JPS58206362A - Multi spindle cooling device - Google Patents
Multi spindle cooling deviceInfo
- Publication number
- JPS58206362A JPS58206362A JP9057082A JP9057082A JPS58206362A JP S58206362 A JPS58206362 A JP S58206362A JP 9057082 A JP9057082 A JP 9057082A JP 9057082 A JP9057082 A JP 9057082A JP S58206362 A JPS58206362 A JP S58206362A
- Authority
- JP
- Japan
- Prior art keywords
- block
- bearing
- hollow chamber
- steam
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q11/00—Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
- B23Q11/14—Methods or arrangements for maintaining a constant temperature in parts of machine tools
- B23Q11/141—Methods or arrangements for maintaining a constant temperature in parts of machine tools using a closed fluid circuit for cooling or heating
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Auxiliary Devices For Machine Tools (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は例えば工作機械の複数の主軸等の軸受部を冷
却する多軸冷却装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-shaft cooling device that cools bearing parts such as a plurality of main shafts of a machine tool, for example.
従来この種の装置としては第1図及び第2図に示すもの
があった。こnら各図において、(1) 、 CILI
は工作機械の第I、第2の主軸装置でろり、スパンPの
間隔で配置されている。(21、02υは主軸、(3)
。Conventionally, there have been devices of this type as shown in FIGS. 1 and 2. In each of these figures, (1), CILI
are the first and second spindle devices of the machine tool, and are arranged at an interval of span P. (21, 02υ is the principal axis, (3)
.
(31)は主軸(2)、シυを支承する軸受、(4)、
←υは軸受(31、(31)を支持する軸受台、(5)
、優りはプーリ、(6)はベッドである。(31) is the main shaft (2), a bearing that supports the shaft υ, (4),
←υ is the bearing (31, bearing stand that supports (31), (5)
, the dominant is the pulley, and (6) is the bed.
次に動作について説明する。図示しない駆動用電動機に
よりvベルトを介してプーリ(5) 、 Illに伝え
られた回転力によって主軸(2)、シυを回転させる0
この時、主軸(2+ 、 侃υと軸受台(4) 、 @
υとの間に位置する軸受(31、(31)は主軸(2)
、馨りが円滑に回転することを助ける目的をもっている
が、回転とともに@受(3) 、 (31)は摩擦によ
り発熱し温度上昇する〇軸受(3) 、 (31)に生
じた熱量は軸受台(4)、圓に伝わり、ベッド(6)お
よび周囲空気へ伝熱して放熱する。Next, the operation will be explained. The main shaft (2) and shaft υ are rotated by the rotational force transmitted to the pulley (5) and Ill via the V-belt by a driving electric motor (not shown).
At this time, the main shaft (2+, 较υ and bearing stand (4), @
The bearing (31, (31) located between the main shaft (2)
The purpose is to help the bearings rotate smoothly, but as they rotate, the bearings (3) and (31) generate heat due to friction and rise in temperature. The amount of heat generated in the bearings (3) and (31) is The heat is transmitted to the table (4), the circle, and is transferred to the bed (6) and the surrounding air to radiate heat.
この際に軸受台(4)、←υは温度上昇し、各部は熱膨
張による槙々の熱変形・歪を生じる。このため主軸f2
1 、 @υの位置がfIjJJシ、被加工物を機械加
工するときに加工精度が低下するという欠点があった。At this time, the temperature of the bearing stand (4), ←υ increases, and various parts undergo various thermal deformations and distortions due to thermal expansion. Therefore, the main axis f2
1. If the position of @υ is fIjJJ, there is a drawback that the machining accuracy decreases when machining the workpiece.
さらに、相互間の主軸(2)、シυの位置の変動に差を
生じると同時に複数の加工を行なう際に相互の加工精度
に差を生じるという欠点があった。Furthermore, there is a drawback that there is a difference in the positional fluctuations of the main axis (2) and the shaft υ, and at the same time, there is a difference in the machining accuracy when a plurality of machining operations are performed.
この発明は上記のような従来のものの欠点を除去するた
めになさfしたものであり、第1.第2の主軸装置を有
効に且つ平均的に冷却することができる多軸冷却装置を
提供することを目的としている。This invention has been made in order to eliminate the drawbacks of the conventional ones as described above. It is an object of the present invention to provide a multi-shaft cooling device that can effectively and evenly cool a second main shaft device.
以下、この発明の一実施例を第3図及び第4図に基づい
て説明する。第3図は機能系統を示すブロック図、第4
図は断面側面図でめシ、これら各図において、(7)、
びりは軸受(31、(31)と軸受台(4)。An embodiment of the present invention will be described below with reference to FIGS. 3 and 4. Figure 3 is a block diagram showing the functional system, Figure 4
The figure is a cross-sectional side view. In each of these figures, (7),
The cracks are the bearings (31, (31) and the bearing stand (4).
(411との間に形成さ扛た環状の中空室、(8)は放
熱装置であシ、冷却ファン(9)により冷却されている
。(The annular hollow chamber (8) formed between the radiator and the radiator 411 is a heat dissipation device, and is cooled by a cooling fan (9).
cAl)、(101)は中空室(7)、συで気化する
作動液体の蒸気をそれぞ゛れ放熱装置(8)に案内する
蒸気管、(2)。cAl) and (101) are hollow chambers (7) and steam pipes (2) that guide the vapor of the working liquid that is vaporized in συ to the heat dissipation device (8), respectively.
(121)は放熱装置(8)で凝縮液化する作動液体を
軸受台(4) 、 @υ側の中空室(7) 、 ff1
lにそれぞれ案内する液管である。尚、中空室(7)
、 (lυお工び放熱装置(8)+1□
、蒸気管%、(lol) 、液管(6)、(12i)の
内部を真空減圧後、アンモニア、フロン等の作動液体が
その内部に所定祉封入される。(121) transfers the working liquid that is condensed and liquefied by the heat dissipation device (8) to the bearing stand (4), the hollow chamber (7) on the @υ side, and ff1.
These are liquid tubes that guide each of the two. In addition, hollow chamber (7)
, (lυ manufactured heat dissipation device (8) + 1□, steam pipe %, (lol), after vacuum depressurizing the inside of the liquid pipe (6), (12i), a working liquid such as ammonia or chlorofluorocarbon is placed inside it. Welfare will be included.
次に動作について説明する。軸受台(41、Nυで受熱
した軸受(31、(31)の熱量は中空室(7) 、
ffυ内のフロン等の作動液体な加熱して気化させる際
に蒸発潜熱として奪われ、気化したフロン等の蒸気は自
身の蒸気圧を利用して蒸気管α(1,(101)を経て
放熱装置(8)へ移動し、冷却ファン(9)にょシ周囲
空気により冷やされる。このとき、フロン等の蒸気は凝
縮して液体に戻るが、凝縮潜熱を周囲空気に放出し、軸
受(37、(3υのMittを周囲空気へ放熱する。Next, the operation will be explained. The amount of heat of the bearing (31, (31) that received heat at Nυ is the hollow chamber (7),
When the working liquid such as fluorocarbons in ffυ is heated and vaporized, it is taken away as latent heat of vaporization, and the vapor of the vaporized fluorocarbons uses its own vapor pressure to pass through the steam pipes α(1, (101)) to the heat dissipation device. (8), and is cooled by the surrounding air by the cooling fan (9). At this time, the vapors such as fluorocarbons condense and return to liquid, but the latent heat of condensation is released to the surrounding air, and the bearings (37, ( Mitt of 3υ radiates heat to the surrounding air.
凝縮した作動液体は液管(2)p(121)を経て重力
を利用して中空!(7)+りυへ戻る。このような動作
をくり返し行なうことにより、軸受台(4) 、 11
1O熱蓋を放熱装置(8)に熱輸送して効率よく冷却す
るようにしている。The condensed working liquid passes through the liquid pipe (2) p (121) and uses gravity to create a hollow! (7) Return to +riυ. By repeating these operations, the bearing stands (4), 11
Heat is transported from the 1O hot lid to a heat radiating device (8) for efficient cooling.
ところで、軸受台(4)が他方の軸受台@υに比べ温度
上昇(熱量)が大きくなると、軸受台(4)fllIの
中空室(7)内の作動液体の蒸気気化する際に軸受台@
υ側の中空j41υ内の作動液体に比べより大きな蒸気
量・蒸気圧・蒸気温度となる。従って、より大きな蒸気
量となる分だけ蒸発潜熱を大きく奪い、よシ大きく冷却
し、軸受台(4)の温度上昇が軸受台6刀より大きくな
るのを抑制するように働く、そして、軸受台(4)側の
中空室(7)内にて気化した温度の高い蒸気は蒸気管顛
を経て放熱装@ (81へ移動して凝縮液化する。一方
、軸受台14υは軸受台@幻に比べ温度上昇が小さく、
軸受台14119JJの中空Nr:IIl内の作動液体
は軸受台(4)側の中空室(7)内の作動液体に比べ気
化する際の蒸気量・蒸気圧・蒸気温度が低い。従って、
軸受台i4υ側の中空室συ内にて気化し7′cOA度
の底い蒸気は蒸気管(101)を経て放熱装置(8)へ
移動して凝縮液化する。しかるに、温度の高い蒸気は凝
縮液化した際の温度が高く、温度の低い蒸気は凝縮液化
した際の温度が低い、放熱装置(8)においては温度の
高い凝縮液化した作動液体と温度の低い凝縮液化した作
動液体とが混合して平均化した温度の作JIIg体とな
る。この平均化された温度の作動液体が液管g2.(1
2t)によ)それぞれ軸受台(4) 、 i4υ側の中
空室(7) 、 (711に戻る。即ち、軸受台(4)
側の中空室(7)には低くなった温度の作動液体が戻り
、その低くなった分だけ冷やされて軸受台(4)の温度
上昇が減少し、軸受台@υ−1の中空呈圓には尚くなっ
た温度の作動液体が戻り、その尚くなった分だけ暖めら
れて軸受台−の温度上昇が増大し、両軸受台(4) 、
f4υの温度上昇差が小さく抑えられる。By the way, if the temperature rise (heat amount) of the bearing pedestal (4) is larger than that of the other bearing pedestal @υ, when the working liquid in the hollow chamber (7) of the bearing pedestal (4) flII vaporizes, the bearing pedestal @
Compared to the working liquid in the hollow j41υ on the υ side, the amount of vapor, vapor pressure, and vapor temperature are larger. Therefore, the amount of latent heat of evaporation is taken away to a large extent by the amount of steam that becomes larger, and the cooling is performed to a greater extent, and the temperature rise of the bearing stand (4) is suppressed from becoming larger than that of the bearing stand (4). The high-temperature steam vaporized in the hollow chamber (7) on the side (4) passes through the steam pipe system and moves to the heat sink @ (81) where it condenses and liquefies.On the other hand, the bearing stand 14υ is The temperature rise is small,
The working liquid in the hollow Nr:IIl of the bearing stand 14119JJ has a lower vapor amount, vapor pressure, and vapor temperature when vaporized than the working liquid in the hollow chamber (7) on the bearing stand (4) side. Therefore,
The steam at the bottom of 7' cOA vaporized in the hollow chamber συ on the side of the bearing stand i4υ moves through the steam pipe (101) to the heat dissipation device (8), where it is condensed and liquefied. However, high temperature steam has a high temperature when condensed and liquefied, and low temperature steam has a low temperature when condensed and liquefied.In the heat dissipation device (8), high temperature condensed and liquefied working liquid and low temperature condensed The liquefied working fluid mixes to form an averaged temperature body. The working liquid at this averaged temperature is in the liquid pipe g2. (1
2t) respectively) bearing pedestal (4), i4υ side hollow chamber (7), (return to 711. That is, bearing pedestal (4)
The working fluid at a lower temperature returns to the hollow chamber (7) on the side, and is cooled by the lower temperature, reducing the temperature rise of the bearing pedestal (4) and lowering the temperature of the hollow chamber of the bearing pedestal @υ-1. The working fluid, which has now reached a temperature of
The difference in temperature rise of f4υ can be kept small.
このような動作なく9返し行なうことによシ、両軸受台
(4) 、 141)の温度上昇差が小さく抑えられる
と共に両軸受台(4) 、 @υが平均的に有効に冷却
されるO従って、工作機械においては軸受部の熱変形・
歪を最少限に抑えることができ、加工精度を向上させる
ことができる。By performing nine turns without such an operation, the difference in temperature rise between both bearing stands (4), 141) can be suppressed to a small level, and both bearing stands (4), @υ can be effectively cooled on the average. Therefore, in machine tools, thermal deformation and
Distortion can be minimized and processing accuracy can be improved.
尚、上記実施例では冷却ファン(9)を用いた場合につ
いて述べたが、冷却ファン(9)を用いず自然風冷して
もよく、あるいは冷却源として冷却風以外の冷却水・油
などを用いても同様の効果が得られる。In the above embodiment, a case was described in which a cooling fan (9) was used, but natural air cooling may be used without using a cooling fan (9), or cooling water, oil, etc. other than cooling air may be used as a cooling source. Similar effects can be obtained by using
ところで、上記説明では主軸装置が2個の場合について
述べたが、3個以上の主軸装置の場合についてもこの発
明を適用し得ることができ、上記実施例と同様な効果を
奏する。Incidentally, in the above description, the case where there are two spindle devices has been described, but the present invention can also be applied to a case where there are three or more spindle devices, and the same effects as in the above embodiment can be obtained.
この発明は以上説明した通ヤ、軸受と軸受台との間に形
成され且つ作動液体が封入される環状の中空室をそれぞ
れ有する第1.第2の主軸装置、この第1.第2の主軸
装置の熱閂を放熱する放熱装置、第1.jg2の主軸装
置の中空室で気化する作動液体の蒸気を放熱装置にそれ
ぞn案内する蒸気管、放熱装置で凝縮液化する作動液体
を第1゜第2の主軸装置の中空室にそれぞれ案内する液
管な設け、軸受台の熱量を中空室から放熱装置に熱輸送
するようにしたことにより、軸受台の熱itを速やかに
奪い効率よく且つ平均的に冷却できるので、軸受部の熱
変形・歪を最少限に抑制し工作機械等の加工精度を向上
できるという東用上極めて大きな効果がある。The present invention provides the above-described first and second bearings each having an annular hollow chamber formed between the bearing and the bearing pedestal and filled with a working fluid. The second spindle device, this first spindle device. a heat radiating device for radiating heat from the hot bolt of the second spindle device; A steam pipe guides the vapor of the working liquid that is vaporized in the hollow chamber of the main shaft device of jg2 to the heat radiating device, and guides the working liquid that is condensed and liquefied in the heat radiating device to the hollow chambers of the first and second main shaft devices, respectively. By providing a liquid pipe and transporting the heat of the bearing pedestal from the hollow chamber to the heat dissipation device, the heat of the bearing pedestal can be quickly removed and cooled efficiently and evenly, thereby preventing thermal deformation of the bearing part. It has an extremely large effect on the industrial use, as it can suppress distortion to a minimum and improve the machining accuracy of machine tools, etc.
第1図及び第2図は従来の多軸冷却装置を示す断面側面
図、第3図及び第4図はこの発明の一実施例による多軸
冷却装置を示すブロック図及び断面側面図である。
図において、(1) I Qllは第1.第2の主軸装
置、(3) 、 (31)は軸受、(4) 、 @幻は
軸受台、(7) 、 (711は中空室、(8)は放熱
装置、叫、(101)は蒸気管、四、(1gl)は液管
である。
尚、図中同一符号は同−又は相当部分を示す。
代理人 葛野信−
第1図
第2図
第:3図1 and 2 are cross-sectional side views showing a conventional multi-shaft cooling device, and FIGS. 3 and 4 are a block diagram and a cross-sectional side view showing a multi-shaft cooling device according to an embodiment of the present invention. In the figure, (1) I Qll is the first. Second main shaft device, (3), (31) are bearings, (4), @phantom is bearing stand, (7), (711 is hollow chamber, (8) is heat dissipation device, (101) is steam Pipe No. 4 (1gl) is a liquid pipe. In addition, the same reference numerals in the figures indicate the same or corresponding parts. Agent Makoto Kuzuno - Figure 1 Figure 2 Figure 3
Claims (1)
に形成され且つ作動液体が封入される環状の中空室をそ
れぞれ有する第1.第2の主軸装置、上記第1.第2の
主軸装置の熱量を放熱する放熱装置、上記第1.第2の
主軸装置の中空室で気化する作動液体の#気を上記放熱
装置にそnぞれ案内する蒸気管、上記放熱装置で縦組液
化する作動液体を上+![l!第1.第2の主軸装置の
中窒屋に七才りそれ案内する液管を備えたことを特徴と
する多軸冷却装置。The first and second sections are formed between a bearing that supports the main shaft and a bearing stand that supports this bearing, and each have an annular hollow chamber in which a working fluid is sealed. a second spindle device, the first spindle device; A heat dissipation device for dissipating the amount of heat of the second spindle device; A steam pipe guides the working liquid vaporized in the hollow chamber of the second spindle device to the heat radiating device, and the working liquid liquefied vertically in the heat radiating device is transferred to the above +! [l! 1st. A multi-shaft cooling device characterized in that it is equipped with a liquid pipe that guides a central shaft of a second main shaft device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9057082A JPS58206362A (en) | 1982-05-26 | 1982-05-26 | Multi spindle cooling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9057082A JPS58206362A (en) | 1982-05-26 | 1982-05-26 | Multi spindle cooling device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58206362A true JPS58206362A (en) | 1983-12-01 |
Family
ID=14002082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9057082A Pending JPS58206362A (en) | 1982-05-26 | 1982-05-26 | Multi spindle cooling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58206362A (en) |
-
1982
- 1982-05-26 JP JP9057082A patent/JPS58206362A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58206362A (en) | Multi spindle cooling device | |
JPS58193930A (en) | Multispindle cooler | |
JPS6233453B2 (en) | ||
JPS6214380B2 (en) | ||
JPS6216783B2 (en) | ||
JPS58206361A (en) | Multi spindle cooling device | |
JPS6216781B2 (en) | ||
JPS6218308B2 (en) | ||
JPS6214385B2 (en) | ||
JPH0565729B2 (en) | ||
JPS6216787B2 (en) | ||
JPS6216778B2 (en) | ||
JPS59118362A (en) | Multi-spindle cooling device | |
JPS58193927A (en) | Multispindle cooler | |
JPS6218309B2 (en) | ||
JPS6216785B2 (en) | ||
JPS58206346A (en) | Multispindle cooling system | |
JPS59118345A (en) | Multi-spindle cooling device | |
JPS6214381B2 (en) | ||
JPS6216782B2 (en) | ||
JPS6216776B2 (en) | ||
JPS59118333A (en) | Multi-spindle cooler | |
JPS6216777B2 (en) | ||
JPS6214383B2 (en) | ||
JPS6216779B2 (en) |