JPS58206361A - Multi spindle cooling device - Google Patents
Multi spindle cooling deviceInfo
- Publication number
- JPS58206361A JPS58206361A JP9056982A JP9056982A JPS58206361A JP S58206361 A JPS58206361 A JP S58206361A JP 9056982 A JP9056982 A JP 9056982A JP 9056982 A JP9056982 A JP 9056982A JP S58206361 A JPS58206361 A JP S58206361A
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- hollow chamber
- steam
- liquid
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q11/00—Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
- B23Q11/14—Methods or arrangements for maintaining a constant temperature in parts of machine tools
- B23Q11/141—Methods or arrangements for maintaining a constant temperature in parts of machine tools using a closed fluid circuit for cooling or heating
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Auxiliary Devices For Machine Tools (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は例えは工作機械の複数の主軸等の軸受部を冷
却する多軸冷却装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-shaft cooling device for cooling bearings such as a plurality of main shafts of a machine tool.
従来この褌の装置としては第1図及び第2図に示すもの
があった。これら各図にあ・いて、(11、hは工作機
械の第1.第2の主軸装置であり、スパンPの間隔で配
置されている。(2+ 、 allは主軸、(31゜@
υは主軸+21 e 体υな支承する軸受、(4) 、
141)は軸受台、(5) # IIはプーリ、(6
)はベッドである。Conventionally, this loincloth device has been shown in FIGS. 1 and 2. In each of these figures, (11 and h are the first and second spindle devices of the machine tool, which are arranged at an interval of span P. (2+, all are the main spindles, (31° @
υ is the main shaft + 21 e The bearing that supports the body υ, (4),
141) is the bearing stand, (5) #II is the pulley, (6
) is a bed.
次に動作について説明する。図示しない駆動用電動機に
よシvベルトを介してグーIJ (6) 、 11に伝
えられた回転力によって主軸(21# 02υを回転さ
せる。Next, the operation will be explained. The main shaft (21#02υ) is rotated by the rotational force transmitted to the goo IJ (6) and 11 by a driving electric motor (not shown) via the V-belt.
この時、主軸(21、匹と軸受台(4) 、 @υとの
間に位置する軸受(3) # hは主軸(2)、シυが
円滑に回転することを助ける目的をもっているが、回転
とともに軸受(駒、@幻は摩擦により発熱し温度上昇す
る。軸受(31、Iυに生じた熱量は軸受台(4)、←
υに伝ゎシ、ベッド(6)および周囲空気へ伝熱して放
熱する。この際に軸受台(4) 、 f41は温度上昇
し、各部は熱膨張による種々の熱変形・歪を生じる。こ
のため主軸(2)。At this time, the bearing (3) #h located between the main shaft (21) and the bearing stand (4) @υ has the purpose of helping the main shaft (2), υ, rotate smoothly. As it rotates, the bearing (piece, @phantom) generates heat due to friction and its temperature rises.The amount of heat generated in the bearing (31, Iυ) is
The heat is transferred to the bed (6) and the surrounding air to radiate heat. At this time, the temperature of the bearing stand (4) and f41 rises, and various thermal deformations and strains occur in each part due to thermal expansion. For this reason, the main axis (2).
シυの位置が変動し、被加工物を機械加工するときに加
工精度が低下するという欠点があった。さらに、相互間
の主軸(21* ンυの位置の変動に差を生じると同時
に複数の加工を行なう際に相互の加工精度に差を生じる
という欠点がめった。This method has the drawback that the position of the shaft υ fluctuates, reducing machining accuracy when machining the workpiece. Furthermore, there is often a problem that there is a difference in the fluctuation of the position of the main axis (21*n υ) between the two, and at the same time, there is a difference in the machining precision when performing a plurality of machining operations.
この発明は上記のような従来のものの欠点を除去する。This invention eliminates the drawbacks of the prior art as mentioned above.
ためになさnfcものであり、第]、第2の主軸装置を
有効に且つ平均的に冷却することができる多軸冷却装置
を提供することを目的としている。The object of the present invention is to provide a multi-shaft cooling device that can effectively and evenly cool the first and second main shaft devices.
以下、この発明の一実施例を第3図及び第4図に基づい
て説明する。第3図は機能系統を示すブロック図、第4
図は断面側面図であり、これら各図において、(7)、
συは軸受(3)、饅υの内部に形成された環状の中空
室、(8〕は放熱装置であり、冷却ファン(9)により
冷却されている。α()、(101)は中空室(7)、
σ0で気化する作動液体の蒸気をそれぞれ放熱装置(8
)に案内する蒸気管、Q2.(121)は放熱装置(8
)で凝縮液化する作動液体を軸受L3)、 (31)の
中空室(7)。An embodiment of the present invention will be described below with reference to FIGS. 3 and 4. Figure 3 is a block diagram showing the functional system, Figure 4
The figures are cross-sectional side views, and in each of these figures, (7),
συ is a bearing (3), an annular hollow chamber formed inside the rice cake, (8) is a heat dissipation device, which is cooled by a cooling fan (9). α(), (101) are hollow chambers. (7),
The vapor of the working liquid that is vaporized at σ0 is transferred to a heat dissipation device (8
), Q2. (121) is a heat dissipation device (8
) The working liquid is condensed and liquefied in the hollow chamber (7) of the bearing L3), (31).
びりにそれぞれ案内する液管である。尚、中空室(7)
。This is a liquid pipe that guides each of the holes. In addition, hollow chamber (7)
.
σ0および放熱装[(83、蒸気管σo、(1o1)
、液管(6)。σ0 and heat sink [(83, steam pipe σo, (1o1)
, liquid tube (6).
(121)の内部を真空減圧後、アンモニア、フロン等
の作動液体がその内部に所定撤封入される。After the inside of (121) is vacuum depressurized, a predetermined amount of working liquid such as ammonia or chlorofluorocarbon is withdrawn therein.
次に動作について説明す暮す軸受(31,(31)の熱
量は中空室(7) 、 ffυ内のフロン等の作動液体
を加熱して気化させる際に蒸発潜熱として奪われ、気化
したフロン等の蒸気は自身の蒸気圧を利用して蒸気管叫
、(101)を経て放熱装置(8)へ移動し、冷却ファ
ン(9)により周囲空気によシ冷やされる。このとき、
フロン等の蒸気は凝縮して液体に戻るが、凝縮潜熱を周
囲空気に放出し、軸受(3)l (3x)の熱量を周囲
空気へ放熱する。凝縮した作動液体は液管(ロ)。Next, we will explain the operation.The amount of heat in the bearings (31, (31)) is taken away as latent heat of evaporation when the working liquid such as fluorocarbons in the hollow chamber (7) and ffυ is heated and vaporized, Steam moves to the heat radiator (8) through the steam pipe (101) using its own steam pressure, and is cooled by the surrounding air by the cooling fan (9).At this time,
Vapors such as fluorocarbons condense and return to liquid, but the latent heat of condensation is released to the surrounding air, and the heat of the bearing (3)l (3x) is radiated to the surrounding air. The condensed working fluid is in the liquid pipe (b).
(121)を経て重力を利用して軸受(31,(3m)
の中空室(7) 、 ff1lへ戻る。このような動作
なくシ返し行なうことによ勺、軸受(3)t (31)
の熱量を放熱装置(8)に熱輸送して効率よく冷却する
ようにしている。(121) and bearing (31, (3m)) using gravity.
Hollow chamber (7), return to ff1l. By reversing without such a movement, the bearing (3)t (31)
The amount of heat is transported to the heat radiating device (8) for efficient cooling.
ところで、軸受(3)が他方の軸受(31)に比べ温度
上昇(熱it)が大きくなると、軸受(3)の中空室(
7)内の作動液体は気化する際に軸受(31)の中空N
ヴυ内の作動液体に比べより大きな蒸気量・蒸気圧・蒸
気温度となる。従って、より大きな蒸気量となる分だけ
蒸発潜熱を大きく奪い、より大きく冷却し、軸受(3)
の温度上昇が軸受(31)より大きくなるのを抑制する
ように働く。そして、軸受(3)の中空室(7)内にて
気化した温度の高い蒸気は蒸気管αQを経て放熱装置(
8)へ移動して凝縮液化する。一方、軸受cIl)は軸
受(3)に比べ温度上昇が小さく、軸受(31)の中空
室νυ内の作動液体は軸受(3)の中空室(7)内の作
動液体く比べ気化する際の蒸気量・蒸気圧・蒸気温度が
低い、従って、軸受(31)の中空室りυ内にて気化し
た温度の低い蒸気は蒸気管(101)を経て放熱装置(
8)へ移動して凝縮液化する。しかるに、温度の高い蒸
気は凝縮液化した際の温度が高く、温度の低い蒸気は凝
縮液化した際の温度が低い、放熱装置(8)においては
温度の高い凝縮液化した作動液体と温度の低い凝縮液化
した作動液体とが混合して平均化した温度の作動液体と
なる。この平均化された温度の作動液体が液管(6)、
(121)によりそれぞれ軸受(31、(31)の中空
室(7) # vυに戻る。即ち、軸受(3)の中空室
(7)には低くなった温度の作動液体が戻り、その低く
なった分だけ冷やされて軸受(3)の温度上昇が減少し
、軸受(31)の中41υには高くなった温度の作動液
体が戻シ、その高くなった分だけ暖められて軸受(31
)の温度上昇が増大し、両軸受(3) 、 (at)の
温度上昇差が小さく抑えられる。このような動作をくり
返し行なうことにより、両軸受(31,(31)の温度
上昇差が小さく抑えられると共に両軸受(3) 、 (
31)が平均的に有効に冷却される・従って、工作機械
においては軸受部の熱変形・歪を最少限に抑えることが
でき、加工精度を向上させることができる。By the way, when the temperature rise (heat it) of the bearing (3) becomes larger than that of the other bearing (31), the hollow chamber (
7) When the working liquid in the bearing (31) is vaporized,
The amount of vapor, vapor pressure, and vapor temperature are larger than that of the working liquid in Vυ. Therefore, the amount of latent heat of vaporization is greatly absorbed by the amount of steam, and the bearing (3) is cooled to a greater extent.
The temperature rise of the bearing (31) is suppressed from becoming larger than that of the bearing (31). The high temperature steam vaporized in the hollow chamber (7) of the bearing (3) passes through the steam pipe αQ to the heat dissipation device (
8) to condense and liquefy. On the other hand, the temperature rise of the bearing (cIl) is smaller than that of the bearing (3), and the working liquid in the hollow chamber νυ of the bearing (31) is vaporized compared to the working liquid in the hollow chamber (7) of the bearing (3). The steam amount, steam pressure, and steam temperature are low. Therefore, the low-temperature steam vaporized in the hollow chamber υ of the bearing (31) passes through the steam pipe (101) to the heat dissipation device (
8) to condense and liquefy. However, high temperature steam has a high temperature when condensed and liquefied, and low temperature steam has a low temperature when condensed and liquefied.In the heat dissipation device (8), high temperature condensed and liquefied working liquid and low temperature condensed The liquefied working liquid is mixed to form a working liquid with an average temperature. The working liquid at this averaged temperature is in the liquid pipe (6),
(121) returns the hollow chamber (7) #vυ of the bearings (31, (31), respectively. In other words, the working fluid at a lower temperature returns to the hollow chamber (7) of the bearing (3), and the lower temperature The temperature increase in the bearing (3) is reduced by that amount, and the working fluid at a higher temperature is returned to 41υ inside the bearing (31).
) increases, and the difference in temperature rise between both bearings (3) and (at) is kept small. By repeating these operations, the difference in temperature rise between the two bearings (31, (31) can be suppressed to a small level, and the temperature difference between the two bearings (3), (31) can be kept small.
31) is effectively cooled on the average. Therefore, in a machine tool, thermal deformation and distortion of the bearing portion can be minimized, and machining accuracy can be improved.
尚、上記実施例では冷却ファン(9)を用い九場合につ
いて述べたが、冷却ファン(9)を用いず自然風冷して
もよく、するいは冷却源として冷却風以外の冷却水・油
などを用いても同様の効果が得られる。In the above embodiment, nine cases were described using the cooling fan (9), but natural air cooling may be used without using the cooling fan (9), or cooling water or oil other than cooling air may be used as the cooling source. A similar effect can be obtained by using .
ところで、上記説明では主軸装置が2個の場合について
述べたが、3個以上の主軸装置の場合についてもこの発
明を適用し得ることができ、上起寮施例と同様な効果を
奏する。Incidentally, in the above description, the case where there are two spindle devices has been described, but the present invention can also be applied to a case where there are three or more spindle devices, and the same effects as in the Kamikiryo embodiment can be achieved.
この発明は以上説明した通υ、軸受内部に形成され且つ
作動液体が封入される環状の中空室をそれぞれ有する第
1.第2の主軸装置、この第1゜第2の主軸装置の熱量
を放熱する放熱装置、第1゜第2の主軸装置の中空室で
気化する作動液体の蒸気を放熱装置にそれぞれ案内する
蒸気管、放熱装置で凝縮液化する作動液体を第1.第2
の主軸装置の中空室にそれぞれ案内する液管な設け、軸
受の熱量を中空室から放熱装置に熱輸送するようにした
ことによシ、軸受の熱量を速やかに奪い効率よく且つ平
均的に冷却できるので、軸受部の熱変形・歪を最少限に
抑制し工作機械等の加工精度を向上できるという実用上
極めて大きな効果がめる。This invention provides the first and second bearings each having an annular hollow chamber formed inside the bearing and in which a working fluid is sealed. a second main shaft device, a heat radiator that radiates the heat of the first and second main shaft devices, and a steam pipe that guides the vapor of the working liquid vaporized in the hollow chamber of the first and second main shaft devices to the heat radiator, respectively. , the working liquid to be condensed and liquefied in the heat dissipation device is first. Second
By installing liquid pipes that guide each of the bearings into the hollow chambers of the main shaft device, and by transporting the heat of the bearings from the hollow chambers to the heat dissipation device, the heat of the bearings is rapidly removed and cooled efficiently and evenly. As a result, thermal deformation and distortion of the bearing part can be minimized and the machining accuracy of machine tools can be improved, which is extremely effective in practical terms.
第1図及び第2図は従来の多軸冷却装置を示す断面側面
図、第3図及び第4図はこの発明の一実施例による多軸
冷却装置を示すブロック図及び断面側面図である。
図において、(1) e (’IIは第1.第2の主軸
装置、(31、(31)は軸受、(7) 、 ffυは
中空室、(8)は放熱装置、(11)、(101)は蒸
気管、nt (121)は液管である。
尚、図中同一符号は同−又は相当部分を示す。
代理人 葛野 信−
第1図
第2図
第13図
第4図1 and 2 are cross-sectional side views showing a conventional multi-shaft cooling device, and FIGS. 3 and 4 are a block diagram and a cross-sectional side view showing a multi-shaft cooling device according to an embodiment of the present invention. In the figure, (1) e ('II is the first and second spindle device, (31, (31) are the bearings, (7), ffυ are the hollow chambers, (8) are the heat dissipation device, (11), ( 101) is a steam pipe, and nt (121) is a liquid pipe. In addition, the same reference numerals in the figures indicate the same or corresponding parts. Agent Shin Kazuno - Figure 1 Figure 2 Figure 13 Figure 4
Claims (1)
される環状の中空室をそれぞれ有する第1、第2の主軸
装置、上記第1.第2の主軸装置の熱量を放熱する放熱
装置、上記第1.第2の主軸装置の中空室で気化する作
動液体の蒸気を上記放熱装置にそnぞれ案内する蒸気管
、上記放熱装置で凝縮液化する作動液体を上記第1.第
2の主軸装置の中空室にそれぞれ案内する液管を備えた
ことを特徴とする多軸冷却装置。First and second main shaft devices each having an annular hollow chamber formed inside a bearing that supports the main shaft and in which a working liquid is sealed; A heat dissipation device for dissipating the amount of heat of the second spindle device; A steam pipe guides the vapor of the working liquid that is vaporized in the hollow chamber of the second main shaft device to the heat radiating device, and a working liquid that is condensed and liquefied in the heat radiating device is guided to the first. A multi-shaft cooling device characterized by comprising liquid pipes each guided into a hollow chamber of a second main shaft device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9056982A JPS58206361A (en) | 1982-05-26 | 1982-05-26 | Multi spindle cooling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9056982A JPS58206361A (en) | 1982-05-26 | 1982-05-26 | Multi spindle cooling device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58206361A true JPS58206361A (en) | 1983-12-01 |
Family
ID=14002054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9056982A Pending JPS58206361A (en) | 1982-05-26 | 1982-05-26 | Multi spindle cooling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58206361A (en) |
-
1982
- 1982-05-26 JP JP9056982A patent/JPS58206361A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58206361A (en) | Multi spindle cooling device | |
JPS58193930A (en) | Multispindle cooler | |
JPS6216783B2 (en) | ||
JPS6233453B2 (en) | ||
JPS58206362A (en) | Multi spindle cooling device | |
JPS6214380B2 (en) | ||
JPS6218308B2 (en) | ||
JPS6216778B2 (en) | ||
JPS6214385B2 (en) | ||
JPS6216785B2 (en) | ||
JPS6216787B2 (en) | ||
JPS6218309B2 (en) | ||
JPS59118345A (en) | Multi-spindle cooling device | |
JPS6216781B2 (en) | ||
JPS6216777B2 (en) | ||
JPS6216779B2 (en) | ||
JPS59118362A (en) | Multi-spindle cooling device | |
JPS59118336A (en) | Multi-spindle cooling device | |
JPS6216788B2 (en) | ||
JPS6214387B2 (en) | ||
JPS6216784B2 (en) | ||
JPS6214381B2 (en) | ||
JPS6216782B2 (en) | ||
JPS58206346A (en) | Multispindle cooling system | |
JPS6216776B2 (en) |