開平6−181041号公報JP-A-6-181041 USP 3,870,891USP 3,870,891 E. Munro and O.C. Wells (1976), Scanning Electron Microscopy/1976 (Part 1) p.27E. Munro and O.C. Wells (1976), Scanning Electron Microscopy / 1976 (Part 1) p.27

本発明の目的は、特許文献3と非特許文献1に開示されている対物レンズ、つまり、対物レンズの内側磁極と外側磁極より電子銃側に、試料を配置する対物レンズにおいて、高分解能化(低収差化)を実現することにある。   An object of the present invention is to increase the resolution of an objective lens disclosed in Patent Document 3 and Non-Patent Document 1, that is, an objective lens in which a sample is arranged closer to the electron gun than the inner magnetic pole and outer magnetic pole of the objective lens ( (To reduce aberrations).

上記の課題を解決するための磁界型レンズの設計基本方針は、レンズの光軸上磁束密度分布B(z)において如何にしてBを強く、かつレンズの厚み(つまりB分布のz幅)を薄くするかに尽きる。そのためには対物レンズ13の内側磁極と外側磁極の形状や配置を見直し、試料上の電子ビーム照射部近傍のみに磁界を集中させる必要がある。そのためには先ず図4に示すように内側磁極13aを円錐台形状にし、試料12はその円錐台の台側近くに配置する。これにより、円錐台磁極から出る磁力線を試料上の電子ビーム照射部近傍に集中させることができる。次に、B(z)分布幅を狭めるために、外側磁極13bのその磁極断面を内側磁極側で薄くなるテーパ形状にして内側円錐台磁極の台を目指して最近接させ、円錐台磁極から出て試料を通過した磁力線20を電子銃側に大きく張り出さないように取り込むのである。ただし、テーパ部の厚さは磁気飽和を起こさない程度に確保しておく必要がある。   The basic design policy of the magnetic field type lens for solving the above-mentioned problem is how to increase B in the magnetic flux density distribution B (z) on the optical axis of the lens and to increase the thickness of the lens (that is, the z width of the B distribution). It's all about thinning. For this purpose, it is necessary to review the shape and arrangement of the inner and outer magnetic poles of the objective lens 13 and concentrate the magnetic field only in the vicinity of the electron beam irradiation part on the sample. For this purpose, first, as shown in FIG. 4, the inner magnetic pole 13a is formed into a truncated cone shape, and the sample 12 is arranged near the truncated cone side of the truncated cone. As a result, the magnetic lines of force emerging from the frustoconical magnetic pole can be concentrated in the vicinity of the electron beam irradiation part on the sample. Next, in order to narrow the B (z) distribution width, the outer magnetic pole 13b has a tapered cross section that is thinned toward the inner magnetic pole, and is brought closer to the inner frustoconical magnetic pole so as to come out of the frustoconical magnetic pole. Thus, the magnetic field lines 20 that have passed through the sample are taken in so as not to protrude greatly toward the electron gun side. However, it is necessary to secure the thickness of the tapered portion to such an extent that magnetic saturation does not occur.

内側円錐台磁極とテーパ断面形状の外側磁極との組合せにより、レンズ磁束密度分布
B(z)を強く、かつその分布z幅が狭くできるため、従来にない低収差対物レンズが実現できる。これにより高分解能のSEM観察が可能になる。
The combination of the inner frustoconical magnetic pole and the outer magnetic pole having a tapered cross-sectional shape can increase the lens magnetic flux density distribution B (z) and narrow the distribution z width, thereby realizing an unprecedented low aberration objective lens. This enables high-resolution SEM observation.

以下に図面を用いて、本発明の一例を説明する。   An example of the present invention will be described below with reference to the drawings.

本発明の第一の実施例である走査電子顕微鏡の装置構成を説明する(図1参照)。電界放出形電子銃2に対して3〜6kVの電圧を引き出し電極3印加して、電子線1を引き出し、加速電極4により0.5 〜30kVに加速(あるいは減速)される。電子線1は理想光軸(偏向を受けないときの電子線の通過軌道)に沿って加速される。   The apparatus configuration of the scanning electron microscope according to the first embodiment of the present invention will be described (see FIG. 1). A voltage of 3 to 6 kV is applied to the field emission electron gun 2 to apply the extraction electrode 3, the electron beam 1 is extracted, and the acceleration electrode 4 accelerates (or decelerates) to 0.5 to 30 kV. The electron beam 1 is accelerated along the ideal optical axis (the trajectory of the electron beam when not deflected).

加速された電子線1は、第一の集束レンズ5によって集束され、対物レンズ絞り6によりビームの不要な部分が除かれる。対物レンズ絞り6を通過した電子線1は第二の集束レンズ7と第一の対物レンズ11による第一の組合せ、あるいは第二の集束レンズ7と第二の対物レンズ13による第二の組合せによって試料12上に絞られる。この細く絞られた電子線1は二段の偏向コイル8により試料上で二次元的に走査される。試料から放出された二次電子(または反射電子)14は第一の対物レンズ11内に配置された二次電子加速電極17によって光軸の周りを大きく広がることなく加速状態で電子銃2側に引き上げられた後、ExBフィルター9で光軸外に外されて二次電子検出器(又は反射電子検出器)10で検出される。ただし、反射電子の場合は、正確には、一旦、反射電子を引き上げた後に変換板(図表示なし)に衝突させて二次電子を発生させて変換し、その変換二次電子がExBフィルター9で光軸外に外されて二次電子検出器(又は反射電子検出器)10で検出されることになる。   The accelerated electron beam 1 is focused by the first focusing lens 5, and unnecessary portions of the beam are removed by the objective lens aperture 6. The electron beam 1 that has passed through the objective lens stop 6 is obtained by the first combination of the second focusing lens 7 and the first objective lens 11 or the second combination of the second focusing lens 7 and the second objective lens 13. Squeezed onto the sample 12. The narrowed electron beam 1 is scanned two-dimensionally on the sample by a two-stage deflection coil 8. Secondary electrons (or backscattered electrons) 14 emitted from the sample are accelerated toward the electron gun 2 by the secondary electron accelerating electrode 17 disposed in the first objective lens 11 without being greatly spread around the optical axis. After being pulled up, it is removed from the optical axis by the ExB filter 9 and detected by the secondary electron detector (or backscattered electron detector) 10. However, in the case of reflected electrons, to be precise, once the reflected electrons are lifted, they are collided with a conversion plate (not shown) to generate secondary electrons for conversion, and the converted secondary electrons are converted into the ExB filter 9. Therefore, the secondary electron detector (or backscattered electron detector) 10 detects the light beam off the optical axis.

二次電子検出器(又は反射電子検出器)10で検出された検出信号は、増幅器で増幅され、偏向コイル8の偏向信号と同期した走査像の輝度信号に用い、SEM画像として像表示装置(例えば、CRTや液晶の表示画面)22に形成される。第二の集束レンズ7と第二の対物レンズ13による第二の組合せは、特に、加速電圧が0.5 〜5kVの低加速時における高分解能観察モードの場合に用いるものである。一方、第二の集束レンズ7と第一の対物レンズ11による第一の組合せは、加速電圧が0.5 〜30kVにおける通常の観察モードの場合に用いるものである。0.5 〜5kVの低加速時における通常観察モードでは、特に低倍率のSEM観察ができるのが特長である。第一の対物レンズ11と第二の対物レンズ13は同時に動作させることはなく、モード毎にモード切り替え手段20にて切り替えられる。   A detection signal detected by the secondary electron detector (or backscattered electron detector) 10 is amplified by an amplifier and used as a luminance signal of a scanning image synchronized with the deflection signal of the deflection coil 8, and is used as an SEM image. For example, a CRT or liquid crystal display screen) 22 is formed. The second combination of the second focusing lens 7 and the second objective lens 13 is used particularly in the case of the high-resolution observation mode at the time of low acceleration with an acceleration voltage of 0.5 to 5 kV. On the other hand, the first combination of the second focusing lens 7 and the first objective lens 11 is used in the normal observation mode at an acceleration voltage of 0.5 to 30 kV. In the normal observation mode at a low acceleration of 0.5 to 5 kV, the SEM observation at a low magnification can be performed. The first objective lens 11 and the second objective lens 13 are not operated simultaneously, and are switched by the mode switching means 20 for each mode.

試料12の厚さが約0.2μm 以下の薄膜の場合は、約15〜30kV以上の高加速電圧の電子ビームは試料12を透過する。透過電子15は電子の入射方向に対し散乱角の大きい散乱電子と小さい非散乱電子に分けられそれぞれ暗視野および明視野の検出器で検出される。透過電子検出器16は暗視野および明視野の検出器を合わせたものである。これらからの検出信号を輝度信号として利用すればSEM画像と同様なSTEM画像が得られる。対物レンズ13の第1内側磁極13aには透過電子15通過用の孔が設けられ、試料12側近傍の孔形状を円錐とし、その円錐頂角は60〜90°の範囲にある。第1内側磁極13はその磁極端面が、電界放射形電子銃2に向かって形成されており、理想光軸に対し垂直な磁極端面を備えている。   In the case where the thickness of the sample 12 is about 0.2 μm or less, an electron beam having a high acceleration voltage of about 15 to 30 kV or more passes through the sample 12. The transmitted electrons 15 are divided into scattered electrons having a large scattering angle and small non-scattered electrons with respect to the incident direction of the electrons, and are detected by a dark field detector and a bright field detector, respectively. The transmission electron detector 16 is a combination of a dark field detector and a bright field detector. If the detection signals from these are used as luminance signals, a STEM image similar to the SEM image can be obtained. The first inner magnetic pole 13a of the objective lens 13 is provided with a hole for passing the transmitted electron 15, the hole shape in the vicinity of the sample 12 is a cone, and the cone apex angle is in the range of 60 to 90 °. The first inner magnetic pole 13 has a magnetic pole end face formed toward the field emission electron gun 2 and has a magnetic pole end face perpendicular to the ideal optical axis.

散乱電子ビームを用いる暗視野画像では、散乱角としてより広角の散乱電子の検出が好ましいことが経験的にわかっているが、テーパ断面形状の外側磁極11bとの空間的干渉制約から孔円錐の頂角は60°〜90°が最適である。STEM観察を取り込まないSEM装置においては、もちろんこの円錐孔は本質的には不必要であるが、薄膜試料のSEM観察において、透過電子15の円錐台磁極からの背面散乱電子に起因したノイズ発生の抑止観点からは、径の細い円柱孔にしろ設けておくのが好ましい。   In a dark field image using a scattered electron beam, it has been empirically known that detection of scattered electrons having a wider angle is preferable as a scattering angle, but the top of the hole cone is restricted due to spatial interference with the outer magnetic pole 11b having a tapered cross section. The angle is optimally 60 ° to 90 °. In a SEM apparatus that does not incorporate STEM observation, of course, this conical hole is essentially unnecessary. However, in SEM observation of a thin film sample, noise generation due to backscattered electrons from the truncated cone pole of the transmitted electron 15 occurs. From the standpoint of inhibition, it is preferable to provide a cylindrical hole with a small diameter.

次に、軸上磁束密度分布B(z)分布における内側磁極13aの台径D[mm],外側磁極13bの内径d[mm],外側磁極13bの内側磁極13aに対する突き出し量zL[mm]の影響について述べる。前述のパラメータ(D,d、およびzL)および他のパラメータ(内側磁極13aの外径Dout[ mm]および円錐半頂角α[°]、外側磁極13bの外径dout [mm])を図5に示す。代表的なB(z)分布および球面収差係数Cs[mm]および色収差係数Cc[mm]のd依存性をそれぞれ図6および図7に示す。ただし、(α,
D,zL)=(45,2,0)および(Dout,dout) =(20,60)である。試料は内側磁極13aの台面をz原点とし、その電子銃側手前0.5mm(つまり、z=−0.5)位置に置く。d=5,6,8,12はd/D=2.5,3,4,6 に対応する。Dout およびdout はDおよびdに比べては数倍以上大きく、図6や図7の特性カーブには余り影響を与えない。そこで、Cs,Cc,dおよびD間にはスケーリング則が成立し、そこでは、例えばd/Dをある特定値に固定してDを2倍に大きくすれば、Cs,Ccも2倍に増大することになる。図6において重要なポイントは、z=−2mm位置において、つまり円錐台磁極の台面から台径D離れた点Pを支点としてB(z)分布カーブはd/Dの増減
(2.5 ⇔6)に対しシーソの様に変化する。d/Dが小さくなるほど、B(z)分布は急峻になって分布幅が狭くなり、図7に示すように収差係数CsおよびCcも小さくなる。実配置の観点からは、外側磁極13bのその磁極断面を内側磁極側で薄くなるテーパ形状にして内側円錐台磁極の台を目指して最近接させるにはd/Dが4以下であることが必要であり、かつ、円錐台磁極の持つ低収差特徴を活かすにはDは6mm以下であることが必要である。領域D>6mmでは、条件d/D=2.5下でも(Cs,Cc)は(1.1,2.0)と大きくなり、従来対物レンズと同等になってくるからである。
Next, axial magnetic flux density distribution B (z) Tai径D [mm] of the inner magnetic pole 13a in the distribution, the inner diameter d of the outer magnetic pole 13b [mm], the projection amount z L relative to the inner magnetic pole 13a of the outer magnetic pole 13b [mm] Describe the impact of. The aforementioned parameters (D, d, and z L ) and other parameters (outer diameter D out [mm] and conical half apex angle α [°] of the inner magnetic pole 13a, outer diameter d out [mm] of the outer magnetic pole 13b)) Is shown in FIG. FIG. 6 and FIG. 7 show typical B (z) distribution and d dependence of the spherical aberration coefficient Cs [mm] and the chromatic aberration coefficient Cc [mm], respectively. However, (α,
D, z L ) = (45, 2, 0) and (D out , d out ) = (20, 60). The sample is placed at a position 0.5 mm (that is, z = −0.5) in front of the electron gun side with the base surface of the inner magnetic pole 13a as the z origin. d = 5, 6, 8, 12 corresponds to d / D = 2.5, 3, 4, 6 D out and d out are several times larger than D and d, and do not affect the characteristic curves of FIGS. Therefore, a scaling rule is established between Cs, Cc, d, and D, where, for example, if d / D is fixed to a specific value and D is doubled, Cs and Cc are also doubled. Will do. An important point in FIG. 6 is that the B (z) distribution curve is increased / decreased by d / D (2.5⇔6) at the position z = −2 mm, that is, with a point P away from the base surface of the truncated cone magnetic pole D as a fulcrum. ) Changes like a seesaw. As d / D becomes smaller, the B (z) distribution becomes steeper and the distribution width becomes narrower, and the aberration coefficients Cs and Cc become smaller as shown in FIG. From the standpoint of actual arrangement, d / D needs to be 4 or less in order to make the magnetic pole cross-section of the outer magnetic pole 13b thinner at the inner magnetic pole side and to make closest contact toward the inner truncated cone pole base. In order to make use of the low aberration characteristic of the truncated cone magnetic pole, D needs to be 6 mm or less. This is because, in the region D> 6 mm, (Cs, Cc) increases to (1.1, 2.0) even under the condition d / D = 2.5, which is equivalent to the conventional objective lens.

次に、B(z)分布のzL 依存性を図8に示す。ただし、d=2で他パラメータ値は図6と同じである。zLが−1から+2の範囲ではzLが大きいほどB(z)分布が急峻になり好ましい。zL =+4では、B(z)分布カーブのz=−d当たりに肩ピークが発生してB(0)値も低下するため、レンズ磁場として好ましくない。zL>0の領域では、円錐台磁極の台面が外側テーパ磁極より後退して凹部空間の底となるため、試料12を円錐台磁極の台面に接近させる配置が取りづらくなる。さらに、試料12の配置が円錐台磁極の台面から離れるにつれ、B(z)分布のレンズ有効領域が小さくなる短所も伴ってくる。zL <0の領域では、外側テーパ磁極が内側円錐台磁極の円錐側面に最近接するため、その両磁極の最近接部近傍でB大きくなり磁気飽和が起こり易くなる。図9はレンズコイル13cが1000AT(コイル巻数N[T]と電流I[A]の積)である時の外側磁極13bと円錐孔付き内側磁極13aにおけるB分布をグレー輝度表示した代表例で、両磁極の最近接部近傍でBが大きくなっており、その最大値Bmaxは約2.3Tである。磁極材料としてよく採用するパーメンダにおいては、その飽和磁束密度は約2.4T である。材料の磁束飽和を超えた強励磁レンズは作ればいので、試料のサイズや配置操作性を実用的観点からB強度とバランスさせると、zLはほぼ0に設定するのが最も好ましい。 Next, FIG. 8 shows the z L dependency of the B (z) distribution. However, d = 2 and other parameter values are the same as those in FIG. When z L is in the range of −1 to +2, it is preferable that z ( L ) distribution becomes steeper as z L increases. When z L = + 4, a shoulder peak occurs around z = −d of the B (z) distribution curve and the B (0) value also decreases, which is not preferable as a lens magnetic field. In the region of z L > 0, the base surface of the truncated cone magnetic pole recedes from the outer tapered magnetic pole and becomes the bottom of the concave space, so that it is difficult to arrange the sample 12 close to the base surface of the truncated cone magnetic pole. Furthermore, as the arrangement of the sample 12 moves away from the base surface of the truncated cone magnetic pole, there is a disadvantage that the effective lens area of the B (z) distribution becomes smaller. In the region of z L <0, the outer tapered magnetic pole is closest to the conical side surface of the inner frustoconical magnetic pole, so that B increases near the closest portion of both magnetic poles, and magnetic saturation is likely to occur. FIG. 9 is a representative example in which the B distribution in the outer magnetic pole 13b and the inner magnetic pole 13a with a conical hole is displayed in gray luminance when the lens coil 13c is 1000AT (product of coil turns N [T] and current I [A]). B increases in the vicinity of the closest part of both magnetic poles, and its maximum value Bmax is about 2.3T. In a permender often used as a magnetic pole material, the saturation magnetic flux density is about 2.4T. Since a strong excitation lens that exceeds the magnetic flux saturation of the material can be made, it is most preferable to set z L to almost zero when the sample size and arrangement operability are balanced with the B intensity from a practical viewpoint.

第二の実施例を図10にて説明する。対物レンズ13の内側磁極13aを円錐端側部
13a1とその基部13a3とを内側磁極電気的絶縁部13a2を介して分離する。同様に外側磁極13bを試料側テーパ磁極13b1とその基部13b3とを外側磁極電気的絶縁部13b2を介して直流電位的に分離する。ただし、円錐端側部13a1とテーパ磁極13b1は、それぞれの基部とは磁気的には強く結合させてある。両基部を接地電位とし、一方、円錐端側部13a1とテーパ磁極13b1には電位Vdecel を印加する。また、試料12にも試料ホルダー(図示せず)を介して電位Vdecel を印加し、試料12の電子ビーム入射側近傍に入射電子ビーム用の穴を開けたメッシュ状あるいは板状の電位シールド板17を置き、通常、接地電位にする。この電位配置により、電子加速電位をVacc とすると、電子ビームは電位シールド板17と試料12間で減速され、試料12へは入射電圧はVacc−Vdecelになる。この減速電位でもレンズ作用が働き、収差係数Csおよび
Ccは小さくできる特長がある。例えば、zL が0の対物レンズにおいて錐電極台面から5mm離して電位シールド板17を、また試料12は0.5mm離して置いた場合、収差係数CsおよびCcはVdecel/Vaccに対し、図11のように振舞う。例えば、試料12への電子ビームの入射エネルギーを200eVにする場合において、電位シールド板17を働かさない場合、つまり(Vdecel,Vacc)=(0,−200)[単位:V]の時の(Cs,Cc)=(0.54,1.1)[単位:mm]であるが、電位シールド板17を働かして
(Vdecel ,Vacc )を(−1000,−800)とすると(Cs,Cc)は(0.30,0.39 )とそれぞれ(56,35)%に低減できる。このような低加速SEM観察においては、この減速モード動作がビーム性能を劣化させないので高分解能観察が可能になる。
A second embodiment will be described with reference to FIG. The inner magnetic pole 13a of the objective lens 13 is separated from the conical end side portion 13a1 and the base portion 13a3 through the inner magnetic pole electrical insulating portion 13a2. Similarly, the outer magnetic pole 13b is separated from the sample-side tapered magnetic pole 13b1 and its base portion 13b3 in terms of DC potential via the outer magnetic pole electrical insulating portion 13b2. However, the conical end side portion 13a1 and the tapered magnetic pole 13b1 are magnetically strongly coupled to the respective base portions. Both bases are set to ground potential, while a potential Vdecel is applied to the conical end side portion 13a1 and the tapered magnetic pole 13b1. Further, a potential Vdecel is applied to the sample 12 through a sample holder (not shown), and a mesh-like or plate-like potential shield plate 17 in which a hole for an incident electron beam is formed in the vicinity of the electron beam incident side of the sample 12. Is usually set to ground potential. With this potential arrangement, if the electron acceleration potential is Vacc, the electron beam is decelerated between the potential shield plate 17 and the sample 12, and the incident voltage on the sample 12 becomes Vacc-Vdecel. The lens action works even with this deceleration potential, and the aberration coefficients Cs and Cc have a feature that can be reduced. For example, when the potential shield plate 17 is placed 5 mm away from the cone electrode base surface and the sample 12 is placed 0.5 mm away from the objective electrode with z L of 0, the aberration coefficients Cs and Cc are Vdecel / Vacc as shown in FIG. Behave like For example, when the incident energy of the electron beam to the sample 12 is 200 eV, (Cs) when the potential shield plate 17 does not work, that is, when (Vdecel, Vacc) = (0, −200) [unit: V]. , Cc) = (0.54, 1.1) [unit: mm], but when (Vdecel, Vacc) is (−1000, −800) by operating the potential shield plate 17, (Cs, Cc) is (0.30, 0.39) and (56, 35)%, respectively. In such a low-acceleration SEM observation, since this deceleration mode operation does not deteriorate the beam performance, high-resolution observation is possible.

高分解能化を実現するには、電子銃2に輝度が高く、光源サイズの小さく、かつ放出電子のエネルギー幅の小さいものが必要で有り、実施例の1および2のいずれにおいても、電界放出形を採用した。電界放出形には、さらに分類して、冷陰極電界放出(CFE),ショットキー、およびカーボンナノチューブ(CNT)がある。最も高分解能化にはCFEを、一方、最も時間的な高安定化にはショットキーを採用した。CNTはこれらの両者を兼ね備えたものとして現在、開発中のものであり、まだ実用的な信頼性が不足している。   In order to achieve high resolution, the electron gun 2 needs to have high brightness, a small light source size, and a small energy width of emitted electrons, and in either of the first and second embodiments, the field emission type It was adopted. The field emission type is further classified into cold cathode field emission (CFE), Schottky, and carbon nanotube (CNT). The CFE was used for the highest resolution, while the Schottky was used for the highest temporal stability. CNT is currently under development as a combination of both, and practical reliability is still insufficient.

本発明第1実施例の走査電子顕微鏡の概略構成を説明する図。The figure explaining schematic structure of the scanning electron microscope of 1st Example of this invention. 従来技術公知例の走査電子顕微鏡における断面構造概略図。Sectional-structure schematic in the scanning electron microscope of a prior art well-known example. 従来技術公知例の走査電子顕微鏡における断面構造概略図。Sectional-structure schematic in the scanning electron microscope of a prior art well-known example. 本発明の課題を解決するために採用した手段を説明する図。The figure explaining the means employ | adopted in order to solve the subject of this invention. 本発明の円錐台磁極構造対物レンズのパラメータを説明する図。The figure explaining the parameter of the truncated cone magnetic pole structure objective lens of this invention. 円錐台磁極構造対物レンズにおける軸上磁束密度B(z)の外側テーパ磁極内径dの依存性を説明する図。The figure explaining the dependence of the outer side taper magnetic pole internal diameter d of the axial magnetic flux density B (z) in a truncated cone magnetic pole structure objective lens. 円錐台磁極構造対物レンズにおける収差係数CsおよびCcの外側テーパ磁極内径dの依存性を説明する図。The figure explaining the dependence of the outer side taper magnetic pole internal diameter d of the aberration coefficients Cs and Cc in a truncated cone magnetic structure objective lens. 円錐台磁極構造対物レンズにおける軸上磁束密度B(z)のzL依存性を説明する図。The figure explaining the zL dependence of the axial magnetic flux density B (z) in a truncated cone magnetic pole structure objective lens. 円錐台磁極構造対物レンズにおける外側テーパ磁極と円錐孔付き内側円錐台磁極におけるB分布のグレー輝度表示図。FIG. 10 is a gray luminance display diagram of B distribution in an outer tapered magnetic pole and an inner truncated cone magnetic pole with a conical hole in a truncated cone magnetic objective lens. 本発明第2実施例の走査電子顕微鏡における円錐台磁極構造の対物レンズを説明する図。The figure explaining the objective lens of a truncated cone magnetic pole structure in the scanning electron microscope of 2nd Example of this invention. 収差係数CsおよびCcのVdecel/Vacc依存性を説明する図。The figure explaining the Vdecel / Vacc dependence of the aberration coefficients Cs and Cc.

符号の説明Explanation of symbols

1…電子線、2…電子銃、3…引き出し電極、4…加速電極、5…第一の集束レンズ、6…対物レンズ絞り、7…第二の集束レンズ、8…偏向コイル、9…ExBフィルター、10…二次電子検出器(又は反射電子検出器)、11…第一の対物レンズ、11a,13a…内側磁極、11b,13b…外側磁極、11c,13c…レンズコイル、12…試料、13…対物レンズ、14…二次電子(あるいは反射電子)、15…透過電子、16…透過電子検出器、17…電位シールド液、20…モード毎に切り替え手段、21…電気系制御部、22…像表示装置。

DESCRIPTION OF SYMBOLS 1 ... Electron beam, 2 ... Electron gun, 3 ... Extraction electrode, 4 ... Acceleration electrode, 5 ... 1st focusing lens, 6 ... Objective lens aperture, 7 ... 2nd focusing lens, 8 ... Deflection coil, 9 ... ExB Filter, 10 ... Secondary electron detector (or backscattered electron detector), 11 ... First objective lens, 11a, 13a ... Inner magnetic pole, 11b, 13b ... Outer magnetic pole, 11c, 13c ... Lens coil, 12 ... Sample, DESCRIPTION OF SYMBOLS 13 ... Objective lens, 14 ... Secondary electron (or reflection electron), 15 ... Transmission electron, 16 ... Transmission electron detector, 17 ... Potential shield liquid, 20 ... Switching means for every mode, 21 ... Electric system control part, 22 ... Image display device.

Claims (11)

電子銃と、当該電子銃から放出される電子線を集束する対物レンズを備えた走査電子顕微鏡において、
前記試料を前記電子銃と前記内側磁極との間に試料を配置するための試料ステージを備え、前記対物レンズは、前記電子線の理想光軸に沿って且つ前記電子銃に向かって磁極端面が形成される内側磁極と、当該内側磁極との間で前記電子線を集束する磁場を形成する外側磁極を有すると共に、当該内側磁極の前記電子銃側磁極端の前記理想光軸と垂直な方向の径Dが6mm以下であって、且つ前記外側磁極の前記電子線通過開口径dと前記径Dとの関係が、d/D≦4となるように構成されていることを特徴とする走査電子顕微鏡。
In a scanning electron microscope provided with an electron gun and an objective lens that focuses an electron beam emitted from the electron gun,
A sample stage for disposing the sample between the electron gun and the inner magnetic pole; and the objective lens has a magnetic pole end surface along the ideal optical axis of the electron beam and toward the electron gun. An inner magnetic pole to be formed and an outer magnetic pole for forming a magnetic field for focusing the electron beam between the inner magnetic pole and a direction perpendicular to the ideal optical axis of the electron gun side magnetic pole end of the inner magnetic pole Scanning electrons characterized in that the diameter D is 6 mm or less and the relationship between the electron beam passage opening diameter d of the outer magnetic pole and the diameter D is d / D ≦ 4 microscope.
電子銃からの電子線を試料に集束する対物レンズを備え、上記試料から発生する信号を用いて上記試料を観察する走査電子顕微鏡において、
上記対物レンズ1を構成する内側磁極と外側磁極の両磁極は、上記試料に対し上記電子銃側と反対側にあって、
上記内側磁極はその試料側端が円錐台形状であり、
一方、上記外側磁極においては、該レンズ軸を含むその磁極断面が上記内側円錐台磁極に向かうテーパ形状で、その円錐台磁極の試料側端近傍が最近接箇所となる
ことを特徴とした走査電子顕微鏡。
In a scanning electron microscope comprising an objective lens for focusing an electron beam from an electron gun onto a sample, and observing the sample using a signal generated from the sample,
Both the inner magnetic pole and the outer magnetic pole constituting the objective lens 1 are opposite to the electron gun side with respect to the sample,
The inner magnetic pole has a truncated cone shape at the sample side end,
On the other hand, in the outer magnetic pole, the cross section of the magnetic pole including the lens axis has a tapered shape toward the inner frustoconical magnetic pole, and the vicinity of the sample side end of the frustoconical magnetic pole is the closest location. microscope.
上記対物レンズ1の内側磁極と外側磁極のそれぞれの上記試料側端の外径および内径をDおよびdで表した時、Dは6mm以下で、かつ、d/Dが4以下であることを特徴とした請求項2に記載の走査電子顕微鏡。   When the outer diameter and inner diameter of the sample side end of each of the inner magnetic pole and the outer magnetic pole of the objective lens 1 are represented by D and d, D is 6 mm or less and d / D is 4 or less. The scanning electron microscope according to claim 2. 上記内側磁極と外側磁極の両端面間の光軸上距離が上記内側磁極の端面外径D以下であることを特徴とする請求項2に記載の走査電子顕微鏡。   The scanning electron microscope according to claim 2, wherein a distance on the optical axis between both end faces of the inner magnetic pole and the outer magnetic pole is equal to or smaller than an outer diameter D of the end face of the inner magnetic pole. 上記対物レンズ1とは別の対物レンズ2を併せ持ち、
上記対物レンズ2を構成する内側磁極と外側磁極の両磁極は、上記試料に対し上記電子銃側にあることを特徴とする請求項2に記載の走査電子顕微鏡。
It also has an objective lens 2 that is different from the objective lens 1,
The scanning electron microscope according to claim 2, wherein both the inner magnetic pole and the outer magnetic pole constituting the objective lens 2 are on the electron gun side with respect to the sample.
上記対物レンズ1の第1内側磁極に、上記試料が薄い場合、その試料からの透過散乱ビーム通過用の孔があることを特徴とする請求項2の走査電子顕微鏡。   3. The scanning electron microscope according to claim 2, wherein when the sample is thin, the first inner magnetic pole of the objective lens 1 has a hole for transmitting a scattered scattered beam from the sample. 上記対物レンズ1の第1内側磁極に設けた上記試料からの透過散乱ビーム通過用の孔において、上記孔の試料側近傍の孔形状が円錐であり、その円錐頂角が60°〜90°の範囲にあることを特徴とした請求項5に記載の走査電子顕微鏡。   In the hole for transmitting a scattered scattered beam from the sample provided in the first inner magnetic pole of the objective lens 1, the hole shape in the vicinity of the sample side of the hole is a cone, and the apex angle of the cone is 60 ° to 90 °. The scanning electron microscope according to claim 5, wherein the scanning electron microscope is in a range. 上記試料に照射する電子線の照射モードを2つに分け、それぞれのモードに合わせて上記対物レンズ1および上記対物レンズ2を動作させるように切り替え手段を持つことを特徴とする請求項5に記載の走査電子顕微鏡。   6. The electron beam irradiation mode for irradiating the sample is divided into two, and switching means is provided to operate the objective lens 1 and the objective lens 2 in accordance with each mode. Scanning electron microscope. 上記試料から発生する二次電子信号の検出器が上記対物レンズ2の外側磁極に対し電子銃側に設置されていることを特徴とする請求項5に記載の走査電子顕微鏡。   The scanning electron microscope according to claim 5, wherein a detector for secondary electron signals generated from the sample is installed on the electron gun side with respect to the outer magnetic pole of the objective lens 2. 上記対物レンズ1の内側磁極と外側磁極のそれぞれの上記試料側部がそれらの基部とは直流電位的に分離された構造であることを特徴とする請求項2に記載の走査電子顕微鏡。   The scanning electron microscope according to claim 2, wherein the sample side portions of the inner magnetic pole and the outer magnetic pole of the objective lens 1 are separated from their base portions in terms of DC potential. 上記電子銃が電界放出形であることを特徴とした請求項2に記載の走査電子顕微鏡。   The scanning electron microscope according to claim 2, wherein the electron gun is a field emission type.
JP2006068484A 2006-03-14 2006-03-14 Scanning electron microscope Expired - Fee Related JP4686385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006068484A JP4686385B2 (en) 2006-03-14 2006-03-14 Scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006068484A JP4686385B2 (en) 2006-03-14 2006-03-14 Scanning electron microscope

Publications (2)

Publication Number Publication Date
JP2007250223A true JP2007250223A (en) 2007-09-27
JP4686385B2 JP4686385B2 (en) 2011-05-25

Family

ID=38594296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006068484A Expired - Fee Related JP4686385B2 (en) 2006-03-14 2006-03-14 Scanning electron microscope

Country Status (1)

Country Link
JP (1) JP4686385B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121225A1 (en) * 2015-01-30 2016-08-04 松定プレシジョン株式会社 Charged particle beam device and scanning electron microscope
CN106769162A (en) * 2017-02-20 2017-05-31 广西大学 A kind of transmission electron microscope magnetic sample preprocessor
JPWO2017094721A1 (en) * 2015-12-03 2018-05-31 松定プレシジョン株式会社 Charged particle beam apparatus and scanning electron microscope
JPWO2018025849A1 (en) * 2016-08-02 2019-06-13 松定プレシジョン株式会社 Charged particle beam apparatus and scanning electron microscope

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128541A (en) * 1980-03-12 1981-10-08 Jeol Ltd Magnetic field type electron lens
JPH03230464A (en) * 1990-02-02 1991-10-14 Seiko Instr Inc Scanning type electron microscope
JPH06181041A (en) * 1992-12-15 1994-06-28 Hitachi Ltd Scanning electron microscope
JPH08227678A (en) * 1995-02-21 1996-09-03 Hitachi Ltd Scanning electron microscope
JP2000133194A (en) * 1998-10-29 2000-05-12 Hitachi Ltd Scanning electron microscope
JP2000149842A (en) * 1998-11-12 2000-05-30 Schlumberger Technol Inc Charged particle beam focusing magnetic lens
JP2003142022A (en) * 2001-11-02 2003-05-16 Jeol Ltd Electron beam irradiation device and its method
JP2004214065A (en) * 2003-01-07 2004-07-29 Hitachi High-Technologies Corp Electronic ray device
JP2005032588A (en) * 2003-07-07 2005-02-03 Jeol Ltd Magnetic field objective lens for electron microscope

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128541A (en) * 1980-03-12 1981-10-08 Jeol Ltd Magnetic field type electron lens
JPH03230464A (en) * 1990-02-02 1991-10-14 Seiko Instr Inc Scanning type electron microscope
JPH06181041A (en) * 1992-12-15 1994-06-28 Hitachi Ltd Scanning electron microscope
JPH08227678A (en) * 1995-02-21 1996-09-03 Hitachi Ltd Scanning electron microscope
JP2000133194A (en) * 1998-10-29 2000-05-12 Hitachi Ltd Scanning electron microscope
JP2000149842A (en) * 1998-11-12 2000-05-30 Schlumberger Technol Inc Charged particle beam focusing magnetic lens
JP2003142022A (en) * 2001-11-02 2003-05-16 Jeol Ltd Electron beam irradiation device and its method
JP2004214065A (en) * 2003-01-07 2004-07-29 Hitachi High-Technologies Corp Electronic ray device
JP2005032588A (en) * 2003-07-07 2005-02-03 Jeol Ltd Magnetic field objective lens for electron microscope

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI680487B (en) * 2015-01-30 2019-12-21 日商松定精度股份有限公司 Charged particle beam apparatus and scanning electron microscope
US10541106B2 (en) 2015-01-30 2020-01-21 Matsusada Precision, Inc. Charged particle beam device and scanning electron microscope
CN109585245B (en) * 2015-01-30 2021-03-23 松定精度株式会社 Charged particle beam device and scanning electron microscope
CN107430971A (en) * 2015-01-30 2017-12-01 松定精度株式会社 Charged particle line apparatus and SEM
KR20190044706A (en) 2015-01-30 2019-04-30 마쯔사다 프리지션 인코포레이티드 Charged particle beam device and scanning electron microscope
KR101828763B1 (en) 2015-01-30 2018-02-13 마쯔사다 프리지션 인코포레이티드 Charged particle beam device and scanning electron microscope
JP2016143513A (en) * 2015-01-30 2016-08-08 松定プレシジョン株式会社 Charged particle beam device
EP3252797A4 (en) * 2015-01-30 2018-06-20 Matsusada Precision, Inc. Charged particle beam device and scanning electron microscope
KR20180014884A (en) 2015-01-30 2018-02-09 마쯔사다 프리지션 인코포레이티드 Charged particle beam device and scanning electron microscope
CN107430971B (en) * 2015-01-30 2018-11-09 松定精度株式会社 Charged particle line apparatus and scanning electron microscope
US10438770B2 (en) 2015-01-30 2019-10-08 Matsusada Precision, Inc. Charged particle beam device and scanning electron microscope
US10153129B2 (en) 2015-01-30 2018-12-11 Matsusada Precision, Inc. Charged particle beam device and scanning electron microscope
WO2016121225A1 (en) * 2015-01-30 2016-08-04 松定プレシジョン株式会社 Charged particle beam device and scanning electron microscope
CN109585245A (en) * 2015-01-30 2019-04-05 松定精度株式会社 Charged particle line apparatus and scanning electron microscope
KR102009631B1 (en) 2015-01-30 2019-08-09 마쯔사다 프리지션 인코포레이티드 Charged particle beam device and scanning electron microscope
KR101974321B1 (en) * 2015-01-30 2019-04-30 마쯔사다 프리지션 인코포레이티드 Charged particle beam device and scanning electron microscope
EP3385977A4 (en) * 2015-12-03 2019-04-03 Matsusada Precision, Inc. Charged particle beam device and scanning electron microscope
KR101988189B1 (en) * 2015-12-03 2019-06-11 마쯔사다 프리지션 인코포레이티드 Charged particle beam device and scanning electron microscope
KR20190039353A (en) 2015-12-03 2019-04-10 마쯔사다 프리지션 인코포레이티드 Charged particle beam device and scanning electron microscope
JP2018195592A (en) * 2015-12-03 2018-12-06 松定プレシジョン株式会社 Charged particle beam device and scanning electron microscope
US10497535B2 (en) 2015-12-03 2019-12-03 Matsusada Precision, Inc. Charged particle beam device and scanning electron microscope
KR20180089481A (en) 2015-12-03 2018-08-08 마쯔사다 프리지션 인코포레이티드 Charged particle beam device and scanning electron microscope
TWI682421B (en) * 2015-12-03 2020-01-11 日商松定精度股份有限公司 Charged particle beam apparatus and scanning electron microscope
JPWO2017094721A1 (en) * 2015-12-03 2018-05-31 松定プレシジョン株式会社 Charged particle beam apparatus and scanning electron microscope
JPWO2018025849A1 (en) * 2016-08-02 2019-06-13 松定プレシジョン株式会社 Charged particle beam apparatus and scanning electron microscope
CN106769162A (en) * 2017-02-20 2017-05-31 广西大学 A kind of transmission electron microscope magnetic sample preprocessor

Also Published As

Publication number Publication date
JP4686385B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
US7507962B2 (en) Electron-beam device and detector system
JP5814741B2 (en) Scanning electron microscope
JP4141211B2 (en) Particle beam equipment
JP2010055756A (en) Method of irradiating charged corpuscular particle beam, and charged corpuscular particle beam apparatus
JP4686385B2 (en) Scanning electron microscope
JP2003068241A (en) Scanning electron beam device
US8669535B2 (en) Electron gun
US9354188B2 (en) Particle beam device and method for operating a particle beam device
JP5280238B2 (en) Charged particle beam equipment
JP4801573B2 (en) Scanning electron microscope
US6710340B2 (en) Scanning electron microscope and method of detecting electrons therein
JP5478683B2 (en) Charged particle beam irradiation method and charged particle beam apparatus
CN115732298A (en) Scanning electron microscope
JP2007250222A (en) Scanning electron microscope
US6407388B1 (en) Corpuscular beam device
WO2016121226A1 (en) Charged particle beam device and scanning electron microscope
JPH0773841A (en) Scanning electron microscope and secondary electron sensing system
JP4596061B2 (en) Scanning electron microscope
JP2009076447A (en) Scanning electron microscope
JPH06181041A (en) Scanning electron microscope
JP2001057172A (en) Scanning electron microscope
JP3101141B2 (en) Electron beam equipment
JP4792074B2 (en) Substrate inspection method and substrate inspection apparatus
JPH05266854A (en) Scanning electronic microscope and operation method therefor
JP2003203597A (en) Scanning electron microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees