JPS58205887A - Frequency temperature compensating circuit of electronic timepiece - Google Patents

Frequency temperature compensating circuit of electronic timepiece

Info

Publication number
JPS58205887A
JPS58205887A JP8929982A JP8929982A JPS58205887A JP S58205887 A JPS58205887 A JP S58205887A JP 8929982 A JP8929982 A JP 8929982A JP 8929982 A JP8929982 A JP 8929982A JP S58205887 A JPS58205887 A JP S58205887A
Authority
JP
Japan
Prior art keywords
circuit
temperature
frequency
control circuit
division ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8929982A
Other languages
Japanese (ja)
Inventor
Tsuneshige Koga
古賀 恒繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP8929982A priority Critical patent/JPS58205887A/en
Publication of JPS58205887A publication Critical patent/JPS58205887A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/04Apparatus for producing preselected time intervals for use as timing standards using oscillators with electromechanical resonators producing electric oscillations or timing pulses
    • G04F5/06Apparatus for producing preselected time intervals for use as timing standards using oscillators with electromechanical resonators producing electric oscillations or timing pulses using piezoelectric resonators

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Clocks (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

PURPOSE:To make it possible to carry out temp. compensation without changing an oscillating condition to a large extent, by combining a variable frequency dividing circuit and the change in the oscillating condition of a crystal oscillating circuit to carry out temp. compensation. CONSTITUTION:The output of a temp. detecting circuit 6 is inputted in a frequency dividing ratio control circuit 7 and a load resistor control circuit 8 and the frequency dividing ratio of a variable frequency dividing circuit 2 and the load resistor of an oscillating circuit 1 to compensate frequency temp. characteristics.

Description

【発明の詳細な説明】 本発明15子時計の温度変化に対する周波数変動を補償
する周波数温度補償に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to frequency temperature compensation for compensating frequency fluctuations due to temperature changes in a child clock.

従来の電子時計の高精度化の方法としては、水晶撮動子
2本を用いて電子時計の周波数温度特性を平坦にしたも
の、又は、温度特性の良好なATカッ)、GTカット水
晶振動子を用いたものである。
Conventional methods for increasing the accuracy of electronic watches include using two crystal sensors to flatten the frequency-temperature characteristics of electronic watches, or using an AT cutter with good temperature characteristics, or a GT-cut crystal oscillator. It uses

前記高精度化の方法は、コスト高になり、又、小型薄型
°長寿命化が困難である等の問題があり、今後の高精度
時計の主流と成り得ない。
The above-mentioned method of increasing precision has problems such as high cost and difficulty in achieving long life due to small size and thinness, and cannot become the mainstream for high precision watches in the future.

本発明はこれらの欠点を除去するためになされたもので
、現在主流となっている5 2 KH2用Xカット水晶
振動子を用いて、電子回路側で水晶発振回路の温度特性
を補償することを目的としている。
The present invention was made to eliminate these drawbacks, and uses the currently mainstream 52KH2 X-cut crystal resonator to compensate for the temperature characteristics of the crystal oscillation circuit on the electronic circuit side. The purpose is

前記52 KH2用Xカット水晶振動子の周波数温度特
性は、常温付近(約23℃)をターニングポイントとし
て2次式で近似出来る。前記Xカット水晶振動子を用い
て高精度時計を実現する罠は、通常使用温度範囲(5℃
〜40℃)において、周波数温度特性を温度情報で、各
温度で進み遅れの補正を行なうことにニジ平坦にする必
要がある。
The frequency-temperature characteristics of the X-cut crystal resonator for 52KH2 can be approximated by a quadratic equation with the turning point near room temperature (approximately 23° C.). The trick to creating a high-precision clock using the X-cut crystal unit is that it can be used within the normal operating temperature range (5℃).
-40° C.), it is necessary to flatten the frequency-temperature characteristics by correcting lead and lag at each temperature using temperature information.

前記周波数温度特性の平坦化(緩急手段)の方法は、 (1)可変分周回路で論理的に行う。The method of flattening the frequency temperature characteristic (grading/sudden means) is as follows: (1) Perform logically using a variable frequency divider circuit.

(2)水晶発振回路の発振条件を変化させる。(2) Changing the oscillation conditions of the crystal oscillation circuit.

が考えられる。is possible.

前記(1)における論理的に行う方法は、市場の歩度測
定装置の制約から、可変分周の分解能は、α26 d 
K限定される。この結果、目的とする周波数に補正でき
る温度情報が限定されると共に、周波数の平坦度が悪く
なシ、高精度化が実現されない。又、前記(2)Kおけ
る発振条件を変化させる方法は、平坦例する温度範囲内
での発振条件変化は、発条回路の電圧電流特性を著しく
変化されることになることから周波数変化暖か前記(1
)の方法工す限定される。
In the logical method in (1) above, due to the limitations of rate measuring devices on the market, the resolution of variable frequency division is α26 d
K LIMITED. As a result, the temperature information that can be corrected to the target frequency is limited, the flatness of the frequency is poor, and high precision cannot be achieved. In addition, the above (2) method of changing the oscillation conditions at K is based on the above (2) method of changing the oscillation conditions at K, since a change in the oscillation conditions within a flat temperature range will significantly change the voltage-current characteristics of the oscillation circuit. 1
) METHODS LIMITED.

本発明は、前記平坦化の方法fil、 +21を組み合
わ゛せ両者の欠点を補う温度補償としたものである。
The present invention combines the flattening methods fil and +21 to provide temperature compensation that compensates for the drawbacks of both methods.

すなわち、可変分周が使用できる温度ポイントでは、可
変分周を行い、可変分周と可変分周の間を発振条件を変
えることで、平坦な周波数温度特性を得るものである。
That is, at a temperature point where variable frequency division can be used, variable frequency division is performed, and by changing the oscillation conditions between variable frequency division and variable frequency division, a flat frequency temperature characteristic is obtained.

以下図面九基づいて本発明の詳細な説明する。The present invention will be described in detail below with reference to FIG.

第1図は本発明の実施例を示すブロック図である。発振
回路1で発条した計時基準信号は、可変分周回路2で分
周される。可変分周回路2で分周された信号は、駆動回
路3を介してステップモータ4を駆動し、指針部5で時
刻を表示する。温度検出回路6Fi、サーミスタもしく
は半導体のP−N接合の電流−電圧特性などの感温特性
をA / D変換した温度情報値を分局比制御回路7と
負荷抵抗制御回路8に出力する。分周比制御回路7は、
温度検出回路7の温度情報値にニジ最適な分局比となる
ように可変分周回路20分局比を制御する。
FIG. 1 is a block diagram showing an embodiment of the present invention. The time reference signal generated by the oscillation circuit 1 is frequency-divided by the variable frequency divider circuit 2. The signal frequency-divided by the variable frequency dividing circuit 2 drives the step motor 4 via the drive circuit 3, and the time is displayed on the pointer section 5. The temperature detection circuit 6Fi outputs temperature information values obtained by A/D converting temperature sensing characteristics such as current-voltage characteristics of a thermistor or a semiconductor PN junction to the division ratio control circuit 7 and the load resistance control circuit 8. The frequency division ratio control circuit 7 is
The variable frequency dividing circuit 20 controls the division ratio so that the division ratio is optimal for the temperature information value of the temperature detection circuit 7.

負荷抵抗制御回路8も前記温度情報値にニジ発振回路1
の負荷抵抗1aと直列に接続された温度補償用負荷抵抗
1b、1cの0N−OFFを制御して発根周波数を補償
する関係[6る。従って、温度に、cシ発振回路1の周
波数ケ、前記温度補償用負荷抵抗をQN−QFFするこ
とで可変すると共FC。
The load resistance control circuit 8 also changes the temperature information value to the rainbow oscillation circuit 1.
Relationship [6] in which the rooting frequency is compensated by controlling ON-OFF of the temperature compensation load resistors 1b and 1c connected in series with the load resistor 1a. Therefore, depending on the temperature, the frequency of the oscillation circuit 1 can be varied by QN-QFFing the temperature compensation load resistance.

前記可変分周回路2の分周比を変化させる串で周波数温
度特性が補償される。
The frequency temperature characteristics are compensated by changing the frequency division ratio of the variable frequency divider circuit 2.

次に第2図を用いて具体的な周波数温度補償の動作を説
明する。
Next, the specific operation of frequency temperature compensation will be explained using FIG. 2.

温度検出回路6は、5℃〜41℃の範囲において23ス
テツプの温度情報を5 bitのテークBVSで分周比
制御回路7と負荷抵抗制御回路8へ温度情報を出力する
ものとする。第3図に温度と各出力回路の出力、温度補
償用負荷抵抗接続状態、可変分周回路の分周比の関係を
第3図に示す。
It is assumed that the temperature detection circuit 6 outputs temperature information in 23 steps in the range of 5° C. to 41° C. to the frequency division ratio control circuit 7 and the load resistance control circuit 8 using a 5-bit take BVS. FIG. 3 shows the relationship between the temperature, the output of each output circuit, the connection state of the temperature compensation load resistor, and the frequency division ratio of the variable frequency divider circuit.

今、温度が23℃であるとすると温度検出回路6の出力
5bitは、第5図工りQs  = 1%  Q2 =
1、Qs =X%Q4=1、QIl −\(以下Qtか
ら順に’1“  %X“のみで記載する)である。
Now, assuming that the temperature is 23°C, the 5-bit output of the temperature detection circuit 6 is as follows in Figure 5: Qs = 1% Q2 =
1, Qs =

このとき分周、比制御回MROM7a(出力アクティブ
11“)の出力は、bitl=Q、bit2=Jである
。前記分周制御回路R石M7aの出力は、分局比制御回
路メモ!J−7’bl’c10秒に1回のクロック信号
Cでラッチ7c、  ラッチ7dK保持される。
At this time, the output of the frequency division and ratio control circuit MROM7a (output active 11") is bitl=Q, bit2=J.The output of the frequency division control circuit R stone M7a is the division ratio control circuit Memo! J-7 'bl'c Latch 7c and latch 7dK are held by clock signal C once every 10 seconds.

ラッチ7cと7dのQ出力は、各々可変分周囲路2の1
段目のクリップ(以下いとする)と2段目の勢を10秒
((1回のあるタイミングでSet。
The Q outputs of the latches 7c and 7d are respectively 1 of the variable peripheral path 2.
The clip of the first stage (hereinafter referred to as "Set") and the momentum of the second stage for 10 seconds ((Set at a certain timing.

Resθtする関係にある。Set、Re5etの関係
は、分 5− 分周比制御回路RQMZaのbit  出力XでφをR
e5et、1でSet  する様に可変分周回路2を構
成しておく。この場合、(btt1=\、  bit2
−\)、可変分周回路2の10秒間の分局比は3276
8[J  とする・ 同様に温度が25℃のときの負荷抵抗制御回路ROMB
aの出力A、Bは第6図工りA=Q、B=\である。前
記信%h、Bは、インバータ8b。
There is a relationship of Resθt. The relationship between Set and Re5et is as follows: Divide 5 - RQMZa bit output
The variable frequency divider circuit 2 is configured so that e5et is set to 1. In this case, (btt1=\, bit2
-\), the division ratio of variable frequency divider circuit 2 for 10 seconds is 3276
8[J Similarly, the load resistance control circuit ROMB when the temperature is 25°C
The outputs A and B of a are shown in Figure 6, A=Q, B=\. The input power %h,B is the inverter 8b.

8Cで反転され温度補償用負荷抵抗1b、1.cのON
 −0’)F F’を制御するスイッチング素子9a、
9bの制御端子に接続される。A=”q、B−\のとき
スイッチング素子9a、9bは鳴Nで負荷抵抗1aのみ
が接続された状態である。以上述べた状態、すなわち温
度23℃例おける可変分周回路2の分局比と温度補償用
負荷抵抗1b、1cが接続されていない状態(iaのみ
接続)のときが、無補償の状態である。時計の歩度はこ
の無補償の状態でトリマーコンデンサーaic、c、!
pXray付近九合わせ込まれている。
It is reversed at 8C and the temperature compensation load resistors 1b, 1. c ON
-0') A switching element 9a that controls FF';
It is connected to the control terminal of 9b. When A="q, B-\, the switching elements 9a and 9b are in a state where only the load resistor 1a is connected. When the load resistors 1b and 1c for temperature compensation are not connected (only ia is connected), there is no compensation.The rate of the clock is determined by the trimmer capacitors aic, c, ! in this uncompensated state.
The pXray vicinity is adjusted to 9.

次に温度が変化しちときの動作を説明する。Next, the operation when the temperature changes will be explained.

 6− 23℃の次の温度検出ポイントである28℃に変化した
場合、分周比制御回路RQM7aの出力は第3図工す、
bit  1=Q、 bit2=\であ)23℃のとき
と同様に可変分周回路2の分局比は327680で分局
比は変化しない。負荷抵抗制御回路ROM8aの出力は
、A=1、B=0であるためスイッチング素子9aはO
FF 、? ’b=o’Nとなる。この結果、周波数は
、負荷抵抗1aに温度補償用負荷抵抗1bが加算された
分(ここでは約0、098/Ay)だけ進むことになる
0次に温度が30℃に変化した場合、分局比制御回路R
OM7aの出力は、第3図工、り’bit1=J。
6- When the temperature changes from 23°C to 28°C, which is the next temperature detection point, the output of the frequency division ratio control circuit RQM7a is as shown in Figure 3.
bit 1 = Q, bit 2 = \) The division ratio of the variable frequency divider circuit 2 is 327680 and does not change as in the case of 23°C. Since the output of the load resistance control circuit ROM8a is A=1 and B=0, the switching element 9a is O.
FF? 'b=o'N. As a result, the frequency advances by the sum of the load resistance 1a and the temperature compensation load resistance 1b (approximately 0,098/Ay in this case).If the temperature changes to 30 degrees Celsius, the division ratio Control circuit R
The output of OM7a is shown in Figure 3, bit1=J.

b1t2=\であるため、可変分局比は527680 
 で変化しない。負荷抵抗制御回路RδM8aの出力は
、A=1.B−=1であるため、スイッチング素子9a
、9bl′i共にOFF L、28℃時Lシし度補償用
負荷抵抗1cが加算された分だけ進むことになる。
Since b1t2=\, the variable division ratio is 527680
It does not change. The output of the load resistance control circuit RδM8a is A=1. Since B-=1, the switching element 9a
.

次に温度が52℃に変化した場合、分周比制御回路RO
M7aの出力は、第3図よりbit1=1゜bit2=
0となり、可変分周回路2の1段目の幹がおるタイミン
グでset  され1′8、秒間の分周比が52767
9  になり歩度が0.268Aay進む。
Next, when the temperature changes to 52°C, the division ratio control circuit RO
From Figure 3, the output of M7a is bit1=1゜bit2=
It becomes 0, and it is set at the timing when the first stage trunk of the variable frequency divider circuit 2 is turned on, and the frequency division ratio per second is 52767.
9 and the rate advances by 0.268 Aay.

負荷抵抗制御回路RδM8aの出力は、A−\。The output of the load resistance control circuit RδM8a is A-\.

B=\であるため、スイッチング素子9a、9bが共に
ONし、23℃と同様に無補償状態になる。
Since B=\, both switching elements 9a and 9b are turned on, resulting in an uncompensated state as at 23°C.

この結果62℃での補償は、可変分周回路2の分周比可
変だけで行われる。
As a result, compensation at 62° C. is performed only by varying the frequency division ratio of the variable frequency divider circuit 2.

次VC34℃に変化した場合、分周比制御回路ROM7
aの出力は、1)itt=1.t)i、t2−\となり
、前記32℃と同様に可変分周回路2の分周比は527
679  であシ、α26 ”/day 進tr。
When the next VC changes to 34°C, the division ratio control circuit ROM7
The output of a is 1) itt=1. t)i, t2-\, and the frequency division ratio of the variable frequency divider circuit 2 is 527 as in the case of 32°C.
679 Ash, α26 ”/day Shin tr.

負荷抵抗制御回路ROM8aの出力は、A=1゜B=\
であるため、温度補償用負荷抵抗1b力価n算される分
だけ歩度が進む。この結果、歩Uは可変分周回路2の0
.268A3ay  と温度補償用負$1bで加算され
た歩度が進むことVC!る。
The output of the load resistance control circuit ROM8a is A=1°B=\
Therefore, the rate advances by the amount calculated by the temperature compensating load resistance 1b and the force n. As a result, the step U is 0 of the variable frequency divider circuit 2.
.. The rate added by 268A3ay and the negative $1b for temperature compensation advances VC! Ru.

以上述べた様に、本発明例おいては周波数温度特性の補
償を、温度情報を用いて可変分周と発振回路1の発振条
件の可変を併用することで、発振条件を大幅に変えるこ
となく行うことが可能である。
As described above, in the example of the present invention, the frequency temperature characteristics are compensated for without significantly changing the oscillation conditions by using temperature information in conjunction with variable frequency division and variable oscillation conditions of the oscillation circuit 1. It is possible to do so.

本実施例では、水晶振動子の周波数温度特性がターニン
グポイントを中心に負の特性のものについて述べたが、
池に特定規則の曲線においても、分局比制御:RδM、
負荷抵抗制御ROMの変更で、周波数の温度補償ができ
る。又、温度検出回路の温度検出ポイント数を25とし
たが、この温度検出ポイント数を増すと共に、温度補償
用負荷抵抗の数も増すことで、より良好な周波数温度特
性が期待できる。
In this example, the frequency temperature characteristic of the crystal resonator has a negative characteristic centered around the turning point.
Even in curves with specific rules, splitting ratio control: RδM,
Frequency can be compensated for temperature by changing the load resistance control ROM. Further, although the number of temperature detection points of the temperature detection circuit is set to 25, better frequency-temperature characteristics can be expected by increasing the number of temperature detection points and increasing the number of temperature compensation load resistors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例を示すブロック図、第2図は
、第1図の詳細図、 第3図は、本発明による温度と各制御回路及びそのRO
M出力との関係を示した図である。 1・・・発振回路     2・・・可変分周回路6・
・・駆動回路     4・・・ステラ1モータ5・・
・指針部      6・・・温度検出回路 9− 7・・・分周比制御回路   8・・・負荷抵抗制御回
1a・・・負荷抵抗        路1b・・・温度
補償用負荷抵抗 1c・・・温度補償用負荷抵抗 1d・・・トリマーコンデンサ 7a・・・分周比制御回路ROM1 7b・・・分周比メモリー 8a・・・負荷抵抗制御回路RδM 8b・・・インバータ 8C・・・インバータ 9a・・・スイッチング素子 ?b・・・スイッチング素子 以   上 出願人 株式会社 第二精工台 代理人 弁理士 最 上   務 −10−
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a detailed diagram of FIG. 1, and FIG. 3 is a diagram showing the temperature and each control circuit and its RO according to the present invention.
It is a figure showing the relationship with M output. 1...Oscillation circuit 2...Variable frequency divider circuit 6.
... Drive circuit 4 ... Stella 1 motor 5 ...
・Pointer section 6... Temperature detection circuit 9- 7... Frequency division ratio control circuit 8... Load resistance control circuit 1a... Load resistance path 1b... Load resistance for temperature compensation 1c... Temperature Compensation load resistance 1d...Trimmer capacitor 7a...Division ratio control circuit ROM1 7b...Division ratio memory 8a...Load resistance control circuit RδM 8b...Inverter 8C...Inverter 9a...・Switching element? b...Switching element and above Applicant Daini Seikodai Co., Ltd. Agent Patent Attorney Mogami-10-

Claims (1)

【特許請求の範囲】[Claims] 水晶発振回路の負荷抵抗として、温度補償用負荷抵抗を
接続し、前記負荷抵抗の接続点には、スイッチング素子
が接続され、前記スイッチング素子の0N−OE’Fは
温度検出回路と接続された負荷抵抗制御回路で選択的に
制御されると共に、前記水晶発振回路の発振信号を分周
する可変分周回路の分局比は、温度検出回路の出方で制
御される分周比制御回路で設定されて、水晶発振回路の
周波数温度特性を補償することを特徴とする電子時計の
周波数温度補償回路。
A temperature compensation load resistor is connected as a load resistor of the crystal oscillation circuit, a switching element is connected to the connection point of the load resistor, and 0N-OE'F of the switching element is connected to the load resistor connected to the temperature detection circuit. The division ratio of the variable frequency divider circuit that is selectively controlled by the resistance control circuit and divides the frequency of the oscillation signal of the crystal oscillation circuit is set by the frequency division ratio control circuit that is controlled by the output of the temperature detection circuit. A frequency-temperature compensation circuit for an electronic watch, which compensates for the frequency-temperature characteristics of a crystal oscillation circuit.
JP8929982A 1982-05-26 1982-05-26 Frequency temperature compensating circuit of electronic timepiece Pending JPS58205887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8929982A JPS58205887A (en) 1982-05-26 1982-05-26 Frequency temperature compensating circuit of electronic timepiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8929982A JPS58205887A (en) 1982-05-26 1982-05-26 Frequency temperature compensating circuit of electronic timepiece

Publications (1)

Publication Number Publication Date
JPS58205887A true JPS58205887A (en) 1983-11-30

Family

ID=13966788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8929982A Pending JPS58205887A (en) 1982-05-26 1982-05-26 Frequency temperature compensating circuit of electronic timepiece

Country Status (1)

Country Link
JP (1) JPS58205887A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662269A (en) * 1991-04-30 1994-03-04 Grass Valley Group Inc:The Frequency-variable clock generation device
JP2007208584A (en) * 2006-02-01 2007-08-16 Ricoh Co Ltd Frequency adjusting circuit
JP2017046271A (en) * 2015-08-28 2017-03-02 セイコーエプソン株式会社 Oscillation circuit, electronic apparatus and moving body
CN109709789A (en) * 2018-12-14 2019-05-03 陕西聚力思创通信科技有限公司 A kind of phase compensating method improving passive-type atomic clock long-term stability

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662269A (en) * 1991-04-30 1994-03-04 Grass Valley Group Inc:The Frequency-variable clock generation device
JP2007208584A (en) * 2006-02-01 2007-08-16 Ricoh Co Ltd Frequency adjusting circuit
JP2017046271A (en) * 2015-08-28 2017-03-02 セイコーエプソン株式会社 Oscillation circuit, electronic apparatus and moving body
CN109709789A (en) * 2018-12-14 2019-05-03 陕西聚力思创通信科技有限公司 A kind of phase compensating method improving passive-type atomic clock long-term stability

Similar Documents

Publication Publication Date Title
US6515551B1 (en) Programmable oscillator scheme
US7403078B2 (en) Temperature compensated crystal oscillator
US6753739B1 (en) Programmable oscillator scheme
WO1994003980A1 (en) Temperature compensated oscillator circuit
US4223524A (en) Quartz oscillation circuit for electronic timepieces
JPS58205887A (en) Frequency temperature compensating circuit of electronic timepiece
JP2736431B2 (en) Crystal oscillator temperature compensation circuit
JPH0469450B2 (en)
JP2002135051A (en) Piezoelectric oscillator
US3690546A (en) Temperature compensating circuit for an oscillator
JPS62243405A (en) Electronic circuit
JPS58179386A (en) Frequency temperature compensating circuit of electronic clock
JP2750886B2 (en) Temperature sensitive voltage generating circuit and temperature compensating element using the same
JPH08186442A (en) Temperature compensated crystal oscillator
JPS58160884A (en) Frequency and temperature compensating circuit of electronic timepiece
JP2009141459A (en) Piezoelectric oscillator
JP2737747B2 (en) Voltage controlled oscillator
JPH11251838A (en) Temperature compensating-type quartz oscillator
JPH06224635A (en) Temperature compensated crystal oscillator
JPH06318820A (en) Control circuit for temperature versus frequency characteristic for digital control temperature compensation crystal oscillator
JP2640131B2 (en) Temperature compensated crystal oscillator
JPS6370616A (en) Clock frequency adjusting circuit
JPH10270942A (en) Temperature compensation crystal oscillator and its adjusting method
JPS6024704A (en) Temperature compensating oscillator
JP3021572B2 (en) Temperature compensated piezoelectric oscillator