JPS58206062A - Nonaqeuous electrolyte battery - Google Patents

Nonaqeuous electrolyte battery

Info

Publication number
JPS58206062A
JPS58206062A JP57089149A JP8914982A JPS58206062A JP S58206062 A JPS58206062 A JP S58206062A JP 57089149 A JP57089149 A JP 57089149A JP 8914982 A JP8914982 A JP 8914982A JP S58206062 A JPS58206062 A JP S58206062A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
vanadium oxide
discharge
fluorinated graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57089149A
Other languages
Japanese (ja)
Inventor
Ryoji Okazaki
良二 岡崎
Teruyoshi Morita
守田 彰克
Hirofumi Oishi
大石 裕文
Hisaaki Otsuka
大塚 央陽
Kenichi Morigaki
健一 森垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57089149A priority Critical patent/JPS58206062A/en
Publication of JPS58206062A publication Critical patent/JPS58206062A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the field of practical use and reliability in graphite fluoride family batteries by mixing vanadium oxide which is rechargeable active mass to a positive electrode. CONSTITUTION:A negative electrode using lithium as an active mass, an electrolyte prepared by dissolving an inorganic salt in organic solvent, and a positive electrode having an active mass prepared by mixing graphite fluoride and vanadium oxide (VOX, 2<=X<=2.5) are provided. Vanadium oxide was selected from the reason that it gives no adverse effect to basic discharge performance of graphite fluoride family batteries, reacts prior to or in parallel with graphite fluoride in initial discharge stage, and rechargeable LiaVOx can exist as much as possible in the positive electrode to give rechargeability.

Description

【発明の詳細な説明】 本発明は、リチウムを負極活物質とし、テトラハイドロ
フラン、ディメトキシエタン、ディオキフラン、プロピ
レンカーボネート、γ−ブチロラクトンなどの非プロト
ン性有機溶媒にホウフッ化リチウム、過塩素酸リチウム
などの無機塩を溶解させた非水電解液を用い、フッ化黒
鉛((CFx)n、Q (z l:1、換言すれば(O
F)n 、 (02F)nで表される単独物もしくはそ
の混在物及び未反応炭素を含有するものを含む)を正極
の生活物質とする非水電解液電池において正極への補助
活物質の添加に関するものである。
Detailed Description of the Invention The present invention uses lithium as a negative electrode active material, and uses lithium borofluoride and lithium perchlorate in an aprotic organic solvent such as tetrahydrofuran, dimethoxyethane, dioxyfuran, propylene carbonate, and γ-butyrolactone. Fluorinated graphite ((CFx)n, Q (z l:1, in other words, (O
Addition of an auxiliary active material to the positive electrode in a non-aqueous electrolyte battery using F)n, (02F)n alone or a mixture thereof, and those containing unreacted carbon) as a positive electrode living material. It is related to.

上記のフッ化黒鉛を正極活物質として用いた非水電解液
電池は、高エネルギー密度で電圧の平坦性が良く、貯蔵
性のすぐれた一次電池としてすでに広く実用化され、ま
すます用途の拡大が進んでいる。これらの新しい用途の
うち、ICメモリのバックアップ用電源で代表されるよ
うにナノアンペアからマイクロアンペアオーダーの極め
て微少な電流ではあるが、バックアップ用電源としての
一次電池に長期間にわたり充電方向にリーク電流が流れ
、この程度の充電に対しては一次電池とは云いながらも
電池特性や外形、外観の異常、破裂等の問題がなく、−
次電池としての機能を正常に発揮し得ることが要求され
る場合が多い。上記の如き微少電流も電子レジスタ、コ
ンピュータなど応用機器の高信頼性、耐用年数の延長が
進み、バックアップ用電池に要求される耐用年数も10
年はおろか20年という長期間の場合が通例であるため
、その間に累積される充電電気量が数mAhから数10
 mihに達する場合もある。
Non-aqueous electrolyte batteries using the above-mentioned fluorinated graphite as a positive electrode active material have high energy density, good voltage flatness, and are already widely used as primary batteries with excellent storage properties, and their applications are expected to continue to expand. It's progressing. Among these new applications, although it is an extremely small current on the order of nanoamperes to microamperes, as typified by backup power supplies for IC memory, leakage current in the charging direction for a long period of time is generated in primary batteries as backup power supplies. Although it is a primary battery, there are no problems with battery characteristics, external shape, abnormality in appearance, bursting, etc. for this level of charge.
In many cases, it is required to be able to properly function as a secondary battery. Even with the small currents mentioned above, the reliability and service life of applied equipment such as electronic registers and computers has been extended, and the service life required for backup batteries has also increased to 10%.
Since it is common for a long period of 20 years, let alone a year, the amount of charged electricity accumulated during that time ranges from several mAh to several tens of mAh.
In some cases, it reaches mih.

前記のフッ化黒鉛系の非水電解液電池は本質的に正極の
充電が不可能とされており、下記の如く放電反応は進む
が、その逆の電気化学的反応は進行しなイ。これは、(
CF )n−)−nLl −1−ne−+ O−1−L
iFにより不活性なLiFを生じるためとされている。
In the fluorinated graphite-based non-aqueous electrolyte battery, it is essentially impossible to charge the positive electrode, and although the discharge reaction proceeds as described below, the reverse electrochemical reaction does not proceed. this is,(
CF )n-)-nLl -1-ne-+ O-1-L
This is believed to be because iF produces inactive LiF.

従って、前述の充電電流が電池に流れると、溶媒の分解
1重合反応を主体とした電気化学的反応により、ガス発
生や電解液の変質が起こシ、著るしい場合は電池の膨張
や破裂及び電池性能の劣化をひき起こす懸念がある。
Therefore, when the above-mentioned charging current flows through the battery, gas generation and deterioration of the electrolyte occur due to electrochemical reactions mainly consisting of solvent decomposition and polymerization reactions, and in severe cases, the battery expands, ruptures, and There is a concern that this may cause deterioration in battery performance.

その意味で、より長期間Ω:耐用特性を備えさせるため
、放電容量の少なくとも一部に相当する充電電気量に耐
えるべく改良が必要とされる。
In this sense, in order to provide long-term Ω: durability characteristics, improvements are required to withstand the amount of charging electricity that corresponds to at least a portion of the discharge capacity.

本発明は、フッ化黒鉛系非水電解液電池の一次電池とし
ての本来のすぐれた性能を保持し、なおかつ少くとも部
分的な充放電ができる特性を付加して機器電源としての
応用範囲の拡大と適合性の増大を図ったものである。
The present invention maintains the original excellent performance of a fluorinated graphite-based non-aqueous electrolyte battery as a primary battery, and adds the characteristic of at least partial charging/discharging, thereby expanding the scope of its application as a power source for equipment. This is intended to increase compatibility.

本発明は上記電池の正極に、充放電可能な活物質である
バナジウム酸化物を混合することを特徴とするものであ
る。
The present invention is characterized in that vanadium oxide, which is a chargeable and dischargeable active material, is mixed into the positive electrode of the battery.

バナジウム酸化物のうちv205は一次電池の活物質と
して旧来から検討されている代表的なものであり、高エ
ネルギー密度ではあるが、放電の前半と後半とで電圧の
段差があり、有効に活用できるエネルギーが前半に止ま
る場合が多く、結果的には実用範囲の狭いものとなって
いる。しかしv205はもとより、バナジウム酸化物は
充放電反応が可能なものとして二次電池の活物質として
も検討され、VO2及びVO2とv205 との中間酸
化物を含めてその種類は多(、代表的な中間酸化物とし
テv6o、3 、 v5o7. v4o9  などがあ
ル。コれら中間酸化物の製法にはv205の製法として
一般化、されているNH4VO3の熱分解を比較的低温
で行わせて得る方法や、v205 と金属バナジウムと
を非化学量論的に高温で反応させて得る方法などがあり
、反応条件を適宜調整することにより任意の酸化物(v
oz、2rx≦2.5)が得られる。例えばv205 
と金属バナジウムとの反応温度を650℃とした場合、
VO2,+ 7〜VO2,20の組成比の中間酸化物が
得られ、これは先にv6o 13として示しt;ものに
ほぼ該当する。これらの充放電反応はリチウム負極を対
極とした場合、次式で表され、Llの酸化物中への取り
込み、取り出しが行われる。いわゆる可逆性のトポケミ
カル反応であり、前述のフッ化黒鉛の放電反応と基本的
な機構を異にする。
Among vanadium oxides, V205 is a typical material that has long been considered as an active material for primary batteries, and although it has a high energy density, there is a voltage difference between the first half and the second half of discharge, so it can be used effectively. The energy often stops in the first half, resulting in a narrow practical range. However, in addition to V205, vanadium oxide is being considered as an active material for secondary batteries as it is capable of charging and discharging reactions, and there are many types of vanadium oxides, including VO2 and intermediate oxides between VO2 and V205. There are intermediate oxides such as te v6o, 3, v5o7, v4o9, etc. These intermediate oxides are produced by thermal decomposition of NH4VO3 at a relatively low temperature, which is commonly used as the method for producing v205. There are various methods, such as a method of reacting v205 and metal vanadium at high temperature in a non-stoichiometric manner.By appropriately adjusting the reaction conditions, any oxide (v
oz, 2rx≦2.5) is obtained. For example v205
When the reaction temperature between and metal vanadium is 650°C,
An intermediate oxide having a composition ratio of VO2,+ 7 to VO2,20 was obtained, which approximately corresponds to that previously indicated as v6o 13. These charge/discharge reactions are expressed by the following formula when a lithium negative electrode is used as a counter electrode, and Ll is taken into and taken out of the oxide. This is a so-called reversible topochemical reaction, and its basic mechanism is different from the above-mentioned discharge reaction of fluorinated graphite.

VOX−4−at+1+ae 4; Liavox本発
明はこのようなバナジウム酸化物は充放電反応が可能で
、正極電位としてもフッ化黒鉛に近似していることに注
目し、これを−次電池用として極めてすぐれた活物質で
あるフッ化黒鉛に混合することにより、フン化黒鉛系−
次電池としての特性を損うことなく、前述の如き実用時
の充電に対する耐性を付加したものである。
VOX-4-at+1+ae 4; LiavoxThe present invention focuses on the fact that such vanadium oxide is capable of charge-discharge reactions and has a positive electrode potential close to that of fluorinated graphite, and has made it extremely suitable for use in secondary batteries. By mixing with fluorinated graphite, which is an excellent active material, fluorinated graphite-based
The battery has added resistance to charging during practical use as described above without impairing its characteristics as a secondary battery.

又、本発明の効果を更に高めるにはフン化黒鉛を生活−
質とした正極中に充電可能なLiaVO)(を存在させ
るのが好ましい。このLiaVO2は、例えば正極中に
バナジウム酸化物を含む電池を構成後放電容量の一部を
放電させることで達成でき、反応生成物として正極内に
存在させた後実用に供することが可能であり、これによ
りたとえ使用初期から充電方向に電流が通ずることがあ
っても可逆反応によりvOxが生成し、電解液の分解、
正合などに起因する前述の問題は解決できる。添加する
補助活物質として、フッ化黒鉛よりやや高電位かもしく
は近似した電位を有する酸化バナジウムを選択した重要
な意義は、まづフッ化黒鉛系電池の基本的な放電性能に
悪影響を与えないことと、放電初期にフッ化黒鉛より優
先して、あるいは並行して反応し充電が可能なLiaV
Oxを使用時に極力多く正極に存在させ充電に備えるこ
とを可能にしたことにある。さらに周知の如きバナジウ
ム酸化物の非水電解液中での化学的安定性も本発明の構
成を可能にした要件の一つである。
In order to further enhance the effect of the present invention, it is also possible to use fluorinated graphite in daily life.
It is preferable to have a rechargeable LiaVO) present in a quality positive electrode. This LiaVO2 can be achieved, for example, by discharging a part of the discharge capacity after constructing a battery containing vanadium oxide in the positive electrode, and the reaction It is possible to put it into practical use after it is present in the positive electrode as a product, and even if current is passed in the charging direction from the beginning of use, vOx is generated by a reversible reaction, causing decomposition of the electrolyte and
The above-mentioned problems caused by misalignment can be solved. The important reason for selecting vanadium oxide, which has a potential slightly higher than or similar to that of fluorinated graphite, as the auxiliary active material to be added is that it does not have a negative impact on the basic discharge performance of fluorinated graphite batteries. and LiaV, which can be charged by reacting in priority to or in parallel with fluorinated graphite at the initial stage of discharge.
The purpose is to allow as much Ox as possible to exist in the positive electrode during use in preparation for charging. Furthermore, the well-known chemical stability of vanadium oxide in a non-aqueous electrolyte is also one of the requirements that made the configuration of the present invention possible.

第1図は本発明の効果を確認するために試作した電池の
断面図である。第1図において21はステンレススチー
ル製の封目板、2は1に溶接された同質のネットから成
る負極集電ネット、3は2に圧着されたリチウム負極、
4はポリプロピレン不織布のセパレータ、6はフッ化黒
鉛(CF )nを生成分とし、炭素粉とフッ素樹脂、及
びバナジウム酸化物を後述の如く種々の配合で混合して
成型した正極、6はチタン製の正極集電ネットで、正極
5に圧入されている。7はステンレススチール製の電池
ケース、8はポリプロピレン鯛ガスケットで、封口は電
池ケース7の開口部の内方への折シまげにより果してい
る。電池内にはプロピレンカーボネイトとディメトキシ
エタンを容量比で1:1に混合した溶媒にホウフッ化リ
チウムを溶解させた電解液を注入している。
FIG. 1 is a cross-sectional view of a battery experimentally manufactured to confirm the effects of the present invention. In FIG. 1, 21 is a sealing plate made of stainless steel, 2 is a negative electrode current collector net made of a homogeneous net welded to 1, 3 is a lithium negative electrode crimped to 2,
4 is a separator made of polypropylene nonwoven fabric, 6 is a positive electrode made of fluorinated graphite (CF)n, which is formed by mixing carbon powder, fluororesin, and vanadium oxide in various formulations as described below, and 6 is made of titanium. The positive electrode current collecting net is press-fitted into the positive electrode 5. 7 is a stainless steel battery case, 8 is a polypropylene gasket, and the sealing is accomplished by folding the opening of the battery case 7 inward. An electrolytic solution in which lithium fluoroborate is dissolved in a solvent mixed with propylene carbonate and dimethoxyethane at a volume ratio of 1:1 is injected into the battery.

上記の構成に従って直径20mm、厚さ1.6mmの電
池を第1表の如き種々の配合組成の正極を用いて試作し
試験を行った。なお正極はフッ化黒鉛と酸化バナジウム
との重量の和を1oOとし、これにアセチレンブラック
を10、フッ素樹脂粉末を6の割合で一律に添加して混
合、成型した。第1表にはこのうち活物質の配合のみを
示した。
Batteries having a diameter of 20 mm and a thickness of 1.6 mm were manufactured according to the above configuration using positive electrodes having various compositions as shown in Table 1, and tested. For the positive electrode, the sum of the weights of fluorinated graphite and vanadium oxide was 100, to which acetylene black was uniformly added in a ratio of 10 parts and fluororesin powder was added in a uniform ratio of 6 parts, mixed, and molded. Table 1 shows only the active material formulations.

第1表 次にこれらの試作電池の放電特性及び耐充電性VCつい
て評価した結果を示す。
Table 1 shows the results of evaluating the discharge characteristics and charge resistance VC of these prototype batteries.

試験方法は部分放電後、その一部分の重量に相当する充
電を行うことをくり返し、機器において主にメモリバッ
クアップのため放電し、ムC電源での駆動の際のリーク
電流による充電がある期間性われるという実用状態に応
じた模似実験条件を設定して行った。充放電の条件と順
序は下記の通りである。
The test method is to repeat a partial discharge and then charge it to an amount equivalent to a portion of its weight.The device is then discharged mainly for memory backup, and then charged for a period of time due to leakage current when driven by a muC power source. The simulation experiment conditions were set according to the actual situation. The conditions and order of charging and discharging are as follows.

第1次放電:温[20T;、soKΩ定抵抗負荷第1次
充電:温度20℃、10μム定電流で第2次放電:温度
20℃、30にΩ定抵抗負荷第2次充電:温度20’C
110μム定電流で1  700時間充電 ↓    (7mAh ) 第3次放電:温度20’C15oKΩ定抵抗負荷第3次
充電:温度20℃、10μム定電流で最終放電:温度2
0’C130にΩ定抵抗負荷で端子電圧が2.Ovに降
下するま で放電 その試験結果のうち、第2図、第3図kま放電特性を示
し、第2図はv205の添加量′f:変えた場合の相違
、第3図はバナジウム酸化物の種類を変えた場合の相違
を示している。第2表は充電後の電池の膨張度合を充電
後の電池厚さ寸法から未放電電池の厚さ寸法ヲ差し引い
た値として示し、さらに、最終放電における放電持続時
間を示している。
Primary discharge: Temperature [20T;, soKΩ constant resistance load Primary charging: Temperature 20°C, 10 μm constant current Secondary discharge: Temperature 20°C, 30Ω constant resistance load Secondary charging: Temperature 20 'C
Charging for 1700 hours at 110 μm constant current ↓ (7 mAh) 3rd discharge: Temperature 20'C 15oKΩ constant resistance load 3rd charge: Temperature 20°C, 10 μm constant current Final discharge: Temperature 2
0'C130 with Ω constant resistance load and terminal voltage is 2. Of the test results, Figures 2 and 3 show the discharge characteristics; Figure 2 shows the difference when changing the amount of v205 added; Figure 3 shows the difference when changing the amount of V205; It shows the difference when changing the type. Table 2 shows the degree of expansion of the battery after charging as a value obtained by subtracting the thickness of the undischarged battery from the thickness of the battery after charging, and also shows the discharge duration in the final discharge.

第2図から明らかな如く補助活物質の添加h1が多い程
、放電の初期電圧が筒い。これはフッ化黒鉛より高電位
のv205が優先して反応していることを示し、充電後
においても概ね同様の傾向を示しており、V2O5の充
電が円滑に行われたことを示している。一方、無添加の
場合にでは第1回目の充電後の放電では通常の間欠放電
の場合と同様に異常なく放電が行われるが、第2回目の
充電後の放電では電圧の低下と不安定性を示している。
As is clear from FIG. 2, the greater the amount h1 of the auxiliary active material added, the higher the initial voltage of discharge. This shows that v205, which has a higher potential than fluorinated graphite, reacts preferentially, and the same tendency is generally observed even after charging, indicating that charging of V2O5 was carried out smoothly. On the other hand, in the case of no additives, the discharge after the first charge is carried out without any abnormality as in the case of normal intermittent discharge, but the discharge after the second charge causes voltage drop and instability. It shows.

これは充電によりガス発生が生じ、第1回目の充電では
発生ガスが少量のため電池機能に支障はなかったが、第
2回目の充電に到りガス圧が増大して電池膨張や極間へ
のガスの介在などにより電池内の接触不足が生じて内部
抵抗が増大し、電圧特性が劣化したものと考えられる。
This is because gas is generated during charging, and during the first charge, the amount of gas generated was small and did not affect the battery's function, but on the second charge, the gas pressure increased, causing the battery to expand and cause damage to the electrodes. It is thought that due to the presence of gas, insufficient contact occurred within the battery, increasing internal resistance and deteriorating the voltage characteristics.

また、V2O5の配合量の多いFではV2O5tp!j
有の二段放電曲線が比較的顕著にあられれ、電圧の安定
性からすればフッ化黒鉛を生活物質とした方が良好であ
り、とりわけ補助活物質の配合量は重量比で全盾物質の
10〜46%が放電容量から見ても良好である。
In addition, with F containing a large amount of V2O5, V2O5tp! j
The two-stage discharge curve is relatively remarkable, and from the viewpoint of voltage stability, it is better to use fluorinated graphite as a living material.In particular, the amount of auxiliary active material blended is about 100% of the total shielding material in terms of weight ratio. 10 to 46% is good in terms of discharge capacity.

又、第3図から一様に各種バナジウム酸化物の添加効果
が認められ、なかでも中間酸化物がV2O5よりやや容
量が大きくすぐれており、これは後に示す電池の膨張度
が少いことからも充電反応がv20s 、 VO2より
さらに円滑に行われるためと推察される。
In addition, from Figure 3, the effect of adding various vanadium oxides is uniformly recognized, and among them, the intermediate oxide has a slightly larger capacity than V2O5, which is also due to the lower degree of expansion of the battery, which will be shown later. It is presumed that this is because the charging reaction occurs more smoothly than with V20s and VO2.

以下余白 また、第2表に示されるように電池の膨張度合は酸イ1
バナジウムの添加量が多い程少く、中間酸化物、とりわ
けV6O13の場合が少く、又最終放電の持続時間は膨
張度の少い方が全般的に多く、充電能力にすぐれている
。一方無添加の場合、膨張が多く、充電反応も行われな
いことが示され、先の第2図、第3図と総合して本発明
の効果が如実である。また、以上の説明は正極の充放電
特性についてのみ行なったが、負極の充放電の可逆性に
ついては本発明の場合、−次電池の機能を補完するため
の部分的、かつサイクル回数の少い充電であるため、負
極に析出するリチウムの樹枝状結晶に上る内部短絡や脱
落を懸念する心配はなく、負極の実用性は通常のリチウ
ムヤ十分で、さらに慎重を期するならアルミニウムなど
との合金を用いてもよい。
In addition, as shown in Table 2, the degree of expansion of the battery is 1
The larger the amount of vanadium added, the smaller the amount of vanadium added, the smaller the amount of intermediate oxide, especially V6O13, and the longer the final discharge duration is generally the lower the degree of expansion, resulting in excellent charging ability. On the other hand, in the case of no additive, it was shown that there was a lot of expansion and no charging reaction took place, and the effects of the present invention are clearly demonstrated when taken together with FIGS. 2 and 3 above. In addition, although the above explanation has been made only regarding the charging and discharging characteristics of the positive electrode, in the case of the present invention, the reversibility of charging and discharging of the negative electrode is partially explained in order to supplement the function of the negative electrode and with a small number of cycles. Since it is a charging method, there is no need to worry about internal short circuits or falling off of the lithium dendrites deposited on the negative electrode, and the practicality of the negative electrode is sufficient for ordinary lithium. May be used.

以上の如く、本発明はフン化黒鉛系電池の実用範囲ゞの
向上と信頼性向上のために極めて効果の大きいものであ
る。
As described above, the present invention is extremely effective in improving the practical range and reliability of fluorinated graphite batteries.

第1図は本発明の実施例における電池の断面図、第2図
、第3図は本発明の効果を検討した電池の放電特性を示
す。
FIG. 1 is a sectional view of a battery according to an example of the present invention, and FIGS. 2 and 3 show discharge characteristics of a battery in which the effects of the present invention were examined.

1・・・・・・封口板、3・・・・・・リチウム負極、
4・・・・・・セパレータ、6・・・・・・フン化黒鉛
を主体とした正極、7・・・・・電池ケース、8・・・
・・・ガスケット。
1... Sealing plate, 3... Lithium negative electrode,
4...Separator, 6...Positive electrode mainly composed of fluorinated graphite, 7...Battery case, 8...
···gasket.

代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 炉1代ヒ 城 ◇1扇R
Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Illustration furnace 1st generation Hijo ◇ 1st fan R

Claims (1)

【特許請求の範囲】 (1)リチウムを活物質とした負極と、有機溶媒に無機
塩と溶解した電解液と、フッ化黒鉛とバナジウム酸化物
(vOx、24zイ2.6)とを混合して活物質とした
正極を備えた非水電解液電池。 @)フッ化黒鉛とバナジウム酸化物との混合比が重量比
で90 : 10から55 : 46までである特許請
求の範囲第1項記載の非水電解液電池。 (3)リチウムを活物質としだ負極と、有機溶媒に無機
塩を溶解した電解液と、フッ化黒鉛を生活物質とした正
極を備え、前記正極中には充電可能なLiaVOxを存
在させた非水電解液電池。
[Claims] (1) A negative electrode containing lithium as an active material, an electrolytic solution containing an inorganic salt dissolved in an organic solvent, and a mixture of fluorinated graphite and vanadium oxide (vOx, 24z-2.6). A non-aqueous electrolyte battery with a positive electrode that uses water as an active material. @) The non-aqueous electrolyte battery according to claim 1, wherein the mixing ratio of fluorinated graphite and vanadium oxide is from 90:10 to 55:46 by weight. (3) A negative electrode made of lithium as an active material, an electrolyte containing an inorganic salt dissolved in an organic solvent, and a positive electrode made of fluorinated graphite as a living material, with a rechargeable LiaVOx present in the positive electrode. Water electrolyte battery.
JP57089149A 1982-05-26 1982-05-26 Nonaqeuous electrolyte battery Pending JPS58206062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57089149A JPS58206062A (en) 1982-05-26 1982-05-26 Nonaqeuous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57089149A JPS58206062A (en) 1982-05-26 1982-05-26 Nonaqeuous electrolyte battery

Publications (1)

Publication Number Publication Date
JPS58206062A true JPS58206062A (en) 1983-12-01

Family

ID=13962804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57089149A Pending JPS58206062A (en) 1982-05-26 1982-05-26 Nonaqeuous electrolyte battery

Country Status (1)

Country Link
JP (1) JPS58206062A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434854A (en) * 1990-05-30 1992-02-05 Shin Kobe Electric Mach Co Ltd Electrode active material for battery or electrolytic industry
WO2008047421A1 (en) 2006-10-18 2008-04-24 Panasonic Corporation Lithium primary battery
CN110707313A (en) * 2019-02-01 2020-01-17 贵州梅岭电源有限公司 V-shaped groove2O5-carbon fluoride mixed positive electrode material and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434854A (en) * 1990-05-30 1992-02-05 Shin Kobe Electric Mach Co Ltd Electrode active material for battery or electrolytic industry
JP2590589B2 (en) * 1990-05-30 1997-03-12 新神戸電機株式会社 Electrode active material paste for battery or electrolytic industry
WO2008047421A1 (en) 2006-10-18 2008-04-24 Panasonic Corporation Lithium primary battery
EP2083463A1 (en) * 2006-10-18 2009-07-29 Panasonic Corporation Lithium primary battery
EP2083463A4 (en) * 2006-10-18 2010-04-21 Panasonic Corp Lithium primary battery
CN110707313A (en) * 2019-02-01 2020-01-17 贵州梅岭电源有限公司 V-shaped groove2O5-carbon fluoride mixed positive electrode material and preparation method thereof

Similar Documents

Publication Publication Date Title
US7648801B2 (en) Redox shuttle for overdischarge protection in rechargeable lithium-ion batteries
US6274271B1 (en) Non-aqueous electrolyte lithium secondary battery
US5521027A (en) Non-aqueous secondary electrochemical battery
JP2001167791A (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2008527615A (en) Electrolyte for lithium ion secondary battery
JPS62290072A (en) Organic electrolyte secondary battery
JP4055241B2 (en) Nonaqueous electrolyte secondary battery
US20030108801A1 (en) Nonaqueous electrolyte secondary battery
CN112074984A (en) Electrolyte for lithium secondary battery
JP2000133247A (en) Nonaqueous electrolyte secondary battery
JP3426869B2 (en) Non-aqueous electrolyte secondary battery
JP3082117B2 (en) Non-aqueous electrolyte secondary battery
JPH01204361A (en) Secondary battery
JP5159268B2 (en) Non-aqueous electrolyte battery
JPS58206062A (en) Nonaqeuous electrolyte battery
JP3111324B2 (en) Non-aqueous electrolyte secondary battery
JP2002298910A (en) Lithium secondary battery and nonaqueous electrolyte for the same
JPS58206060A (en) Nonaqueous electrolyte battery
JPS58206061A (en) Nonaqueous electrolyte battery
JP2621182B2 (en) Non-aqueous electrolyte lithium secondary battery
JPS6191868A (en) Nonaqueous electrolyte secondary battery
JP4560877B2 (en) Lithium secondary battery
JP2801684B2 (en) Non-aqueous electrolyte secondary battery
JP3119928B2 (en) Non-aqueous solvent for battery electrolyte
JPS60218766A (en) Nonaqueous electrolyte secondary battery