JPS58210618A - Method and apparatus for reduced projection exposure - Google Patents

Method and apparatus for reduced projection exposure

Info

Publication number
JPS58210618A
JPS58210618A JP57093117A JP9311782A JPS58210618A JP S58210618 A JPS58210618 A JP S58210618A JP 57093117 A JP57093117 A JP 57093117A JP 9311782 A JP9311782 A JP 9311782A JP S58210618 A JPS58210618 A JP S58210618A
Authority
JP
Japan
Prior art keywords
reticle
projection exposure
pattern
transferred
reduction projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57093117A
Other languages
Japanese (ja)
Inventor
Kazuya Kadota
和也 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57093117A priority Critical patent/JPS58210618A/en
Publication of JPS58210618A publication Critical patent/JPS58210618A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Abstract

PURPOSE:To permit a reticle defect inspection to be effected with a reticle set at a reticle exposure position thereby to obtain a high reliability while suppressing a rise in a cost, by a method wherein in photographing, a picture surface to which the reticle pattern is to be transferred is located at the reticle exposure setting position so as to oppose to the pattern surface of the reticle, and a reduced projection exposure is effected according to the reticle after the photographing. CONSTITUTION:With a reticle 3 and a wafer 6 aligned with each other, a wafer 9 to which the reticle pattern is to be transferred is set under the pattern surface of the reticle 3 by means of a setting device 4. In this case, a picture surface 8 to which the reticle pattern is to be transferred, which is constituted by a resist material 10, is set under the pattern surface of the reticle 3 so that a proximity exposure will be realized. When an exposure light source 1 is actuated, a pattern 13 and all of defects 14, such as dusts and the like, on the reticle 3 are photographed so as to sensitize the resist material 10 of the wafer 9. Since the pattern surface of the reticle 3 and the resist material 10 are disposed in very close proximity to each other, a proximity exposure is effected. Accordingly, the image of the pattern and defects on the reticle 3 is clearly transferred to the picture surface 8, which is constituted by the resist material 10, without substantial magnification.

Description

【発明の詳細な説明】 本発明は、縮小投影露光方法2よびこの方法の実施に直
接使用する縮小投影露光装置に係り、特に、レチクルの
パターンなウェハにステップ露光してい(場合において
いわゆる「全ベレット不良」による生産性低下を防止す
ることを意図したものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reduction projection exposure method 2 and a reduction projection exposure apparatus used directly to carry out this method, and particularly relates to a reduction projection exposure method 2 that performs step exposure (in some cases, so-called This is intended to prevent productivity declines caused by "defects in the pellets."

一般に、半導体装置の製造工程において、レチクルのパ
ターンケウエハに縮小投影露光しかつ順次ステップ露光
していく場合、レチクルにパターン以外のごみ2粒子、
その他の異物や傷等のような欠陥が存在し℃いると、当
該欠陥がウエノ・の全てのチップに繰り返えして露光さ
れてしまい、「全ペレット不良」が発生する。この[全
ベレット不良1の発生頻度は小さいが、一度発生すると
、生産が大幅に低下する等きわめ1重大な影響な与える
Generally, in the manufacturing process of semiconductor devices, when a pattern on a reticle is exposed on a wafer by reduction projection exposure and sequential step exposure is performed, two particles of dust other than the pattern on the reticle,
If other defects such as foreign matter or scratches are present, the defects will be repeatedly exposed to all chips of the Ueno film, resulting in "all pellet defects." Although the occurrence frequency of this whole pellet failure is small, once it occurs, it has an extremely serious impact, such as a significant drop in production.

そのため、従来から、レチクルの欠陥検査は縮小投影露
光する前に入念に行なっており、また、最近では自動欠
陥検査機構を備えた縮小投影露光装置も開発さnでいる
For this reason, reticle defects have traditionally been carefully inspected before reduction projection exposure, and recently reduction projection exposure apparatuses equipped with automatic defect inspection mechanisms have been developed.

この種の装置の一例として、露光したいレチクルな装置
内の欠陥検査部に搬送し、このレチクルの表裏面に検査
光な照射して欠陥からの散乱光なホトセンサで測定する
ことにより欠陥検査を行ない、検査の結果、良品と判定
されたレチクルな所定の露光位置に搬送するようにした
ものがある。
As an example of this type of device, a reticle to be exposed is transported to a defect inspection section within the device, and the front and back surfaces of the reticle are irradiated with inspection light and the scattered light from the defect is measured with a photo sensor to perform defect inspection. There is a reticle that is determined to be non-defective as a result of inspection and is transported to a predetermined exposure position.

しかしながら、このような技術にあっては、第1に、レ
チクルについての欠陥検査位置と露光位置とが異なるた
め、検査部のレチクルに露光位置までの搬送中異物が付
層する等、検査後に欠陥発生の危惧があるとともに、デ
バイスパターンと検査した欠陥との位置の相関がとれな
い、第2に、光散乱により欠V&な検出するため、バダ
ーン間に埋った異物な検出することができない等信頼性
が不明である、第3に装置価格が高くなる、という欠点
があった。
However, in such technology, firstly, the defect inspection position and the exposure position for the reticle are different, so defects may occur after the inspection, such as foreign matter layering on the reticle in the inspection section during transportation to the exposure position. There is a risk of this occurring, as well as the inability to correlate the position of the device pattern and the inspected defect.Secondly, due to incomplete detection due to light scattering, it is not possible to detect foreign objects buried between the defects, etc. The disadvantages are that the nature of the device is unknown, and thirdly, the cost of the device is high.

本発明の目的は、このような欠点な回避し、レチクルの
欠陥検査をレチクルを露光位置にセットしたままで行な
うことができ、かつ価格のよ昇な抑制しつつ高い信頼性
を得ることが可能な縮小投影露光方法と、この方法な実
現することが可能な縮小投影露光装置とを提供するにあ
る。
The purpose of the present invention is to avoid such disadvantages, to enable reticle defect inspection to be performed with the reticle set at the exposure position, and to obtain high reliability while suppressing the increase in cost. The object of the present invention is to provide a reduction projection exposure method and a reduction projection exposure apparatus capable of realizing this method.

この目的を達成するため、本発明は、縮小投影露光方法
において、露光直前のレチクルのパターン面な被転写画
面に撮影し、この撮影後の被転写画面のレチクル像な用
いて欠陥検査を行ない、撮影後のレチクルにつき縮小投
影露光してい(ようにしたものである。また、本発明に
よる縮小投影露光装置は、前記レチクル像の撮影を実現
するために、撮影の際、被転写画面がレチクルの露光セ
ット位置にレチクルのパターン面と正対して位置するよ
うに構成したものである。
In order to achieve this object, the present invention involves, in a reduction projection exposure method, photographing a patterned surface of a reticle immediately before exposure, and performing defect inspection using the reticle image of the patterned surface of the reticle after photographing. The reticle after photographing is subjected to reduction projection exposure.Furthermore, in order to realize the photographing of the reticle image, the reduction projection exposure apparatus according to the present invention allows the image to be transferred to be exposed to the reticle during photographing. It is configured to be located directly opposite the pattern surface of the reticle at the exposure set position.

以下図面を診照して本発明の実施例をさらに詳細に説明
する。
Embodiments of the present invention will be described in further detail below with reference to the drawings.

第1図は本発明による縮小投影露光装置の一実施例な原
理的に示す斜視図であり、第2図は要部の拡大正断面図
である。
FIG. 1 is a perspective view showing the principle of an embodiment of a reduction projection exposure apparatus according to the present invention, and FIG. 2 is an enlarged front sectional view of the main parts.

第1図において、この縮小投影露光装置は、水銀ランプ
等からなる露光光源1と、コンデンサレンズ2と、パタ
ーンを形成されたレチクル3と、被転写画面なレチクル
3のパターン面に正対するようにセットするためのセッ
ト手段としてのセット装置4と、縮小レンズ5と、縮小
投影露光を受けるウェハ6を保持し、かつステップ移動
させ得るXYテーブル7とな備えている。
In FIG. 1, this reduction projection exposure apparatus includes an exposure light source 1 consisting of a mercury lamp or the like, a condenser lens 2, a reticle 3 on which a pattern is formed, and a patterned surface of the reticle 3, which is an image to be transferred. It is equipped with a setting device 4 as a setting means for setting, a reduction lens 5, and an XY table 7 which holds a wafer 6 to be subjected to reduction projection exposure and can move it in steps.

本実施例におい又、被転写画面8は、露光を受けようと
する前記ウェハ6と同一の構造を有するウェハ(以下被
転写用ウェハという。)9のレジスト材10から構成さ
れ℃いる。
In this embodiment, the transfer target screen 8 is composed of a resist material 10 of a wafer (hereinafter referred to as a transfer target wafer) 9 having the same structure as the wafer 6 to be exposed.

前記セット装置4は、被転写用ウェハ9を複数枚収容し
ておくカセット11と、このカセット11から被転写用
ウェハ9ft1枚づつ自動的に取り出してレチクル3の
パターン面に正対するようにセットするセット機構12
とな備え又いる。詳細な図示は省略するが、セット機構
12は、例えば、被転写用ウェハ9な取り出し又レチク
ル3のバl−ン面直下まで搬送する取出搬送部、このウ
ェハ9をレチクル3のパターンに対し所?fffのアラ
イメントと平坦度とをもつ℃位置決めし、かつレチクル
のパターン面にグロキシミッテー露光が可能な程度で、
しかもウェハ9に刺着することあるごみ等の異物がレチ
クルのパターン面に転移しない程度に可及的に近接させ
るように保持する保持部、および撮影終了後この保持状
態からレチクル像を撮影したウェハ9を現像処理工程に
搬送する搬送部を備えている。
The setting device 4 includes a cassette 11 that stores a plurality of wafers 9 to be transferred, and automatically takes out each 9 ft wafer to be transferred from the cassette 11 and sets the wafers so as to directly face the pattern surface of the reticle 3. Set mechanism 12
I'm ready. Although detailed illustrations are omitted, the setting mechanism 12 includes, for example, a take-out transport unit that takes out the wafer 9 to be transferred and transports the wafer 9 to just below the balloon surface of the reticle 3, and a take-out transport unit that takes out the wafer 9 to be transferred and transports the wafer 9 to a position corresponding to the pattern of the reticle 3. ? °C positioning with alignment and flatness of
In addition, there is a holding unit that holds the wafer 9 as close as possible to the extent that foreign matter such as dust that may stick to the reticle is not transferred to the pattern surface of the reticle, and the wafer from which the reticle image was photographed in this held state after photographing is completed. 9 is provided with a conveying section for conveying the image to the developing process.

次に、本発明による縮小投影露光方法の−実施例な前記
構成にかかる縮小投影露光装置を使用した場合につき説
明する。
Next, a description will be given of a case where the reduction projection exposure apparatus having the above structure is used as an embodiment of the reduction projection exposure method according to the present invention.

レチクル3とウェハ6とのアライメントな行ない、レチ
クル3のパターン面に被転写用ウェハ9tセツト装置4
によりセットせしめる。このとき、レジスト材10から
構成された被転写画面8はレチクルのパターン面にプロ
キシミツティー露光が実現されるようにセットされる。
The device 4 aligns the reticle 3 and the wafer 6, and sets the wafer 9t to be transferred onto the pattern surface of the reticle 3.
Set by At this time, the transfer target screen 8 made of the resist material 10 is set so as to realize proximity exposure on the pattern surface of the reticle.

露光光源1を発光させると、第2図に示すように・、レ
チクル3におけるパターン13およびごみ等の欠陥14
の全てが被転写用ウェハ9のレジスト材10ft感光さ
せる状態で撮影される。このとき、レチクル3のパター
ン面とレジスト材10とはきわめて近接されているので
、プロキシミツティー露光され、レチクル3のパターン
およヒ欠陥の像(以下レチクル像という。)がレジスト
材10からなる被転写画面8にほぼそのままの倍率で鮮
明に転写される。
When the exposure light source 1 emits light, as shown in FIG.
All of these images are photographed while exposing 10 ft of resist material on the wafer 9 to be transferred. At this time, since the pattern surface of the reticle 3 and the resist material 10 are very close to each other, proximity exposure is performed, and the pattern of the reticle 3 and the image of the defect (hereinafter referred to as a reticle image) are formed of the resist material 10. The image is clearly transferred to the transfer target screen 8 at almost the same magnification.

レチクル像を撮影した後、セット装置4は被転写用ウェ
ハ9なレチクル3の位置から脱映し又現像処理工程に自
動的に搬送し、当該工程で現像処理が行なわれる。現像
処理により被転写用ウェハ9には撮影されたレチクル像
がそのまま鮮明に転写された状態で得られる。
After photographing the reticle image, the setting device 4 removes the image from the position of the reticle 3 on the wafer 9 to be transferred and automatically transports it to a developing process, where the developing process is performed. Through the development process, the photographed reticle image is clearly transferred to the transfer target wafer 9 as it is.

この被転写像につい工欠陥検査な行なうことにより、こ
の被転写像の原画であるレチクルについての欠陥検査が
実質的に行txわれる。
By performing a defect inspection on this transferred image, a defect inspection on the reticle, which is the original image of this transferred image, is substantially performed tx.

被転写像につい又の検査手段は、比較顕微鏡等な用いた
目視により行なってもよいし、自動レチクル外観検査装
置等を用い被転写像に検査光を照射して反射光な採取す
る等の方法により自動的に行なってもよい。また、検査
の方式は、正規の基準パターンと被転写像との差異を肉
眼でまたは電気的に処理して判別してもよいし、被転写
像の特異画像部(欠陥部)を特徴的に検出し又もよいし
、パターン設計データと比較して欠陥部な検出してもよ
い。
The transferred image may be inspected visually using a comparison microscope or the like, or by irradiating the transferred image with inspection light using an automatic reticle visual inspection device or the like and collecting the reflected light. This may be done automatically. In addition, the inspection method may be to visually or electrically process the difference between the regular reference pattern and the transferred image to determine the difference, or to identify a characteristic image area (defect area) of the transferred image. Alternatively, a defective portion may be detected by comparing it with pattern design data.

他方、被転写用ウェハ9がリセットされた縮小投影露光
装置においては、そのtまレチクル3についての縮小投
影露光が直ちに開始される。すなわち、縮小投影露光作
業と、前述した被転写用ウェハ9についての現像処理2
よび欠陥検査作業とは同時進行的にそれぞれ実施される
ことになる。
On the other hand, in the reduction projection exposure apparatus in which the transfer target wafer 9 has been reset, reduction projection exposure for the reticle 3 is immediately started. That is, the reduction projection exposure work and the development process 2 for the transfer target wafer 9 described above.
and defect inspection work will be carried out simultaneously.

したがって、検査結果待ち時間は全くない。Therefore, there is no waiting time for test results.

被転写用ウェハ9を用いたレチクルの欠陥検査の結果、
レチクルに「欠陥なし」と判定された場合には、当該レ
チクルについ又の縮小投影露交処理を施工されたウェハ
6はそのまま次工程へと送られていく。しかし、レチク
ルVC「欠陥あり」と判定された場合には、当該レチク
ルについての縮小投影露光処理を施工されたウェハ6は
次工程への送り出しな阻止され、かつ、当該レチクルを
用いた以後の縮小投影露光処理が停止されるとともに、
当該レチクル自体の交換が適宜実施される。
As a result of reticle defect inspection using transfer target wafer 9,
If it is determined that the reticle has no defects, the wafer 6 on which the reticle has been subjected to another reduction projection exposure process is directly sent to the next process. However, if the reticle VC is determined to be "defective", the wafer 6 that has been subjected to reduction projection exposure processing for the reticle is prevented from being sent to the next process, and further reduction using the reticle is prohibited. The projection exposure process is stopped, and
The reticle itself is replaced as appropriate.

したがりて、全ペレット不良のウェハが次工程へ送り出
されることは未然に防止される。
Therefore, wafers with all pellets defective are prevented from being sent to the next process.

このようにして、本実施例によれば、ウェハとのアライ
メントを行なった後のレチクルについてのレチクル像を
転写し、この被転写像につき欠陥検査を行なうため、検
査後のレチクル移送中のごみ付着等の危険性が皆無とな
り、かつ、デバイスパターンと検査した欠陥との位置の
相関がとり易くなる。
In this way, according to this embodiment, the reticle image is transferred to the reticle after alignment with the wafer, and the transferred image is inspected for defects. There is no risk of such problems, and it becomes easier to correlate the positions of device patterns and inspected defects.

また本実施例によれば、レチクル1象が被転写画面にプ
ロキシミツティー露光されるので、レチクル像が被転写
画面にそのまま鮮明に転写できる。
Further, according to this embodiment, since one reticle image is exposed to proximity exposure on the transfer target screen, the reticle image can be clearly transferred as it is to the transfer target screen.

例えば、縮小率10:1の縮小投影露光に使用するレチ
クルの場合、グロキシミッティーギャップ20μm で
露光すると、3μmまでのごみ、異物等が被転写画面に
鮮明に転写できる。これは、ウェハ土の換算で0.3μ
mのパターンとなる。03μm以上の外観検査は、ウエ
ノ・の現像パターンについ王の外観検査では全く行なう
ことができない領域であり、1〜2μm@の微細デバイ
スの致命的欠陥とならないため、きわめて大きな効果が
得られる。すなわち、ウェハ士の現像パi−ンを外観検
査するよりも、10倍の大きさのレチクル像な検査する
ことができる本実施例による万がはるかに欠陥検査精度
が高くなる。
For example, in the case of a reticle used for reduction projection exposure with a reduction ratio of 10:1, when exposed with a gloximitty gap of 20 μm, dust, foreign matter, etc. up to 3 μm can be clearly transferred to the transferred screen. This is 0.3μ in terms of wafer soil.
This becomes a pattern of m. Visual inspection of 0.03 μm or more is an area that cannot be performed at all by general visual inspection of Ueno-developed patterns, and it is extremely effective because it does not cause fatal defects in micro devices of 1 to 2 μm. That is, compared to visually inspecting a developed pin by a wafer technician, this embodiment can inspect a reticle image that is 10 times larger, and the defect inspection accuracy is much higher.

また、その他の縮小率、例えば5:1のレチクルを使用
する場合、同一条件で露光すると異物はウェハ土換算で
0.6μmとなるが、1〜2μm幅の微細デバイスな対
象とした時の効果は変りない。
In addition, when using a reticle with other reduction ratios, such as 5:1, when exposed under the same conditions, the foreign matter will be 0.6 μm in terms of wafer soil, but the effect when targeting fine devices with a width of 1 to 2 μm remains unchanged.

また、被転写用ウェハな使用しているため、レチクル像
の撮影用光源として露光用の光源】な利用することがで
きるとともに、撮影後の現像処理に際し、縮小投影露光
されたウェハについて現像処理を行なうための処理工程
を利用することができる。
In addition, since the wafer is used as a transfer target, it can be used as a light source for photographing the reticle image as well as a light source for exposure. Processing steps are available to carry out the procedure.

さらに、レチクルの欠陥検査な被転写像を用いて行なっ
てレチクルの検査中にウェハに対する縮小投影露光作業
を同時進行させるようにしたので、検査時間および検査
結果待ち時間を解消することができ、縮小投影露光の作
業時間が長期化することな抑制でき、生産性を同士する
ことができる。
Furthermore, since the reticle defect inspection is performed using the transferred image and the reduction projection exposure work on the wafer is performed simultaneously while the reticle is being inspected, inspection time and inspection result waiting time can be eliminated. It is possible to prevent the projection exposure work time from becoming longer and to improve productivity.

なお、前記欠陥検査の結果、不良と判定された場合には
、判定までに既に露光されたウェハおよび作業は無駄に
なることになるが、全ペレット不良の頻度はきわめて小
さいことが経験上確認されているから、この無駄が生産
性に悪影響な与えることは殆どない。しかし、全ペレッ
ト不良が発生し、この不良ウェハが次工程へ送り出され
ると、生産性にきわめて重大な悪影響を与えることにな
るから、全ペレット不良のウェハが次工程へ送り出され
ることを未然に阻止せしめることが可能な本実施例は、
きわめて大きな効果な有することには変りはない。
Furthermore, if the defect inspection is determined to be defective, the wafers and work that have already been exposed up to the time of the determination will be wasted, but experience has confirmed that the frequency of all pellet defects is extremely small. Therefore, this waste has little negative impact on productivity. However, if all pellets are defective and these defective wafers are sent to the next process, it will have a very serious negative impact on productivity, so it is necessary to prevent wafers with all pellets from being sent to the next process. In this example, it is possible to
There is no doubt that it has an extremely large effect.

本実施例による縮小投影露光装置によれば、被転写画面
として被転写用ウェハな用いたので、被転写画面なレチ
クルに正対するようにセットするためのセット手段とし
てのセット装置な簡単に構成することができ、既存のカ
セットや、取り出し装置、アライメント装量、真空チャ
ック装置、搬送装置等々な利用することができ、かつ、
既設の縮小投影露光装置への組込みも容易に行なうこと
ができる。
According to the reduction projection exposure apparatus according to this embodiment, since the transfer target wafer is used as the transfer target screen, the setting device as a setting means for setting the transfer target screen so as to directly face the reticle can be easily configured. It can be used with existing cassettes, take-out devices, alignment loading devices, vacuum chuck devices, conveyance devices, etc., and
It can also be easily incorporated into an existing reduction projection exposure apparatus.

なお、前記実施例では、レチクル像を被転写用ウェハの
レジスト材に焼き付けるための光源として露光光源な使
用した場合につき説明したが、これに限らず、専用の光
源を使用し又もよい。専用の光源を使用する場合、例え
ば、光なレチクルに対し第3図またはW、4図に示すよ
うに照射するようにしてもよい。
In the above embodiment, an exposure light source is used as a light source for printing a reticle image onto a resist material of a wafer to be transferred, but the present invention is not limited to this, and a dedicated light source may be used. When using a dedicated light source, for example, a light reticle may be irradiated as shown in FIGS. 3, W, and 4.

第2図において、転写用光は矢印で示すようレチクル3
の側端面に照射され、レチクル3の内部に入射し℃全反
射な繰り返兄す。この全反射におい”C1レチクル30
表面または裏面に傷、異物等の欠陥14があると、そこ
で乱反射する。この散乱光はレチクル3の表面、裏面に
近接し又それぞ第1セツトされた各被転写用ウェハ9の
レジスト材1(l感光させ、欠陥を転写させる。
In Figure 2, the transfer light is directed to the reticle 3 as shown by the arrow.
The light is irradiated onto the side edge of the reticle 3, enters the inside of the reticle 3, and undergoes repeated total reflection. This total reflection smell "C1 reticle 30
If there is a defect 14 such as a scratch or a foreign object on the front or back surface, diffuse reflection occurs there. This scattered light approaches the front and back surfaces of the reticle 3 and exposes each of the first set wafers 9 to the resist material 1 (l) to transfer defects.

この実施例によれば、欠陥14のみな被転写用ウェハ9
に転写させることができ、欠陥検査がきわめて簡単化で
きるという効果が得られる。
According to this embodiment, only the defect 14 is present on the transfer target wafer 9.
This has the effect that defect inspection can be extremely simplified.

第5図において、転写用光は矢印で示すように、レチク
ル3のパターン13が形成された面のみにラスクースキ
ャンによって全面的に照射され、当該表面に付着したご
み等の欠陥14があるとそこで乱反射する。この散乱光
はレチクル3の表面に近接してセットされた被転写用ウ
ェハ9のレジスト材10を感光させ、欠陥な転写させる
In FIG. 5, as shown by the arrow, the transfer light is entirely irradiated only on the surface of the reticle 3 on which the pattern 13 is formed, and if there is a defect 14 such as dust attached to the surface, There it is diffusely reflected. This scattered light exposes the resist material 10 of the transfer target wafer 9 set close to the surface of the reticle 3, resulting in defective transfer.

この実施例におい又も、欠陥のみな転写させることが可
能である。なお、レチクル3の裏面に付着したごみ等の
欠陥やパターン13土に付着したごみ等の欠陥の存在は
縮小投影露光におい℃重大な障害とならないので、欠陥
として検出しなくともよい。
In this embodiment as well, it is possible to transfer only defects. Note that the presence of defects such as dust adhering to the back surface of the reticle 3 or defects such as dust adhering to the soil of the pattern 13 does not cause a serious hindrance in reduction projection exposure, and therefore does not need to be detected as a defect.

第2図、第3図および第4図に示された転写手法やその
他の手法な併用してもよいことはいうまでもない。
It goes without saying that the transfer methods shown in FIGS. 2, 3, and 4 and other methods may be used in combination.

前記実施例では、露光すべきウェハを利用して被転写画
面を構成した場合につき説明したが、被転写画面はこれ
に限らず、例えば、半導体シリコンウェハ基板または石
英等のガラス基板に高感度な持つホトレジストな塗布し
てベーク処理したものや、市販の写真乾板、さらには、
半導体基板上に独立した受光素子(画素)を数多く配列
し、各画素に到達した光量な電気的に読み出す固体撮像
装置、または通常の撮像装置(テレビカメラ等)な利用
し℃構成してもよい。
In the above embodiment, the case where the transferred screen is constructed using a wafer to be exposed is explained, but the transferred screen is not limited to this, and for example, a highly sensitive glass substrate such as a semiconductor silicon wafer substrate or a glass substrate such as quartz is used. You can use photoresists that have been coated and baked, commercially available photographic plates, and even
It may also be configured using a solid-state imaging device in which a large number of independent light-receiving elements (pixels) are arranged on a semiconductor substrate and the amount of light that reaches each pixel is electrically read out, or a normal imaging device (such as a television camera). .

また、前記実施例では、被転写画面なレチクルのパター
ン面に10キシミツテイーに近接させて正対させるよう
にした場合につき説明したが、これに限らず、被転写画
面は、例えば、撮影時に自動セットされる反射ミラーや
プリズム等により、レチクルのパターン面に光学的に正
対(レチクルと被転写画面とが光軸に対して直角ななす
状態)するようにセットすればよい。
Further, in the above embodiment, the case where the pattern surface of the reticle, which is the image to be transferred, is brought close to the pattern surface of the reticle and faced directly by 10 degrees has been explained, but the invention is not limited to this. The reticle may be set so as to be optically directly opposed to the patterned surface of the reticle (the reticle and the image to be transferred are perpendicular to the optical axis) using a reflective mirror, prism, or the like.

さらに、前記実施例では、ウェハにチップパターンをス
テップ露光する場合につき説明したが、これに限らず、
例えばマスタマスクを製造する場合等にも適用すること
ができる。
Further, in the embodiment described above, the case where a chip pattern is exposed on a wafer in a stepwise manner is described, but the invention is not limited to this.
For example, it can be applied to the case of manufacturing a master mask.

以上説明したように、本発明によれば、レチクルの欠陥
検査を露光位置にセットしたままで行なうことができ、
かつ、価格の上昇な抑制しつつ高い信頼性な得ることが
できる縮小投影露光方法および装置な得ることができる
As explained above, according to the present invention, defect inspection of the reticle can be performed while it is set at the exposure position.
Moreover, a reduction projection exposure method and apparatus can be obtained which can obtain high reliability while suppressing an increase in cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す斜視図、第2図は要部
の拡大縦断面図、 第3図は第2実施例を示す要部の拡大縦断面図、第4図
は第3実施例な示す要部の拡大縦断面図である。 1・・・露光光源、2・・・コンデンサレンズ、3・・
・レチクル、4・・・セット装置、5・・・縮小レンズ
、6・・・ウェハ、7・・・XYテーブル、8・・・被
転写画面、9・・・被転写用ウェハ、10・・・レジス
ト材、11・・・カセット、12・・・セット機構、1
3・・・パターン、14・・・欠陥。 第  1  図 第  2 図 第  3  図 第  4 図
Fig. 1 is a perspective view showing one embodiment of the present invention, Fig. 2 is an enlarged longitudinal sectional view of the main part, Fig. 3 is an enlarged longitudinal sectional view of the main part showing the second embodiment, and Fig. 4 is an enlarged longitudinal sectional view of the main part. FIG. 3 is an enlarged vertical cross-sectional view of main parts shown in the third embodiment. 1... Exposure light source, 2... Condenser lens, 3...
・Reticle, 4... Setting device, 5... Reducing lens, 6... Wafer, 7... XY table, 8... Transfer target screen, 9... Transfer target wafer, 10...・Resist material, 11...Cassette, 12...Set mechanism, 1
3...Pattern, 14...Defect. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1、 レチクルに形成されたパターンを被露光物に縮小
投影露光させる縮小投影露光方法において、露光直前の
レチクルに存在することある欠陥な被転写画面に転写し
た後、被転写画面な用いて欠陥検査を行ない、このレチ
クルにつき前記縮小投影露光な行なうようにしたことf
f特徴とする縮小投影露光方法。 2、欠陥検査と縮小投影露光とを、同時進行させ、欠陥
と判定された場合には被露光物を不良品として処理する
ようにしたことな特徴とする特許請求の範囲第1項記載
の縮小投影露光方法。 3、 レチクルに存在することある欠陥な転写される被
転写画面をレチクルのパターン面に光学的に正対するよ
うにセットするセット手段を備えたことな特徴とする縮
小投影露光装置。 4、被転写画面が、レジスト材で構成されたことを特徴
とする特許請求の範囲第3項記載の縮小投影露光装置。 5、被転写画面が、縮小投影に感応するレジスト材で構
成され、かつ、この感光面がレチクルのパターン面に可
及的に近接するようにセットされることな特徴とする特
許請求の範囲wE3項記載の縮小投影露光装置。 6、被転写画面が、撮像装置の撮像画面で構成されたこ
とな特徴とする特許請求の範囲第3項記載の縮小投影露
光装置。 7、撮像装置が、固体撮像装置であることを特徴とする
特許請求の範囲第6項記載の縮小投影露光装置。
[Claims] 1. In a reduction projection exposure method in which a pattern formed on a reticle is subjected to reduction projection exposure on an object to be exposed, after the pattern is transferred to a defective image to be transferred which may exist on the reticle immediately before exposure, Defect inspection is performed using a screen, and the reduction projection exposure is performed on this reticle.
A reduction projection exposure method characterized by f. 2. The reduction according to claim 1, characterized in that defect inspection and reduction projection exposure are carried out simultaneously, and when a defect is determined, the exposed object is treated as a defective product. Projection exposure method. 3. A reduction projection exposure apparatus characterized by being equipped with a setting means for setting a defective image to be transferred, which may exist on a reticle, so as to optically face the pattern surface of the reticle. 4. The reduction projection exposure apparatus according to claim 3, wherein the transfer target screen is made of a resist material. 5. Claim wE3, characterized in that the transfer screen is made of a resist material sensitive to reduction projection, and the photosensitive surface is set as close as possible to the pattern surface of the reticle. Reduction projection exposure apparatus as described in . 6. The reduction projection exposure apparatus according to claim 3, wherein the image to be transferred is formed of an imaging screen of an imaging device. 7. The reduction projection exposure apparatus according to claim 6, wherein the imaging device is a solid-state imaging device.
JP57093117A 1982-06-02 1982-06-02 Method and apparatus for reduced projection exposure Pending JPS58210618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57093117A JPS58210618A (en) 1982-06-02 1982-06-02 Method and apparatus for reduced projection exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57093117A JPS58210618A (en) 1982-06-02 1982-06-02 Method and apparatus for reduced projection exposure

Publications (1)

Publication Number Publication Date
JPS58210618A true JPS58210618A (en) 1983-12-07

Family

ID=14073571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57093117A Pending JPS58210618A (en) 1982-06-02 1982-06-02 Method and apparatus for reduced projection exposure

Country Status (1)

Country Link
JP (1) JPS58210618A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54102837A (en) * 1978-01-28 1979-08-13 Nippon Telegr & Teleph Corp <Ntt> Pattern check system
JPS5662323A (en) * 1979-10-26 1981-05-28 Fujitsu Ltd Reticle examination method
JPS56110923A (en) * 1980-02-04 1981-09-02 Chiyou Lsi Gijutsu Kenkyu Kumiai Reduction, projection and exposure device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54102837A (en) * 1978-01-28 1979-08-13 Nippon Telegr & Teleph Corp <Ntt> Pattern check system
JPS5662323A (en) * 1979-10-26 1981-05-28 Fujitsu Ltd Reticle examination method
JPS56110923A (en) * 1980-02-04 1981-09-02 Chiyou Lsi Gijutsu Kenkyu Kumiai Reduction, projection and exposure device

Similar Documents

Publication Publication Date Title
JP3253177B2 (en) Surface condition inspection device
US4718767A (en) Method of inspecting the pattern on a photographic mask
KR100788055B1 (en) Arrangement and method for detecting defects on a substrate in a processing tool
US5742386A (en) Apparatus for detecting foreign matter on a substrate, and an exposure apparatus including the same
JPH0263285B2 (en)
JPS58210618A (en) Method and apparatus for reduced projection exposure
US7936442B2 (en) Exposure apparatus, exposure method, and device fabrication method
US20100273115A1 (en) Particle inspection apparatus, exposure apparatus, and device manufacturing method
JPS62263646A (en) Inspecting device for wafer
JP3068636B2 (en) Pattern inspection method and apparatus
JP2947916B2 (en) Surface condition inspection device
JPH046937B2 (en)
JPH0815167A (en) Foreign matter inspection apparatus and manufacture of semiconductor device using the apparatus
JP2970043B2 (en) Reticle pattern inspection method
JPH0498816A (en) Wafer stepper with wafer rear inspection mechanism
JPS63193041A (en) Apparatus for inspecting foreign matter
JPH0136577B2 (en)
JPH0644147B2 (en) Photomask defect inspection method
Ishihara et al. High-speed reticle qualification system
JPS63293917A (en) Aligner
JPH0815168A (en) Foreign matter inspection apparatus and manufacture of semiconductor device using the apparatus
JPH0337650A (en) Defect checking device for mask reticle
CN111430259A (en) Silicon wafer detection device used after development in semiconductor process
Gupta et al. Defects in photomasks
JPH02301122A (en) Semiconductor exposure device