JPH03230464A - Scanning type electron microscope - Google Patents

Scanning type electron microscope

Info

Publication number
JPH03230464A
JPH03230464A JP2433690A JP2433690A JPH03230464A JP H03230464 A JPH03230464 A JP H03230464A JP 2433690 A JP2433690 A JP 2433690A JP 2433690 A JP2433690 A JP 2433690A JP H03230464 A JPH03230464 A JP H03230464A
Authority
JP
Japan
Prior art keywords
objective lens
lens
magnetic pole
yoke
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2433690A
Other languages
Japanese (ja)
Other versions
JP2969219B2 (en
Inventor
Akira Yonezawa
彬 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2433690A priority Critical patent/JP2969219B2/en
Publication of JPH03230464A publication Critical patent/JPH03230464A/en
Application granted granted Critical
Publication of JP2969219B2 publication Critical patent/JP2969219B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To perform good high/low-magnifying factor observation without changing the position of a sample by providing the first magnetic field type objective lens and the small second magnetic field type objective lens controlled independently respectively, and providing the secondary electron detecting device above the second lens. CONSTITUTION:An electron beam generated by an electron gun 12 and a focusing lens 13 scans a sample 5 via the first objective lens 22 or the second objective lens 27, and secondary electrons generated by the sample 5 are fed to the secondary electron detector 32 above the lens 27. The lens 22 of a conical section corresponding to an inclined sample 5a at the tip of an inner tube yoke 20 is controlled by a coil 16, the small lens 27 provided on a lens yoke 30 is controlled by a coil 26 independently respectively for the excitation current strength, and high-magnifying factor observation with a high magnifying factor and high resolution and high-visual field/low-magnifying factor observation with high resolution and little distortion are performed by the lenses 22, 27 respectively without changing the position of the sample 5.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、大径の半導体ウェハ等大径の試料を高分解能
傾斜観察できる走査型電子顕微鏡に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a scanning electron microscope capable of high-resolution oblique observation of large-diameter samples such as large-diameter semiconductor wafers.

〔発明の概要〕[Summary of the invention]

本発明は、電子顕微鏡の対物レンズとして、磁極の一極
を1次電子線の光軸近傍に細く絞った内側磁極とし、他
の極(外側磁極)は光軸より離した第1の磁界型対物レ
ンズ(単極磁界型対物レンズ)と、少なくとも一部が前
記内側磁極の円錐状に形成されている内筒内に位置する
小型の上下磁極を有する第2の磁界型対物レンズ(また
はアインツェルンレンズ等の静電型対物レンズ)と、前
記小型磁界型対物レンズの上方に2次電子を検出する2
次電子検出装置と、第1と第2の対物レンズの強度をお
のおの独立して制御して供給する手段を備え、高倍率観
察時は、第1の対物レンズの強度を高くし、低倍率観察
時は第2の対物レンズの強度を高くすることにより、試
料の位置を変えることなく高倍率観察時に高分解能観察
ができ、低倍率観察時には、高解像度でかつ観察面外周
部において歪みが少なく、広い視野を観察できるように
した走査型電子顕微鏡である。
The present invention is a first magnetic field type objective lens for an electron microscope, in which one magnetic pole is an inner magnetic pole narrowly focused near the optical axis of the primary electron beam, and the other pole (outer magnetic pole) is separated from the optical axis. an objective lens (single-pole magnetic field type objective lens); and a second magnetic field type objective lens (or einzel an electrostatic type objective lens such as a magnetic field type lens) and a second type that detects secondary electrons above the small magnetic field type objective lens.
Equipped with a second electron detection device and a means for independently controlling and supplying the intensity of the first and second objective lenses, the intensity of the first objective lens is increased during high magnification observation, and the intensity of the first objective lens is increased during low magnification observation. By increasing the strength of the second objective lens, high-resolution observation can be performed during high-magnification observation without changing the position of the sample, and during low-magnification observation, high resolution and less distortion can be achieved at the outer periphery of the observation surface. This is a scanning electron microscope that allows observation of a wide field of view.

前述第2の対物レンズは静電レンズでも同様の効果があ
る。
The same effect can be obtained even if the second objective lens is an electrostatic lens.

〔従来の技術〕[Conventional technology]

近年、半導体開発の製造分野において、大径のウェハを
大角度傾斜して、高倍率高分解能観察ができ、かつ低倍
率で広視野像観察可能な走査型電子顕微鏡(SEM)が
望まれている。
In recent years, in the field of semiconductor development and manufacturing, there has been a demand for scanning electron microscopes (SEMs) that can observe large-diameter wafers at high magnification and resolution by tilting them at large angles, and that can also observe wide-field images at low magnification. .

従来、特開昭57−mm835号公報に走査型電子顕微
鏡の対物レンズとして第2図に示すものが開示さている
。1次電子線の光軸の回りに、上下磁極片3.4を形成
するような内筒ヨーク1aを持つレンズヨーク1と、そ
のレンズヨークを励磁する第1のコイル2と、前記レン
ズヨークの上側コーク1bと一体化された付加ヨーク7
を外筒ヨークICの外側に設けて、その端部に第3の磁
極片8を形成し、該第3の磁極片8と下磁極片4との間
に磁場を形成するための第2の励磁コイル9よりなる磁
界レンズである。
Conventionally, Japanese Patent Laid-Open No. 57-mm835 discloses an objective lens for a scanning electron microscope as shown in FIG. 2. A lens yoke 1 having an inner cylinder yoke 1a forming upper and lower magnetic pole pieces 3.4 around the optical axis of the primary electron beam, a first coil 2 that excites the lens yoke, and a first coil 2 of the lens yoke. Additional yoke 7 integrated with upper cork 1b
is provided on the outside of the outer cylinder yoke IC, a third magnetic pole piece 8 is formed at the end thereof, and a second magnetic field is formed between the third magnetic pole piece 8 and the lower magnetic pole piece 4 to form a magnetic field. This is a magnetic field lens consisting of an excitation coil 9.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一般に、走査型電子顕微鏡に於いて、高分解能で高倍率
の試料観察を行う場合、対物レンズ頂面と試料間の距離
ワーキングデイスタンスWを小さくし、色収差係数及び
球面収差係数を小さくして、観察する必要がある。また
低倍率の試料観察を行う場合、ワークデイスタンスを大
きくとる必要がある。低倍率観察の場合、ワーキングデ
イスタンスを小さくすると、走査領域が広い低倍率観察
において、走査系の偏向収差と対物レンズの軸外収差が
大きくなり、視野周辺部において大きな歪、周辺ボケを
生しるからである。この従来例は通常の走査型電子顕微
鏡の対物レンズに付加ヨーク7及び励磁コイル9を設け
た磁界型レンズと言える。
Generally, when observing a sample with high resolution and high magnification in a scanning electron microscope, the distance working distance W between the top surface of the objective lens and the sample is made small, and the chromatic aberration coefficient and spherical aberration coefficient are made small. Need to observe. Furthermore, when observing a sample at low magnification, it is necessary to have a large working distance. In the case of low-magnification observation, when the working distance is reduced, the deflection aberration of the scanning system and the off-axis aberration of the objective lens become large in low-magnification observation where the scanning area is wide, resulting in large distortion and peripheral blur in the peripheral part of the field of view. This is because that. This conventional example can be said to be a magnetic field type lens in which an additional yoke 7 and an excitation coil 9 are provided on the objective lens of a normal scanning electron microscope.

高倍率の観察を行う場合、励磁コイル9を働かせれば、
試料位置に強い磁場が生しるため、通常の対物レンズに
おけるよりも一層色収差及び球面収差が低減され、より
高分解能像を得ることが可能である。この場合において
もワーキングデイスタンスを小さくした方がより小さい
収差係数が得られる。しかしながら、低倍率観察すると
きは、通常の対物レンズにおけるよりもいっそう、大き
な歪及び周辺ボケが生しやすく、低倍率観察は困難であ
る。この従来例に於いて、低倍率の試料観察を行う場合
、励磁コイル2のみを励磁し、通常の対物レンズとして
作動させることにより、歪及びボケを低減させることが
考えられる。しかしながら、励磁コイル2で発生する磁
界は上磁極片3と下磁極片4の間であり、磁極片4は励
磁コイル9で励磁される励磁片と共用されているため、
高分解能観察の条件である小さいワーキングデイスタン
スに試料が設定されている場合、上述した様に大きな歪
および周辺ボケが生しる。つまり、低倍率観察時はワー
キングディスクンを大きく、高倍率観察時はワーキング
デイスタンを小さくする必要があり、その都度試料位置
をずらさなければならなかった。
When performing high-magnification observation, if the excitation coil 9 is activated,
Since a strong magnetic field is generated at the sample position, chromatic aberration and spherical aberration are further reduced than in a normal objective lens, making it possible to obtain a higher resolution image. Even in this case, a smaller aberration coefficient can be obtained by reducing the working distance. However, when performing low-magnification observation, large distortions and peripheral blurring tend to occur more easily than with a normal objective lens, making low-magnification observation difficult. In this conventional example, when observing a sample at low magnification, it is possible to reduce distortion and blur by exciting only the excitation coil 2 and operating it as a normal objective lens. However, the magnetic field generated by the excitation coil 2 is between the upper magnetic pole piece 3 and the lower magnetic pole piece 4, and the magnetic pole piece 4 is also used as the excitation piece excited by the excitation coil 9.
When the sample is set at a small working distance, which is a condition for high-resolution observation, large distortions and peripheral blur occur as described above. In other words, it is necessary to make the working disc larger during low-magnification observation, and to make the working disc smaller during high-magnification observation, and the sample position must be shifted each time.

また、試料表面から出た2次電子は上下磁極片3.4と
の間及び下磁極面と第3の磁極面8の間に形成された磁
界により拘束され、内筒ヨークla内上方に向かうが、
内筒ヨークla内には磁場が存在しないため、内筒ヨー
ク1aを通過する2次電子は広がりその一部は内筒ヨー
クlaの壁に衝突し、その壁で吸収される。従って、上
記従来例において、2次電子検出器を対物レンズの上部
に置くと2次電子検出効率が低下しやすい。なお、2次
電子検出器を通常の走査型電子顕微鏡において行われて
いる様に、試料の側方に置くことも考えられるが、励磁
コイル9を働かせた場合、試料からの2次電子は、試料
近傍に生しる磁場により、電子線光軸上に拘束され、下
磁極片4の穴に向かう為、十分に2次電子を検出するこ
とができない。
In addition, the secondary electrons emitted from the sample surface are restrained by the magnetic field formed between the upper and lower magnetic pole pieces 3.4 and between the lower magnetic pole surface and the third magnetic pole surface 8, and are directed upward into the inner cylinder yoke la. but,
Since there is no magnetic field inside the inner cylinder yoke la, the secondary electrons passing through the inner cylinder yoke la spread, and a part of them collide with the wall of the inner cylinder yoke la and are absorbed by the wall. Therefore, in the conventional example described above, if the secondary electron detector is placed above the objective lens, the secondary electron detection efficiency tends to decrease. It is also possible to place the secondary electron detector on the side of the sample as is done in ordinary scanning electron microscopes, but when the excitation coil 9 is activated, the secondary electrons from the sample are Due to the magnetic field generated near the sample, the electron beam is restrained on the optical axis and directed toward the hole in the lower pole piece 4, making it impossible to sufficiently detect secondary electrons.

ここで、電子顕微鏡の表示手段であるCRTの画面10
0mm’周辺における歪が1%以下とすることができる
最低倍率(MAG m1n)と対物レンズ主面と試料表
面との距離1 +uとの関係の一例を第3図に示す。但
し、ビーム走査は2段偏向系で行っている。第3図より
、lが10flでは歪が1%以下の画像を得るには80
倍以上の観察倍率を必要とし、pがそれ以下の場合、さ
らに急速に最低倍率MAG m1n)が高くなる。例え
ば、従来例で示した励磁コイル9を強く励磁すると、対
物レンズ主面と試料表面との距離lはほぼ数酊以下とな
り、歪が1%以下の画像を得るには200倍以上の倍率
で観察しなければならない。つまり、第3図から、20
倍以下の観察画像を歪が1%以下で必要な場合は、pを
3ON以上必要であることが分かる。
Here, a screen 10 of a CRT which is a display means of an electron microscope is shown.
FIG. 3 shows an example of the relationship between the minimum magnification (MAG m1n) that allows the distortion around 0 mm' to be 1% or less and the distance 1 +u between the main surface of the objective lens and the sample surface. However, beam scanning is performed using a two-stage deflection system. From Fig. 3, when l is 10 fl, to obtain an image with distortion of 1% or less, 80
If an observation magnification of 2 times or more is required, and p is less than that, the minimum magnification (MAG m1n) increases even more rapidly. For example, when the excitation coil 9 shown in the conventional example is strongly excited, the distance l between the main surface of the objective lens and the surface of the sample becomes approximately a few centimeters or less, and in order to obtain an image with distortion of 1% or less, a magnification of 200 times or more is required. must be observed. In other words, from Figure 3, 20
It can be seen that if an observed image of twice the size or less is required with a distortion of 1% or less, p is required to be 3ON or more.

一方、lを大きくすると、観察画像の分解能が低下しや
すい問題点がある。第4図に加速電圧IKVでタングス
テンヘアピン型熱電子術を使用した場合の分解能dとp
との関係を示した。lが6゜n以上では分解能dは0.
 2JIm以上になる。もし、観察倍率が1000倍の
時、観察画面上の分解能は0.2** (0,2咀X 
1000)以上になり、画質の劣化が顕著になる。
On the other hand, when l is increased, there is a problem that the resolution of the observed image tends to decrease. Figure 4 shows the resolution d and p when using tungsten hairpin thermionic technique at an accelerating voltage of IKV.
showed the relationship between When l is 6°n or more, the resolution d is 0.
It will be more than 2JIm. If the observation magnification is 1000x, the resolution on the observation screen is 0.2** (0.2x
1000) or more, the deterioration of image quality becomes noticeable.

また、第8図にpに対する電子ビームを試料表面に集束
させるのに必要な磁界型対物レンズのレンズ起磁力J 
/u I/2  (Jはコイルのアンペアターン、Uは
一次電子線の加速電圧を示す)の大きさの例を示す。尚
、下側磁極と上側磁極の間隙SをlQ+n、穴径Bを2
01とした。図より、pが小さい程、起磁力が大きくり
、特にlがIon以下では急速に起磁力が増大すること
がわかる。コイルの発熱量はほぼコイル断面積等の逆数
及び起磁力Jの二乗に比例するから、レンズを小型化し
てlを小さくすることは困難であることがわかる。
In addition, Fig. 8 shows the lens magnetomotive force J of the magnetic field type objective lens necessary to focus the electron beam for p on the sample surface.
An example of the magnitude of /u I/2 (J is the ampere-turn of the coil, and U is the acceleration voltage of the primary electron beam) is shown below. In addition, the gap S between the lower magnetic pole and the upper magnetic pole is lQ+n, and the hole diameter B is 2.
It was set to 01. From the figure, it can be seen that the smaller p is, the larger the magnetomotive force becomes, and especially when l is less than Ion, the magnetomotive force increases rapidly. Since the amount of heat generated by the coil is approximately proportional to the reciprocal of the cross-sectional area of the coil and the square of the magnetomotive force J, it is understood that it is difficult to downsize the lens and reduce l.

ρが30mm以上では比較的小さい起磁力Jで電子ビー
ムを試料表面に集束させることができ、レンズの小型化
が比較的容易である。
When ρ is 30 mm or more, the electron beam can be focused on the sample surface with a relatively small magnetomotive force J, and it is relatively easy to downsize the lens.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記課題を解決するたキ′〕に、内筒ヨーク
部に内側磁極と前記内筒の外側にある外筒ヨーク部に外
側磁極を有する第1のレンズヨークと、第1のレンズヨ
ークを励磁するための第1のコイルを備え、前記内筒ヨ
ーク部先端に設けられた磁極頂面と、これに連接する先
細状の円錐形状ををし、外側磁極の先端は試料に対して
、前記磁極頂面と同じ側に在り、前記磁極頂面より光軸
方向において離れて形成されている第1の対物レンズと
、少なくとも一部が光軸方向において前記内筒ヨークの
円錐形状部に掛かるように設けられた磁場型あるいは静
電型の小型の第2の対物レンズと、検出部分が前記内筒
ヨーク内にあり、且つ前記走査系と前記第2の対物レン
ズの間にある2次荷電粒子検出器とを備え、 前記第1のコイルと前記第2のコイルへの励磁電流の供
給あるいは、前記第2の静電型対物レンズへの印加電圧
を互いに独立して制御する手段を備えたことを特徴とす
る走査型電子顕微鏡である。
In order to solve the above-mentioned problems, the present invention provides a first lens yoke having an inner magnetic pole in an inner tube yoke portion and an outer magnetic pole in an outer tube yoke portion outside the inner tube; A first coil is provided to excite the yoke, and the top surface of the magnetic pole provided at the tip of the inner cylinder yoke part has a tapered conical shape connected to the top surface of the magnetic pole, and the tip of the outer magnetic pole is arranged so that the tip of the outer magnetic pole faces the sample. a first objective lens located on the same side as the top surface of the magnetic pole and formed apart from the top surface of the magnetic pole in the optical axis direction; a small second objective lens of magnetic field type or electrostatic type provided so as to hang thereon; and a secondary objective lens whose detection portion is located within the inner cylinder yoke and between the scanning system and the second objective lens. a charged particle detector, and means for independently controlling the supply of excitation current to the first coil and the second coil or the voltage applied to the second electrostatic objective lens. This is a scanning electron microscope characterized by:

つまり、高倍率観察用の対物レンズと、低倍率観察用の
小型の対物レンズを備えた走査型電子顕微鏡である。
In other words, it is a scanning electron microscope equipped with an objective lens for high-magnification observation and a small objective lens for low-magnification observation.

〔作用〕[Effect]

内筒ヨーク部に内側磁極と前記内筒の外側にある外筒ヨ
ーク部に外側磁極を有する第1のレンズヨークと、第1
のレンズヨークを励磁するための第1のコイルを備え、
前記内筒ヨーク部先端に設けられた磁極頂面と、これム
こ連接する先細状の円錐形状を有し、外側磁極の先端は
試料に対して、前記磁極頂面と同じ側に在り゛、前記磁
極頂面より光軸方向において離れて形成されている第1
の対物レンズと、少なくとも一部が光軸方向において前
記内筒ヨークの円錐形状部に掛かるように、上側磁極と
下側磁極を有する第2のレンズヨークと第2のレンズヨ
ークを励磁するための第2のコイルを有する小型の第2
の対物レンズとの独立した2つの対物レンズを備えてい
るため、試料の位置を移動せずに小型の第2の対物レン
ズと試料位置の間のワーキングデイスタンスを大きくと
れ、低倍率試料観察時にも、高解像度で観察できる。ま
た、小型筒2の対物レンズを2次電子検出器直下に備え
ているため磁場が2次電子検出器近傍まで形成されるの
で、2次電子を効率よく検出できる。
a first lens yoke having an inner magnetic pole on an inner cylinder yoke portion and an outer magnetic pole on an outer cylinder yoke portion outside the inner cylinder;
a first coil for exciting the lens yoke;
The outer magnetic pole has a tapered conical shape connected to the top surface of the magnetic pole provided at the tip of the inner cylinder yoke part, and the tip of the outer magnetic pole is on the same side as the top surface of the magnetic pole with respect to the sample. A first portion formed apart from the top surface of the magnetic pole in the optical axis direction.
an objective lens; a second lens yoke having an upper magnetic pole and a lower magnetic pole; A small second coil with a second coil
Since it is equipped with two independent objective lenses, it is possible to have a large working distance between the small second objective lens and the sample position without moving the sample position, making it easy to use when observing samples at low magnification. can also be observed in high resolution. Further, since the objective lens of the small tube 2 is provided directly below the secondary electron detector, a magnetic field is formed up to the vicinity of the secondary electron detector, so that secondary electrons can be detected efficiently.

〔実施例〕 第1図に本発明の一実施例を示す。電子銃12の下に設
けられた電子銃12より発生した1次電子線(電子ビー
ム)14は2つの集束レンズ13.13により集束され
る。集束された電子線14をX、Y方向へ走査するため
のその下段に走査コイル(走査電極でも可能である)1
7.17が2段備えられている。更に、大径の試料5を
大角度傾斜観察可能にする形状を有する第1の対物レン
ズ)1が備えられている。つまり、第1の対物レンズ)
1の先端が円錐形状になっており、大型の試料を大きく
傾けても(試料5a)第1の対物レンズ22に接触しな
いようになっている。第1の対物レンズ22は、内筒ヨ
ーク20と、その上端に上ヨーク15と、上ヨーク15
の外側には内筒ヨーク20を取り囲むような外筒ヨーク
18と、内筒ヨーク20の下端には、円錐状の円錐ヨー
ク19と、円錐ヨーク19の端部内側に1次電子線光軸
に対して直角な平面上に平行にドーナツ状の磁極頂面2
1と、外筒コーク18と上ヨーク15と内筒ヨーク20
に取り囲まれる所に巻かれた第1の(励磁)コイル16
とからなっている。これは、所謂単極型磁界レンズの一
例である。第1のコイル16に電流を流し励磁すると、
磁極頂面下方にレンズ磁界が形成される。ここで、第1
のコイルの励磁を大きくすると第1の対物レンズHによ
る1次電子線の焦点距離は短くなり、収差係数が非常に
小さくなる。なお、第1の対物レンズ22の第1の励磁
コイル16と外筒ヨーク18の外磁極面25は、磁極頂
面21より電子線源側に引っ込んでいる位置にあり、且
つ内筒ヨーク20は先端に設けられた小径の磁極頂面2
1とこれに連接する先細状の円錐形状をしている円錐ヨ
ーク19を有しているため、試料として大径のウェハ等
を大きく傾斜しても(点線で示した試料5a)観察でき
るようになっている。
[Example] FIG. 1 shows an example of the present invention. A primary electron beam (electron beam) 14 generated by the electron gun 12 provided below the electron gun 12 is focused by two focusing lenses 13.13. A scanning coil (scanning electrode can also be used) 1 is provided at the lower stage for scanning the focused electron beam 14 in the X and Y directions.
7.17 is provided in two stages. Furthermore, a first objective lens (1) having a shape that enables observation of a large-diameter sample 5 at a large angle and inclination is provided. In other words, the first objective lens)
1 has a conical shape, so that even if a large sample is tilted greatly (sample 5a), it will not come into contact with the first objective lens 22. The first objective lens 22 includes an inner cylinder yoke 20, an upper yoke 15 at its upper end, and an upper yoke 15.
There is an outer yoke 18 surrounding the inner yoke 20 on the outside, a conical yoke 19 on the lower end of the inner yoke 20, and a conical yoke 19 on the inside of the end of the conical yoke 19, which is aligned with the optical axis of the primary electron beam. A donut-shaped magnetic pole top surface 2 parallel to the plane perpendicular to the
1, outer cylinder cork 18, upper yoke 15, and inner cylinder yoke 20
a first (excitation) coil 16 wound around the
It consists of This is an example of a so-called unipolar magnetic field lens. When a current is applied to the first coil 16 and it is energized,
A lens magnetic field is formed below the top surface of the magnetic pole. Here, the first
When the excitation of the coil is increased, the focal length of the primary electron beam by the first objective lens H becomes shorter, and the aberration coefficient becomes extremely small. Note that the first excitation coil 16 of the first objective lens 22 and the outer magnetic pole surface 25 of the outer cylinder yoke 18 are in a position recessed from the magnetic pole top surface 21 toward the electron beam source side, and the inner cylinder yoke 20 is recessed toward the electron beam source side. Small diameter magnetic pole top surface 2 provided at the tip
1 and a conical yoke 19 connected thereto and having a tapered conical shape, it is possible to observe a large diameter wafer as a sample even if it is tilted greatly (sample 5a indicated by a dotted line). It has become.

次に、本発明の大きな特徴である、小型の第2の対物レ
ンズについて説明する。第2の対物レンズ27は、第1
の対物レンズに実質的に独立して設けられており、光軸
側(内径側)に上側磁極23と下側磁極24となる上下
端部を有し、はぼ中空回転体形状の第2のレンズヨーク
30と、前記中空に形成された、第2のコイル26より
なる。
Next, the small second objective lens, which is a major feature of the present invention, will be explained. The second objective lens 27
The second objective lens is provided substantially independently of the objective lens, has upper and lower ends serving as an upper magnetic pole 23 and a lower magnetic pole 24 on the optical axis side (inner diameter side), and has a hollow rotating body shape. It consists of a lens yoke 30 and the second coil 26 formed in the hollow space.

第2の対物レンズmmは、その一部が少なくとも第1の
対物レンズHの円錐ヨーク内に載置されており、残りの
一部は内筒ヨーク20に納められてもよい。第2のコイ
ルに電流を流した場合、第2のレンズヨーク30の上側
磁極23と下側磁極24との間に磁界が生し、電子線の
磁界レンズとして作用する。小型の第2の対物レンズ2
7は第1の対物レンズ22に対して独立して設けられて
いるため、従来例として示したものより、試料5の表面
から比較的遠くにレンズ位置をもってくることができる
。このため、試料5の位置をずらすことなく、ワーキン
グデイスタンスを長くでき、作用の項で説明したように
、主に、第2の対物レンズ27を作動させることにより
、歪及び周辺ボケの少ない低倍率観察ができる。
A part of the second objective lens mm may be placed at least in the conical yoke of the first objective lens H, and the remaining part may be housed in the inner cylinder yoke 20. When a current is passed through the second coil, a magnetic field is generated between the upper magnetic pole 23 and the lower magnetic pole 24 of the second lens yoke 30, which acts as a magnetic field lens for the electron beam. Small second objective lens 2
Since the lens 7 is provided independently of the first objective lens 22, the lens can be positioned relatively far from the surface of the sample 5 than in the conventional example. Therefore, the working distance can be lengthened without shifting the position of the sample 5, and as explained in the operation section, mainly by operating the second objective lens 27, it is possible to reduce distortion and peripheral blurring. Magnification observation is possible.

第2の対物レンズ27の間隙(上側磁極23と下側磁極
24との間)Sはlo+u、上側磁極23と下側磁極2
4の内径Bは20IN、第1の対物レンズHの磁極頂面
21と第2の対物レンズI↑の間隙中心との距MLは4
0璽重になっている。
The gap S between the second objective lens 27 (between the upper magnetic pole 23 and the lower magnetic pole 24) is lo+u, and the upper magnetic pole 23 and the lower magnetic pole 2
The inner diameter B of 4 is 20IN, and the distance ML between the magnetic pole top surface 21 of the first objective lens H and the center of the gap of the second objective lens I↑ is 4
It has become 0.

電子銃2より発生した電子線14は2段の集束レンズ1
3.13により集束され、走査系17.17を通過する
。高倍率観察時は、第1の対物レンズ(単極磁界レンズ
)主1を強く励磁し、小型の第2の対物レンズmmを弱
く又は、ゼロ励磁する(第5a図参照)。走査電極を通
った電子線14は主に第1の対物レンズHの作用により
、磁極頂面21からWの距離にある試料5の表面に集束
される。
The electron beam 14 generated from the electron gun 2 is passed through a two-stage focusing lens 1.
3.13 and passes through a scanning system 17.17. During high magnification observation, the first objective lens (single-pole magnetic field lens) main 1 is strongly excited, and the small second objective lens mm is weakly or zero excited (see Figure 5a). The electron beam 14 passing through the scanning electrode is focused on the surface of the sample 5 at a distance W from the top surface 21 of the magnetic pole mainly by the action of the first objective lens H.

低倍率観察時は、第1の対物レンズ)(は弱く励磁し、
或いはゼロ励磁して、小型の第2の対物レンズ27は強
く励磁する第5b図参照)。この時、電子線14は主に
第2の対物レンズmmの作用により、試料5の表面に集
束される。
During low magnification observation, the first objective lens) (is weakly excited,
Alternatively, the small second objective lens 27 is strongly excited with zero excitation (see FIG. 5b). At this time, the electron beam 14 is focused on the surface of the sample 5 mainly by the action of the second objective lens mm.

上記のごとく構成すると、試料5の表面と第1の対物レ
ンズI)の磁極頂面21との距離Wが5mm程度と小さ
い場合(第1の対物レンズ22を主に励磁して高倍率観
察するときにWが小さい方がレンズの収差が小さ(なり
、高分解能の画像が得られる。)に於いて、歪や周辺ボ
ケの少ない低倍率の広視野観察ができるし、また、高倍
率観察の時は高分解能の観察ができる。
With the above configuration, when the distance W between the surface of the sample 5 and the magnetic pole top surface 21 of the first objective lens I) is as small as about 5 mm (the first objective lens 22 is mainly excited for high-magnification observation) Sometimes, the smaller W is, the smaller the aberration of the lens (and the more high-resolution images can be obtained), allowing low-magnification wide-field observation with less distortion and peripheral blurring, and the higher magnification observation. At times, high-resolution observations can be made.

小型の第2の対物レンズI↑の主面と、第1の対物レン
ズの磁極頂面21との距離りは、30〜60酊に設定す
ることが望ましい。第3図に説明した通り、Lが301
m以下であると、低倍率観察時に、観察領域の外周部に
歪が大きくなり、観察画像が良くならないし、どうして
も、画像の良い低倍率観察を行う時は、試料5の位置を
下に移動させなければならない。また、第4図に説明し
た通り、Lが60sn以上ある場合は、低倍率観察時に
、観察領域の外周部には歪は小さくなるが、解像度が悪
くなり、観察画像が良くならない。 低倍率観察時に王
に働かす第2の対物レンズ1ユの起磁力Jは(L−40
mn、S=10mm、B=201、電子線14の加速電
圧5 KV、 W −5vaO:)時)350アンペア
タ一ンAT程度であり、第2の対物レンズ)1を十分に
小型化することができる。
The distance between the main surface of the small second objective lens I↑ and the magnetic pole top surface 21 of the first objective lens is desirably set to 30 to 60 mm. As explained in Figure 3, L is 301
If it is less than m, the distortion will be large on the outer periphery of the observation area during low magnification observation, and the observed image will not be good.If you want to perform low magnification observation with a good image, it is necessary to move the position of the sample 5 downward. I have to let it happen. Furthermore, as explained in FIG. 4, if L is 60 sn or more, distortion will be small in the outer periphery of the observation area during low magnification observation, but the resolution will be poor and the observed image will not be good. The magnetomotive force J of the second objective lens 1 unit that acts on the king during low magnification observation is (L-40
mn, S = 10 mm, B = 201, the acceleration voltage of the electron beam 14 is 5 KV, W -5 vaO: ) is about 350 ampere AT, and the second objective lens) 1 can be sufficiently miniaturized. can.

電子線14の照射により、試料5の表面から発生する2
次電子は、磁極頂面21の穴を通過し、第2の対物レン
ズmmが励磁さている場合は、その磁場により、電子線
14光軸上に拘束され、第2の対物レンズ1工の上に設
置されている2次電子検出器32により検出される。2
次電子検出器32は走査系17.17より下にあり、第
2の対物レンズmmの直上にある。また2次電子検出器
32の検出部分は内筒ヨーク20内にあり、検出部分(
第1図ではシンチレータ)に接続するライトガイドは内
筒ヨーク20を貫通し、光電子増倍管に接続されている
。2次電子検出部分を光軸14を軸にしてドーナツ状に
形成することも可能であり、また、マイクロチャンネル
プレートで形成することも可能である。2次電子検出器
32は、2次電子の信号強度を走査系の走査信号と同期
した走査信号により走査されている陰極線管(図示せず
)に供給して、2次電子線像を表示する。
2 generated from the surface of the sample 5 by irradiation with the electron beam 14
The secondary electrons pass through the hole in the top surface of the magnetic pole 21, and when the second objective lens mm is excited, they are restrained on the optical axis of the electron beam 14 by the magnetic field and are placed above the second objective lens 1. It is detected by the secondary electron detector 32 installed in the. 2
The secondary electron detector 32 is located below the scanning system 17.17 and directly above the second objective mm. Further, the detection part of the secondary electron detector 32 is located inside the inner cylinder yoke 20, and the detection part (
A light guide connected to a scintillator (in FIG. 1) passes through the inner cylinder yoke 20 and is connected to a photomultiplier tube. It is also possible to form the secondary electron detection part in a donut shape with the optical axis 14 as an axis, and it is also possible to form it in a microchannel plate. The secondary electron detector 32 supplies the signal strength of the secondary electrons to a cathode ray tube (not shown) which is scanned by a scanning signal synchronized with the scanning signal of the scanning system, and displays a secondary electron beam image. .

第2の対物レンズmmは、前述のように大きな起磁力を
必要とせず、十分小型化することができるため、試料5
から2次電子検出器32の検出部までの距離を短くする
ことができ、よって第2の対物レンズmmを励磁しない
場合でも、2次電子は第2の対物レンズ27の内径部の
壁に衝突することなく2次電子検出器32の検出部まで
到達することができる。しかし、第2の対物レンズの内
径が小さく、2次電子捕獲効率が低下する場合は、第6
図に示す様に、上下磁極23.24の間の間隙の他に、
第2のレンズヨーク30の内径部に新たな間隙33を設
け、1次電子縞光軸上の磁界分布を広げ、この磁界によ
り、2次電子を光軸上に集束させることができる。ある
いは、第7図の様に、第2の対物レンズ27の内径部に
軸対象コイル(ソレノイド)34を設け、これを励磁す
ることにより、2次電子を光軸上に集束させることがで
きる。これにより、2次電子を更に効率よく検出できる
The second objective lens mm does not require a large magnetomotive force as described above and can be sufficiently miniaturized.
The distance from to the detection part of the secondary electron detector 32 can be shortened, so even when the second objective lens mm is not excited, the secondary electrons collide with the inner wall of the second objective lens 27. It is possible to reach the detection section of the secondary electron detector 32 without having to do so. However, if the inner diameter of the second objective lens is small and the secondary electron capture efficiency decreases, the sixth objective lens
As shown in the figure, in addition to the gap between the upper and lower magnetic poles 23 and 24,
A new gap 33 is provided in the inner diameter part of the second lens yoke 30 to widen the magnetic field distribution on the optical axis of the primary electron fringe, and this magnetic field can focus the secondary electrons on the optical axis. Alternatively, as shown in FIG. 7, by providing an axially symmetrical coil (solenoid) 34 on the inner diameter of the second objective lens 27 and energizing it, the secondary electrons can be focused on the optical axis. Thereby, secondary electrons can be detected even more efficiently.

また、2次電子検出器32を第2の対物レンズ27と第
1の対物レンズ蛮)の間に設けることも考えられるが、
対物レンズ1童の磁極頂面21付近において、磁束密度
が高いため、この付近に貫通孔を設け、2次電子検出器
32を設置すると軸非対称な磁場が生し、軸不良の原因
になりやすい。
It is also conceivable to provide the secondary electron detector 32 between the second objective lens 27 and the first objective lens.
Since the magnetic flux density is high near the magnetic pole top surface 21 of the objective lens 1, if a through hole is provided near this area and the secondary electron detector 32 is installed, an axially asymmetrical magnetic field will be generated, which may easily cause axial defects. .

なお、第2の対物レンズ27は静電レンズで構成しても
本願発明の効果は同様にある。
Incidentally, even if the second objective lens 27 is constituted by an electrostatic lens, the same effect of the present invention can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、2次電子を効率良
く検出して、大径の試料を大角度傾斜して観察でき、高
倍率観察において高分解能の画像が得られ、低倍率観察
において、高解像度で歪の少ない広視野の画像が得られ
る。また、高倍率観察、低倍率観察の時に、試料位置を
ずらす必要がなく操作が容易迅速になる。
As described above, according to the present invention, secondary electrons can be detected efficiently, large-diameter samples can be observed at large tilt angles, high-resolution images can be obtained during high-magnification observation, and high-resolution images can be obtained during low-magnification observation. , a wide-field image with high resolution and little distortion can be obtained. Furthermore, there is no need to shift the sample position during high-magnification observation or low-magnification observation, making operations easier and faster.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図は、従
来例の対物レンズの断面図、第3図は、歪が1%以下と
することができる最低倍率(MAG+m1n)と対物レ
ンズ主面と試料表面との距@ 7!mとの関係示す図、
第4図は分解能dとlとの関係を示す図、第5a図は高
倍率観察時の1次電子線の集束状況を示す断面図、第5
b図は低倍率観察時の1次電子線の集束状況を示す断面
図、第6図は第2の対物レンズの他の実施例を示す断面
図、第7図は第2の対物レンズの更に他の実施例を示す
断面図、第8図は磁界型対物レンズのレンズ起磁力J/
U””  (Jはコイルのアンペアターン、Uは一次電
子線の加速電圧を示す)とρの関係を示す図である。 5・・試料       12・電子銃13・集束レン
ズ    17・走査系21・磁極頂面 ■・第1の対物レンズ mm・第2の対物レンズ 322次電子検出器 以上
Fig. 1 is a cross-sectional view showing an embodiment of the present invention, Fig. 2 is a cross-sectional view of a conventional objective lens, and Fig. 3 shows the minimum magnification (MAG+m1n) that allows distortion to be 1% or less. Distance between the main surface of the objective lens and the sample surface @ 7! A diagram showing the relationship with m,
Fig. 4 is a diagram showing the relationship between resolution d and l, Fig. 5a is a cross-sectional view showing the focusing state of the primary electron beam during high magnification observation, and Fig. 5
Figure b is a cross-sectional view showing the focusing state of the primary electron beam during low magnification observation, Figure 6 is a cross-sectional view showing another example of the second objective lens, and Figure 7 is a further view of the second objective lens. A sectional view showing another embodiment, FIG. 8 is a lens magnetomotive force J/ of a magnetic field type objective lens.
It is a diagram showing the relationship between U"" (J is the ampere-turn of the coil, and U is the acceleration voltage of the primary electron beam) and ρ. 5. Sample 12. Electron gun 13. Focusing lens 17. Scanning system 21. Top surface of magnetic pole ■. 1st objective lens mm. 2nd objective lens 32 Secondary electron detector or higher

Claims (1)

【特許請求の範囲】 (1)対物レンズにより細く絞った電子線を電子線走査
系により2次元的に試料表面上を走査し、前記試料の各
走査点から発生する2次電子を2次電子検出器により検
出し、前記走査と同期した陰極線管に前記2次電子強度
を供給して2次電子像を表示する走査型電子顕微鏡にお
いて、 内筒ヨーク部に磁極頂面と前記内筒の外側にある外筒ヨ
ーク部に外側磁極を有する第1のレンズヨークと、第1
のレンズヨークを励磁するための第1のコイルを備え、
前記内筒ヨーク部は先端に設けられた磁極頂面と、これ
に連接する先細状の円錐形状を有し、外側磁極の先端は
試料に対して、前記磁極頂面と同じ側に在り、前記磁極
頂面より光軸方向において離れて形成されている第1の
対物レンズと、 少なくとも一部が光軸方向において前記内筒ヨークの円
錐形状部に掛かるように設けられた小型の第2の対物レ
ンズと、 検出部分が前記内筒ヨーク内にあり、且つ前記走査系と
前記第2の対物レンズの間にある2次荷電粒子検出器と
を備え、 前記第1の対物レンズの第1のコイルへの励磁電流と前
記第2の対物レンズの印加電流または印加電圧の供給を
互いに独立して制御する手段を備えたことを特徴とする
走査型電子顕微鏡。 (2)前記小型の対物レンズは上側磁極と下側磁極を有
する第2のレンズヨークと第2のレンズヨークを励磁す
るための第2のコイルよりなる請求項1記載の走査型電
子顕微鏡。(3)前記小型の対物レンズは静電レンズよ
りなる請求項1記載の走査型電子顕微鏡。 (4)前記小型の第2の対物レンズのレンズ主面と前記
第1の対物レンズの磁極頂面との距離が30mm〜60
mmである請求項1記載の走査型電子顕微鏡。 (5)前記内筒ヨーク内に、前記磁極頂面と前記2次電
子検出器の間に、前記電子線光軸回りに2次電子捕捉効
率を向上させるためのソレノイドを設けた請求項1記載
の走査型電子顕微鏡。 (6)前記第2の対物レンズは、複数の磁極間隙を有す
る第2のレンズヨークと第2のレンズヨークを励磁する
ための第2のコイルよりなる請求項2記載の走査型電子
顕微鏡。
[Scope of Claims] (1) An electron beam narrowed by an objective lens is scanned two-dimensionally over the sample surface by an electron beam scanning system, and secondary electrons generated from each scanning point of the sample are In a scanning electron microscope that displays a secondary electron image by detecting it with a detector and supplying the secondary electron intensity to a cathode ray tube synchronized with the scanning, the inner tube yoke has a magnetic pole top surface and an outer side of the inner tube. a first lens yoke having an outer magnetic pole in an outer cylindrical yoke portion;
a first coil for exciting the lens yoke;
The inner cylindrical yoke portion has a magnetic pole top surface provided at the tip and a tapered conical shape connected to the magnetic pole top surface, and the outer magnetic pole tip is located on the same side of the sample as the magnetic pole top surface, and a first objective lens formed apart from the top surface of the magnetic pole in the optical axis direction; and a small second objective lens provided so that at least a portion thereof hangs over the conical portion of the inner cylinder yoke in the optical axis direction. a first coil of the first objective lens; a secondary charged particle detector having a detection portion within the inner cylinder yoke and between the scanning system and the second objective lens; 1. A scanning electron microscope characterized by comprising means for independently controlling the supply of an excitation current to the second objective lens and the supply of an applied current or voltage to the second objective lens. (2) The scanning electron microscope according to claim 1, wherein the small objective lens comprises a second lens yoke having an upper magnetic pole and a lower magnetic pole, and a second coil for exciting the second lens yoke. (3) The scanning electron microscope according to claim 1, wherein the small objective lens is an electrostatic lens. (4) The distance between the lens main surface of the small second objective lens and the magnetic pole top surface of the first objective lens is 30 mm to 60 mm.
The scanning electron microscope according to claim 1, wherein the scanning electron microscope is mm. (5) A solenoid is provided in the inner cylinder yoke between the top surface of the magnetic pole and the secondary electron detector for improving secondary electron capture efficiency around the electron beam optical axis. scanning electron microscope. (6) The scanning electron microscope according to claim 2, wherein the second objective lens comprises a second lens yoke having a plurality of magnetic pole gaps and a second coil for exciting the second lens yoke.
JP2433690A 1990-02-02 1990-02-02 Scanning electron microscope Expired - Fee Related JP2969219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2433690A JP2969219B2 (en) 1990-02-02 1990-02-02 Scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2433690A JP2969219B2 (en) 1990-02-02 1990-02-02 Scanning electron microscope

Publications (2)

Publication Number Publication Date
JPH03230464A true JPH03230464A (en) 1991-10-14
JP2969219B2 JP2969219B2 (en) 1999-11-02

Family

ID=12135341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2433690A Expired - Fee Related JP2969219B2 (en) 1990-02-02 1990-02-02 Scanning electron microscope

Country Status (1)

Country Link
JP (1) JP2969219B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027994A3 (en) * 1994-04-12 1995-11-16 Philips Electronics Nv Particle-optical apparatus comprising a detector for secondary electrons
JP2007250223A (en) * 2006-03-14 2007-09-27 Hitachi High-Technologies Corp Scanning electron microscope

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ306807B6 (en) 2016-05-21 2017-07-12 Tescan Brno, S.R.O. A scanning electron microscope and the method of its operation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027994A3 (en) * 1994-04-12 1995-11-16 Philips Electronics Nv Particle-optical apparatus comprising a detector for secondary electrons
EP0767482A2 (en) * 1994-04-12 1997-04-09 Koninklijke Philips Electronics N.V. Particle-optical apparatus comprising a detector for secondary electrons
EP0767482A3 (en) * 1994-04-12 1997-04-23 Koninklijke Philips Electronics N.V. Particle-optical apparatus comprising a detector for secondary electrons
JP2007250223A (en) * 2006-03-14 2007-09-27 Hitachi High-Technologies Corp Scanning electron microscope

Also Published As

Publication number Publication date
JP2969219B2 (en) 1999-11-02

Similar Documents

Publication Publication Date Title
US6329659B1 (en) Correction device for correcting the lens defects in particle-optical apparatus
US6259094B1 (en) Electron beam inspection method and apparatus
JP3786875B2 (en) Objective lens for charged particle beam devices
JP4215282B2 (en) SEM equipped with electrostatic objective lens and electrical scanning device
EP1150327A1 (en) Multi beam charged particle device
JP2875940B2 (en) Electron beam device equipped with sample height measuring means
JPH1196957A (en) Particle beam device
JPH0536371A (en) Corpuscular ray device
US6646261B2 (en) SEM provided with a secondary electron detector having a central electrode
JP2010118361A (en) Device and method of selecting emission region of emission pattern
JPH0917369A (en) Scanning electron microscope
US20020109089A1 (en) SEM provided with an adjustable final electrode in the electrostatic objective
JP4781211B2 (en) Electron beam apparatus and pattern evaluation method using the same
JP2772821B2 (en) Electron beam equipment
JPH11242943A (en) Inspection device
JP2969219B2 (en) Scanning electron microscope
JP2003151484A (en) Scanning type charged particle beam device
JP2002184336A (en) Charged particle beam microscope device, charged particle beam application device, charged particle beam microscopic method, charged particle beam inspection method and electron microscope
JP2005032588A (en) Magnetic field objective lens for electron microscope
JPH02284340A (en) Variable focus composite electromagnetic lens
JP3351647B2 (en) Scanning electron microscope
JPH1154076A (en) Objective lens for scanning type electron microscope
JP2005093106A (en) Scanning electron microscope
JP3730041B2 (en) Method for accelerating emitted electrons in a composite emission electron microscope
JPS6314374Y2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees