JPS58209171A - Manufacture of photovoltaic device - Google Patents

Manufacture of photovoltaic device

Info

Publication number
JPS58209171A
JPS58209171A JP57092876A JP9287682A JPS58209171A JP S58209171 A JPS58209171 A JP S58209171A JP 57092876 A JP57092876 A JP 57092876A JP 9287682 A JP9287682 A JP 9287682A JP S58209171 A JPS58209171 A JP S58209171A
Authority
JP
Japan
Prior art keywords
film
layer
transparent
transparent conductive
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57092876A
Other languages
Japanese (ja)
Inventor
Tadashi Utagawa
忠 歌川
Tamotsu Hatayama
畑山 保
Hidetoshi Nozaki
野崎 秀俊
Takaaki Kamimura
孝明 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57092876A priority Critical patent/JPS58209171A/en
Publication of JPS58209171A publication Critical patent/JPS58209171A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To prevent the mutual diffusion between transparent conductive film and Si film from happening improving the reliability by a method wherein, when a transparent conductive film, a transparent insulating film, an amorphous Si film and an ohmic electrode are laminated in the order on a transparent insulated substrate to produce a photovoltaic device, a silicon oxynitride film is utilized as a transparent insulating film. CONSTITUTION:A transparent conductive film 12 comprising indium Sn oxide is formed on a transparent glass-made substrate 11 by means of sputtering etc. and the film 12 is coated with silicon oxynitride film 13 from several to scores of Angstrom thick. At this time, the film 13 is formed by means of decomposing ethoxy silane using nitrogen or hydrogen containing 6-0.1 volume % of nitrogen oxide such as NO, NO2, N2O5 etc. Next an amorphous Si layer 14 comprising a P type layer 141, 100-1,000 Angstrom thick, an I type layer 142, 0.5-2mum Angstrom thick and an N type layer 143, 300-1,000 Angstrom thick is laminated on the layer 13 and finally the layer 143 is coated with an Al-Cr onmic electrode 15. Through these procedures, the mutual diffusion between the layer 14 and the layer 12 may be prevented from occurring while avoiding the exfoliation of the layer 14.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は非晶質シリコン膜を用いた光起電力装置の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a photovoltaic device using an amorphous silicon film.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

太陽電池や光検出器のような半導体光起電力、装置は太
陽光線を直接エネルギーに変換することができるが、他
の電気エネルギー発生手段と比較して発電費用が多大で
ある。その主な原因は装置の主体を構成する半導体材料
の利用効率が低いこと、更には、斯る材料を製造するに
要するエネルギーが多いことにある。ところが最近上述
した欠点を一挙に解決する技術として、半導体材料に非
晶質シリコンを使用することが提案された。非晶質シリ
コンはシランやフロルシΦ)ンなどのシリコン化合物雰
囲気中でグロー放電によって安価かつ大量に形成するこ
とができ、その場合の非晶質シリコン(以下GD−as
iと略記する)では禁止帯の幅中の平均局在状態密度か
10c1n 以下と小さく結晶シリコンと同じ様にP型
、N型の不純物制御が可能となるものである。
Semiconductor photovoltaic devices, such as solar cells and photodetectors, can directly convert sunlight into energy, but their generation costs are high compared to other means of generating electrical energy. The main reason for this is the low utilization efficiency of semiconductor materials that constitute the main body of the device, and furthermore, the large amount of energy required to manufacture such materials. However, recently, the use of amorphous silicon as a semiconductor material has been proposed as a technique to solve the above-mentioned drawbacks all at once. Amorphous silicon can be formed inexpensively and in large quantities by glow discharge in an atmosphere of silicon compounds such as silane and florcin Φ).
(abbreviated as i), the average local state density within the width of the forbidden band is as small as 10c1n or less, making it possible to control P-type and N-type impurities in the same way as crystalline silicon.

第1図はCD−aSiを用いた従来の太陽電池を示す。FIG. 1 shows a conventional solar cell using CD-aSi.

1は可視光を透過するガラス等の透光性絶縁基板であり
、この基板上に透明導電膜2を介型層3□ 、N型層3
3の順に積層されている。
Reference numeral 1 denotes a light-transmitting insulating substrate such as glass that transmits visible light, and a transparent conductive film 2 is formed on this substrate with an intermediate layer 3□ and an N-type layer 3.
They are stacked in the order of 3.

この太陽電池に2いては、基板IIIIIから光がCD
−asi膜3に入ると主に1層32において電子正孔対
が発生して、これらはPIN接合電界にょシ引かれて移
動した後、透明導電膜2やオーミック電極4に集められ
、両電極に電圧が発生する。
In this solar cell, the light from the substrate III is CD
-When entering the ASI film 3, electron-hole pairs are generated mainly in the first layer 32, and after being attracted by the PIN junction electric field and moving, they are collected on the transparent conductive film 2 and the ohmic electrode 4, and are collected on both the electrodes. A voltage is generated.

ところが、このような従来装置の場合、装置の性能の良
さを示す短絡電流の大幅な低減が余儀なくされた。即ち
第1図において、透明導電膜2の形成に次いでCD−a
si層3を形成する際、基板1の温度を約320℃にて
1.5ヤ2時間保持する必要がある。この時、既に形成
されている透明導電膜2と形成されつつあるGD−as
i層との間での相互拡散が生じ、この相互拡散が上記短
絡電流の大幅な低減を招いているのである。特に透明導
電膜2が酸化インジウム・錫(In2O3+SnO□)
で出来ている場合などは相互拡散は顕著となる。
However, in the case of such conventional devices, it was necessary to significantly reduce the short circuit current, which indicates the good performance of the device. That is, in FIG. 1, after the formation of the transparent conductive film 2, the CD-a
When forming the Si layer 3, it is necessary to maintain the temperature of the substrate 1 at about 320° C. for 1.5 days and 2 hours. At this time, the transparent conductive film 2 that has already been formed and the GD-as that is being formed
Interdiffusion occurs with the i-layer, and this interdiffusion causes a significant reduction in the short circuit current. In particular, the transparent conductive film 2 is made of indium tin oxide (In2O3+SnO□)
Mutual diffusion becomes remarkable when the material is made of .

このような相互拡散による短絡電流の大幅な低減を防ぐ
方法として、例えば特開昭55−121685号公報に
示されるように透明基板上に酸化インジウム−錫で透明
導電膜を形成し、その上に透明絶縁膜として酸化シリコ
ン(S+O% 5102 )や窒(ヒ 素シリコン(s;3N4) ’5(生成し、この酸化膜
や窒化膜によってGD−asi層の形成時に生じる相互
拡散を防止することが提案されている。しかしながらこ
の方法で作られた光起電力装置に於いても問題点を残し
ている。即ち、光起電力装置を構成しているGD−as
iOPiN層の膜厚は、それぞれP型層が200X〜1
000X1ノンド一プエ層が0.5〜Z ttm XN
型層300X 〜100OXと極めて薄い。このため透
明導電膜上に形成される透明絶縁膜(S101SiO2
,513N4等)がGD−aSi形成時の熱処理によっ
てGD−asi界面に歪を与え、GD−aSi界面を損
傷する。特に513N4はGD−asiとの熱膨張率の
差が大きく、界面でのひずみが増大しGD−asi界面
をいちじるしく損傷し、GD−aSiが剥れるなどの現
象が起きた。SiOやSiO□は相互拡散防止膜として
は効果が不十分であって、透明導電膜中のIhとSnが
GD−aSi形成時の熱処理によって拡散しGD−as
iに到達するため、所望する特性が得られないことが判
った。
As a method for preventing a significant reduction in short-circuit current due to such interdiffusion, for example, as shown in JP-A-55-121685, a transparent conductive film is formed using indium-tin oxide on a transparent substrate, and a transparent conductive film is formed on the transparent substrate using indium tin oxide. It is proposed that silicon oxide (S+O% 5102) or nitride (arsenic silicon (S; 3N4) '5) be formed as a transparent insulating film, and that this oxide film or nitride film prevents the mutual diffusion that occurs during the formation of the GD-asi layer. However, there are still problems with photovoltaic devices made using this method.
The thickness of the iOPiN layer is 200X to 1 for each P-type layer.
000
The mold layer is extremely thin at 300X to 100OX. Therefore, a transparent insulating film (S101SiO2
. In particular, 513N4 had a large difference in coefficient of thermal expansion from GD-asi, and the strain at the interface increased, causing significant damage to the GD-asi interface, causing GD-aSi to peel off. SiO and SiO
It was found that the desired characteristics could not be obtained because the value of i was reached.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点を解決した、非晶質シリコンを用い
た光起電力装置の製造方法を提供することを目的とする
An object of the present invention is to provide a method for manufacturing a photovoltaic device using amorphous silicon, which solves the above problems.

〔発明の概要〕[Summary of the invention]

本発明は透光性絶縁基板上に透明導電膜、透明絶縁膜、
非晶質シリコン膜およびオーミック電極をこの順に積層
形成するに当って、上記透明絶縁膜としてシリコンオキ
シナイトライド膜を用いることを特徴とする。
The present invention provides a transparent conductive film, a transparent insulating film,
In laminating the amorphous silicon film and the ohmic electrode in this order, a silicon oxynitride film is used as the transparent insulating film.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、透明導電膜と非晶質シリコン獲の相互
拡散が防止され、しかも相互拡散防止膜であるオキシナ
イトライド膜と非晶Aシリコンの境界面で非晶質シリコ
ンの剥れを生じることもなく、信頼性の高い光起電力装
置が得られる。
According to the present invention, mutual diffusion between the transparent conductive film and the amorphous silicon is prevented, and peeling of the amorphous silicon is prevented at the interface between the oxynitride film, which is a mutual diffusion prevention film, and the amorphous silicon A. A highly reliable photovoltaic device can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下に第2図を参照して本発明について実施例を説明す
る。第2図(a)に示すように、透光性ガラス基板11
上に速比インジウム、錫(In 203十5nO2)か
らなる透明導電膜12をスパッタ法によ多形成し、この
上に透明絶縁膜として数〜e 10 Xの厚みでシリコ
ンオキシナイトライド(5iXOYN2)膜13を形成
する。シリコンオキシナイトライド膜13は、雰囲気ガ
スとして窒素酸化物(NO1NO□、N2O5など)を
6〜0.1容1チ含む窒素または水素を用いたエトキシ
シランの分解によ多形成する。この膜厚は自由電子が十
分通過する厚みである。この後、第2図(b)に示すよ
うに、三層のGD−asi膜14を形成する。そOWL
さはPM層141が100X 〜100OX、/yドー
ノエ層142が0.5〜2 μm 、 N型層1433
20℃である。最後に例えばkt−Crからなるオーミ
ック電極15を形成する〇 この実施例全てよれば、GD−asi膜14の堰槓工程
でこれを透明導電膜12との間の相互拡散が完全に防止
さ九、また応力によるGD−asiA14のはがれも生
じることなく、信頼性のよい光起電力装置が得られた。
An embodiment of the present invention will be described below with reference to FIG. As shown in FIG. 2(a), a transparent glass substrate 11
A transparent conductive film 12 made of indium and tin (In203-5nO2) is formed thereon by a sputtering method, and silicon oxynitride (5iXOYN2) is formed on this as a transparent insulating film with a thickness of several to e10X. A film 13 is formed. The silicon oxynitride film 13 is formed by decomposing ethoxysilane using nitrogen or hydrogen containing 6 to 0.1 volumes and 1 liter of nitrogen oxides (NO1NO□, N2O5, etc.) as an atmospheric gas. This film thickness is sufficient for free electrons to pass through. Thereafter, as shown in FIG. 2(b), a three-layer GD-asi film 14 is formed. SOOWL
The PM layer 141 has a thickness of 100X to 100OX, the /y Dornoe layer 142 has a thickness of 0.5 to 2 μm, and the N-type layer 1433 has a thickness of 0.5 to 2 μm.
The temperature is 20°C. Finally, the ohmic electrode 15 made of, for example, kt-Cr is formed. According to all of these embodiments, the interdiffusion between the GD-asi film 14 and the transparent conductive film 12 is completely prevented in the step of weiring the GD-asi film 14. Moreover, a highly reliable photovoltaic device was obtained without peeling of GD-asiA14 due to stress.

なお上記実施例では、PIN接合の例を説明したが、本
発明はシリコンオキシナイトライド膜を整流接合に用い
るMIS構造の光起電力装置を作る場合にも適用できる
In the above embodiments, an example of a PIN junction has been described, but the present invention can also be applied to a case where a photovoltaic device having an MIS structure is made using a silicon oxynitride film for a rectifying junction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の光起電力装置の断面図、第2図(a)
、(b)は不発明の一実施例の製造工程を説明するだめ
の断面図でるる。 1ノ・・・透光性ガ多ス基板、12・・・透明導電膜、
13・・・シリコンオキシナイトライド膜、14・・・
GD−asi層、15・・・オーミック電極。 出願人代理人  弁理士 鈍 工 武 を第1図 第2図 3
Figure 1 is a sectional view of a conventional photovoltaic device, Figure 2 (a)
, (b) are cross-sectional views for explaining the manufacturing process of one embodiment of the invention. 1. Translucent gas substrate, 12. Transparent conductive film,
13... Silicon oxynitride film, 14...
GD-asi layer, 15... ohmic electrode. Applicant's representative Patent attorney Takeshi Kun

Claims (2)

【特許請求の範囲】[Claims] (1)透光性絶縁基板上に、透明導電膜、透明絶縁膜、
非晶質シリコン膜およびオーミ、り電極をこの順に積層
形成して光起電力装置を製造するに際し、前記透明絶縁
膜としてシリコンオキシナイトライド膜を用いることを
特徴とする光起電力装置の製造方法。
(1) On a transparent insulating substrate, a transparent conductive film, a transparent insulating film,
A method for manufacturing a photovoltaic device, characterized in that a silicon oxynitride film is used as the transparent insulating film when manufacturing a photovoltaic device by laminating an amorphous silicon film and an ohmic electrode in this order. .
(2)  前記シリコンオキシナイトライドMは、窒素
酸化物を0.1〜6容量チ含む窒素または水素を雰囲気
ガスとしてエトキシシランの分解により形成するもので
ある特許請求の範囲第1項記載の光起電力装置の製造方
法。
(2) The light according to claim 1, wherein the silicon oxynitride M is formed by decomposing ethoxysilane using nitrogen or hydrogen containing 0.1 to 6 volumes of nitrogen oxide as an atmospheric gas. Method for manufacturing an electromotive force device.
JP57092876A 1982-05-31 1982-05-31 Manufacture of photovoltaic device Pending JPS58209171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57092876A JPS58209171A (en) 1982-05-31 1982-05-31 Manufacture of photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57092876A JPS58209171A (en) 1982-05-31 1982-05-31 Manufacture of photovoltaic device

Publications (1)

Publication Number Publication Date
JPS58209171A true JPS58209171A (en) 1983-12-06

Family

ID=14066642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57092876A Pending JPS58209171A (en) 1982-05-31 1982-05-31 Manufacture of photovoltaic device

Country Status (1)

Country Link
JP (1) JPS58209171A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2604563A1 (en) * 1986-09-26 1988-04-01 Sanyo Electric Co PHOTOVOLTAIC DEVICE
KR20010078017A (en) * 2000-01-19 2001-08-20 이즈하라 요조 Glass article and glass substrate for display panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2604563A1 (en) * 1986-09-26 1988-04-01 Sanyo Electric Co PHOTOVOLTAIC DEVICE
KR20010078017A (en) * 2000-01-19 2001-08-20 이즈하라 요조 Glass article and glass substrate for display panel

Similar Documents

Publication Publication Date Title
JP6793274B1 (en) Solar cell module, solar cell and its manufacturing method
RU2435250C2 (en) Front contact with high-work function tco for use in photovoltaic device and method of making said contact
US8907206B2 (en) Multi-junction solar cell devices
EP0184298B1 (en) Thin film solar cell with thin cds and transparent window layer
AU700200B2 (en) Multilayer solar cells with bypass diode protection
JP3203078B2 (en) Photovoltaic element
US20050056312A1 (en) Bifacial structure for tandem solar cells
JPH09172193A (en) Thin film solar battery
JPH0125235B2 (en)
JP3606886B2 (en) Solar cell and manufacturing method thereof
JPS58209171A (en) Manufacture of photovoltaic device
CN112349791B (en) Solar cell and preparation method thereof
JPH05275725A (en) Photovoltaic device and its manufacture
WO2004084282A1 (en) Bifacial structure for tandem solar cell formed with amorphous semiconductor materials
JP2936269B2 (en) Amorphous solar cell
JPS6321880A (en) Photovoltaic device
JPH08107225A (en) Manufacture of thin film solar cell
JPS5975679A (en) Photoelectromotive force generating device
JP2004335734A (en) Thin film solar cell
JP2004335733A (en) Thin film solar cell
JPH09181343A (en) Photoelectric conversion device
JP2630657B2 (en) Manufacturing method of integrated multilayer amorphous solar cell
JP2884171B2 (en) Amorphous solar cell
JPS6130079A (en) Photovoltaic element
JP2003158275A (en) Photoelectric conversion element and its manufacturing method