JPH10270942A - Temperature compensation crystal oscillator and its adjusting method - Google Patents

Temperature compensation crystal oscillator and its adjusting method

Info

Publication number
JPH10270942A
JPH10270942A JP9170897A JP9170897A JPH10270942A JP H10270942 A JPH10270942 A JP H10270942A JP 9170897 A JP9170897 A JP 9170897A JP 9170897 A JP9170897 A JP 9170897A JP H10270942 A JPH10270942 A JP H10270942A
Authority
JP
Japan
Prior art keywords
voltage
order
temperature
crystal oscillator
generation circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9170897A
Other languages
Japanese (ja)
Inventor
Junichi Murata
潤一 村田
Yoshiaki Matsumoto
好明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP9170897A priority Critical patent/JPH10270942A/en
Publication of JPH10270942A publication Critical patent/JPH10270942A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily adjust a frequency temperature characteristic and to shorten adjusting time by providing switches for a first and third order function voltage generation circuits and independently adjusting the coefficients of the first and third order function voltage generation circuits. SOLUTION: When a first order coefficient of a first order function generation circuit 1 is adjusted for obtaining the first order coefficient of the first order function generation circuit 3, the switch SW1 is turned off and first order coefficient adjusting resistance R1 is adjusted while a voltage measuring means monitors the output voltage of a terminal A. Then, it is adjusted so that desired first order temperature compensated voltage is obtained. For obtaining the third order coefficient of temperature compensated voltage, SW3 is turned off, resistance R3 for a third order coefficient adjusting is adjusted while the output voltage of a terminal B is monitored and desired third order temperature compensated voltage is obtained so as to adjust the third order coefficient of a third order function generation circuit 4. Thus, the first order voltage and the third order voltage can independently be adjusted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は温度補償水晶発振器
の調整法に関し、特に温度センサ、1次関数及び3次関
数の電圧発生回路を有する温度補償水晶発振器の調整法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for adjusting a temperature-compensated crystal oscillator, and more particularly to a method for adjusting a temperature-compensated crystal oscillator having a temperature sensor, a linear function and a cubic function voltage generating circuit.

【0002】[0002]

【従来の技術】近年、水晶発振器の周波数安定度の向
上、小型化、低価格化に対する要望は、携帯電話端末等
の分野で特に高まっている。水晶振動子を周波数制御素
子として用いた水晶発振器は、それに用いる水晶振動子
の周波数温度特性により、周囲温度の変化に応じて発振
周波数が変化する。そこで、従来より高度な周波数安定
度が要求される分野では、ATカット水晶振動子を用い
た温度補償水晶発振器(TCXO)が用いられてきた。
TXCOは水晶振動子を含む発振ループ中に可変容量手
段を挿入接続して、該可変容量値を水晶振動子の周波数
温度特性と相殺するよう変化させることにより温度補償
を行う。例えば、発振ループに可変容量ダイオードを挿
入し、その両端に印加する電圧の変化量と発振周波数の
変動量が比例するように構成した電圧制御水晶発振器
(VCXO)の前記可変容量ダイオードの両端に、水晶
発振器の周波数変化を抑制するような温度補償電圧を発
振ループの外部より印加することで水晶発振器の温度補
償を行うものがある。
2. Description of the Related Art In recent years, demands for improving the frequency stability, reducing the size, and reducing the price of crystal oscillators have been particularly increasing in the field of portable telephone terminals and the like. In a crystal oscillator using a crystal oscillator as a frequency control element, the oscillation frequency changes in accordance with a change in ambient temperature due to the frequency temperature characteristics of the crystal oscillator used in the crystal oscillator. Therefore, a temperature-compensated crystal oscillator (TCXO) using an AT-cut crystal resonator has been used in a field requiring higher frequency stability than ever before.
The TXCO performs temperature compensation by inserting and connecting a variable capacitance means in an oscillation loop including a crystal resonator, and changing the variable capacitance value so as to cancel out the frequency temperature characteristic of the crystal resonator. For example, a variable-capacitance diode is inserted into an oscillation loop, and both ends of the variable-capacitance diode of a voltage-controlled crystal oscillator (VCXO) configured such that a change in voltage applied to both ends thereof and a change in oscillation frequency are proportional to each other. In some cases, a temperature compensation voltage that suppresses a change in the frequency of the crystal oscillator is applied from outside the oscillation loop to perform temperature compensation of the crystal oscillator.

【0003】なお、温度補償電圧発生回路の出力電圧に
対応する周波数の変化量は、可変容量素子、例えば可変
容量ダイオードの両端に印加する電圧の変動に対する容
量変化の感度及び該可変容量ダイオードの容量変化に対
応する電圧制御水晶発振器の周波数変化の感度によって
決定される。該手法の温度補償水晶発振器において、可
変容量ダイオードに印加する温度補償電圧は、従来、サ
ーミスタと抵抗を用いた回路網から発生させる手法が一
般的であった。また、最近では図3に示すような手法も
提案されており、1次関数電圧発生回路13及び3次関
数電圧発生回路14はそれぞれ温度センサ12からの温
度情報に基づいて、1次及び3次関数電圧を発生するも
のであって、これらの合成出力Vcompを電圧制御水
晶発振器の可変容量ダイオードの両端に供給して温度補
償を行う。
The amount of change in the frequency corresponding to the output voltage of the temperature compensation voltage generating circuit is determined by the sensitivity of the capacitance change to the fluctuation of the voltage applied to both ends of the variable capacitance element, for example, the variable capacitance diode, and the capacitance of the variable capacitance diode. It is determined by the sensitivity of the frequency change of the voltage controlled crystal oscillator corresponding to the change. In the temperature-compensated crystal oscillator of this method, a method of generating a temperature-compensated voltage to be applied to a variable capacitance diode from a circuit network using a thermistor and a resistor has been generally used. Recently, a method as shown in FIG. 3 has also been proposed, in which the first-order function voltage generation circuit 13 and the third-order function voltage generation circuit 14 are respectively based on the temperature information from the temperature sensor 12. A function voltage is generated, and the combined output Vcomp is supplied to both ends of the variable capacitance diode of the voltage controlled crystal oscillator to perform temperature compensation.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記のサ
ーミスタと抵抗から成る補償電圧発生回路を用いた温度
補償水晶発振器では、前記TCXOの周波数温度特性の
測定と補償電圧発生回路の素子値の調整とを試行錯誤で
繰り返し、少しづつ所定の規格内に特性が収束するよう
に調整するため、調整工数が膨大にかかるという欠点が
あった。また、図3に示すような温度に関する1次関数
電圧と3次関数電圧とをそれぞれ発生する回路を用いた
補償電圧発生回路では、水晶振動子の周波数温度特性を
温度を変数とする3次と1次の関数に回路を精度よく近
似させることが難しいため、実際には各電圧発生回路に
設けられたR1、R2を可変させて、試行錯誤により微
調整する必要があるため調整に時間がかかるという欠点
があった。本発明は上記欠点を解決するためになされた
ものであって、予め温度センサの温度−出力電圧特性と
電圧制御水晶発振器の発振周波数を一定周波数に保持す
るための温度−印加電圧特性を求め、該特性から補償電
圧発生回路の1次及び3次の係数を求めて、TCXOの
周波数温度補償を行う手法において、周波数温度特性の
調整が極めて容易な温度補償水晶発振器を提供すること
を目的とする。
However, in the temperature compensated crystal oscillator using the compensation voltage generation circuit including the thermistor and the resistor, the measurement of the frequency-temperature characteristics of the TCXO and the adjustment of the element value of the compensation voltage generation circuit are performed. The adjustment is repeated by trial and error so that the characteristics converge little by little within a predetermined standard. Further, in a compensation voltage generating circuit using a circuit for generating a first-order function voltage and a third-order function voltage with respect to temperature as shown in FIG. Since it is difficult to approximate the circuit with a first-order function with high accuracy, it is actually necessary to vary R1 and R2 provided in each voltage generation circuit and fine-tune by trial and error. There was a disadvantage. The present invention has been made in order to solve the above-described disadvantages, and in advance, a temperature-output voltage characteristic of a temperature sensor and a temperature-applied voltage characteristic for maintaining an oscillation frequency of a voltage-controlled crystal oscillator at a constant frequency are obtained. It is an object of the present invention to provide a temperature-compensated crystal oscillator in which the temperature-temperature compensation of TCXO is extremely easy in a method of obtaining the first-order and third-order coefficients of a compensation voltage generating circuit from the characteristics and performing frequency temperature compensation of TCXO. .

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る請求項1記載の発明は、電圧制御水晶発
振器と該電圧制御発振器の温度−周波数特性を相殺する
ために必要な補償電圧を発生する電圧発生回路とから成
る温度補償水晶発振器において、前記電圧発生回路は温
度を変数とする関数電圧発生回路を複数個備えると共に
各関数電圧発生回路の出力を合成して前記電圧制御水晶
発振器に電圧を供給するものであって、前記関数電圧発
生回路の出力短の少なくとも1つにスイッチを設けたこ
とを特徴とする温度補償水晶発振器である。請求項2記
載の発明は、前記関数電圧発生回路が1次関数電圧発生
回路と3次関数電圧発生回路であることを特徴とする請
求項1記載の温度補償水晶発振器である。請求項3記載
の発明は、前記スイッチを開放して各関数電圧発生回路
の出力電圧を監視しながら、各関数電圧発生回路の係数
調整を行うことを特徴とする請求項1又は2記載の温度
補償水晶発振器の調整方法である。
In order to achieve the above object, according to the first aspect of the present invention, there is provided a voltage controlled crystal oscillator and a compensation required for canceling a temperature-frequency characteristic of the voltage controlled oscillator. A temperature generating crystal oscillator comprising a voltage generating circuit for generating a voltage, wherein the voltage generating circuit includes a plurality of function voltage generating circuits each of which has a temperature as a variable, and synthesizes an output of each function voltage generating circuit to generate the voltage control crystal. A temperature-compensated crystal oscillator for supplying a voltage to an oscillator, wherein a switch is provided in at least one of the output short-circuits of the function voltage generation circuit. The invention according to claim 2 is the temperature compensated crystal oscillator according to claim 1, wherein the function voltage generation circuit is a linear function voltage generation circuit and a cubic function voltage generation circuit. The invention according to claim 3, wherein the coefficient is adjusted for each function voltage generation circuit while monitoring the output voltage of each function voltage generation circuit by opening the switch. This is a method for adjusting the compensation crystal oscillator.

【0006】[0006]

【発明の実施の形態】以下本発明を図面に示した実施の
形態に基づいて詳細に説明する。図1は本発明にかかる
TCXOの構成を示すブロック図である。補償電圧発生
回路は、温度センサ2と、該温度センサの出力する温度
情報を入力とする1次関数電圧発生回路3と3次関数電
圧発生回路4と1次関数電圧発生回路3の出力端に直列
接続したスイッチSW1及び3次関数電圧発生回路4の
出力端に直列接続したSW3とから構成される。なお、
各電圧発生回路には係数調整用の可変抵抗である調整用
抵抗R1とR3がそれぞれ具備されている。本発明の特
徴は1次及び3次関数電圧発生回路にスイッチSW1と
SW3を設け、1次及び3次関数電圧発生回路の係数を
それぞれ独立に調整できるようにした点である。通常動
作時においてはSW1、SW2はいずれも閉路されてお
り、図1に示すTCXOの温度センサ2の出力電圧Vs
ensが1次関数電圧発生回路3及び3次関数電圧発生
回路4に入力され、それぞれの関数電圧発生回路から温
度に関する1次電圧及び3次電圧が生成され、これが合
成されて電圧制御水晶発振器の可変容量素子に印加され
る。その結果、発振ループ中の前記可変容量素子の容量
が変化し、発振ループの周波数は水晶振動子の周波数温
度特性を抑制するように変動する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on an embodiment shown in the drawings. FIG. 1 is a block diagram showing a configuration of a TCXO according to the present invention. The compensation voltage generation circuit includes a temperature sensor 2, a first-order function voltage generation circuit 3, a third-order function voltage generation circuit 4 that receives temperature information output from the temperature sensor, and an output terminal of the first-order function voltage generation circuit 3. It comprises a switch SW1 connected in series and a switch SW3 connected in series to the output terminal of the cubic function voltage generation circuit 4. In addition,
Each voltage generating circuit is provided with adjusting resistors R1 and R3, which are variable resistors for coefficient adjustment. A feature of the present invention is that switches SW1 and SW3 are provided in the primary and cubic function voltage generating circuits so that the coefficients of the primary and cubic function voltage generating circuits can be adjusted independently. During normal operation, SW1 and SW2 are both closed, and the output voltage Vs of the TCXO temperature sensor 2 shown in FIG.
ens is input to the first-order function voltage generation circuit 3 and the third-order function voltage generation circuit 4, and a first-order voltage and a third-order voltage relating to temperature are generated from the respective function voltage generation circuits. Applied to the variable capacitance element. As a result, the capacitance of the variable capacitance element in the oscillation loop changes, and the frequency of the oscillation loop fluctuates so as to suppress the frequency temperature characteristics of the crystal resonator.

【0007】次に、本発明にかかるTCXOの調整法に
ついて説明する。まず、あらかじめ温度センサ2の温度
−電圧特性を測定しておき、その後温度変化に対し電圧
制御水晶発振器1の発振周波数を一定値(F0)に保持
するために必要なVCXOの印加電圧Vcを補償すべき
全温度範囲に亘って求め、温度に対応する印加電圧値V
Cを得る。該測定結果を用いて印加電圧VCの温度に関す
る3次近似式を計算し、印加電圧VCの1次及び3次の
係数を求める。この1次及び3次係数を用いて任意の温
度における1次関数発生回路及び3次関数電圧発生回路
のそれぞれの温度補償電圧を計算し、温度センサ2の温
度−発生電圧とを組み合わせることによりVCXOの可
変容量素子に印加する温度補償電圧を得ることができ
る。この場合に、温度補償電圧の微調整は前記関数電圧
発生回路の1次及び3次係数調整用抵抗R1及びR3を
用いて調整する。
Next, a method of adjusting TCXO according to the present invention will be described. First, the temperature-voltage characteristic of the temperature sensor 2 is measured in advance, and thereafter, the applied voltage Vc of VCXO necessary for maintaining the oscillation frequency of the voltage controlled crystal oscillator 1 at a constant value (F 0 ) with respect to a temperature change is determined. The applied voltage value V obtained over the entire temperature range to be compensated and corresponding to the temperature
Get C. By using the measurement result to calculate a cubic approximate expression relating to the temperature of the applied voltage V C, obtaining the primary and third-order coefficients of the applied voltage V C. VCXO is calculated by calculating the temperature compensation voltage of each of the first-order function generation circuit and the third-order function voltage generation circuit at an arbitrary temperature using the first-order and third-order coefficients, and combining the temperature-generation voltage of the temperature sensor 2. Temperature compensation voltage to be applied to the variable capacitance element can be obtained. In this case, the fine adjustment of the temperature compensation voltage is performed using the first and third order coefficient adjusting resistors R1 and R3 of the function voltage generating circuit.

【0008】前記温度補償電圧の1次係数を得るため、
1次関数発生回路の1次係数を調整する場合には、SW
1をオフにした上で端子Aの出力電圧をディジタルボル
トメータ等の電圧測定手段で監視しながら1次係数調整
用抵抗R1を調整し、所望の1次の温度補償電圧が得ら
れるように調整する。同様に、前記温度補償電圧の3次
係数を得るためには、3次関数発生回路の3次係数の調
整はSW3をオフにした上で端子Bの出力電圧を監視し
ながら3次係数調整用抵抗R3を調整し、所望の3次の
温度補償電圧が得られるように調整する。これらの調整
が終了後、SW1とSW3を閉じて1次の補償電圧と3
次の補償電圧を加算してVCXOに印加する温度補償電
圧が得られることを確認すればよい。
To obtain a first order coefficient of the temperature compensation voltage,
When adjusting the first order coefficient of the first order function generation circuit, SW
After turning 1 off, while adjusting the output voltage of the terminal A with a voltage measuring means such as a digital voltmeter, the primary coefficient adjusting resistor R1 is adjusted so as to obtain a desired primary temperature compensation voltage. I do. Similarly, in order to obtain the third order coefficient of the temperature compensation voltage, the adjustment of the third order coefficient of the third order function generation circuit is performed by turning off the switch SW3 and monitoring the output voltage of the terminal B while adjusting the third order coefficient. The resistance R3 is adjusted so that a desired third-order temperature compensation voltage is obtained. After these adjustments are completed, SW1 and SW3 are closed and the primary compensation voltage and 3
It is sufficient to confirm that a temperature compensation voltage to be applied to the VCXO can be obtained by adding the following compensation voltages.

【0009】図2は本発明にかかるTCXOのブロック
図であって、1次関数電圧発生回路のスイッチを省略し
てSW3のみで構成した点で図1のものと異なる。この
場合、1次係数の調整はSW3をオフにして端子Vco
mpの出力電圧を監視しながら1次係数調整用抵抗R1
を調整し、所望の1次の温度補償電圧が得られるように
調整する。しかる後、3次係数の調整はSW3をオフの
状態で端子Bの出力電圧を監視しながら3次係数調整用
抵抗R3を調整し、所望の3次の温度補償電圧が得られ
るように調整する。調整終了後にSW3を閉じてVCX
Oの印加する温度補償電圧が得られることをVcomp
端子で確認すればよいのである。
FIG. 2 is a block diagram of a TCXO according to the present invention, which differs from that of FIG. 1 in that the switch of the linear function voltage generating circuit is omitted and only the switch SW3 is used. In this case, the adjustment of the primary coefficient is performed by turning off the switch SW3 and setting the terminal Vco
mp while monitoring the output voltage of mp
Is adjusted to obtain a desired first-order temperature compensation voltage. Thereafter, the third-order coefficient is adjusted while monitoring the output voltage of the terminal B with the switch SW3 turned off, and adjusting the third-order coefficient adjustment resistor R3 so as to obtain a desired third-order temperature compensation voltage. . After completing the adjustment, close SW3 to VCX
The fact that the temperature compensation voltage to which O is applied can be obtained
You just have to check at the terminal.

【0010】なお、上記実施例の説明では、本発明に係
る調整法を1次関数電圧発生回路と3次関数電圧発生回
路の組み合わせで説明したが、本発明はこれのみに限定
されるものではなく、3次関数電圧発生回路を複数組み
合わせたもの、あるいは多次元関数電圧発生回路の組み
合わせに適用してもよい。
In the above description of the embodiment, the adjusting method according to the present invention has been described by using a combination of a linear function voltage generating circuit and a cubic function voltage generating circuit. However, the present invention is not limited to this. Instead, the present invention may be applied to a combination of a plurality of cubic function voltage generation circuits or a combination of multidimensional function voltage generation circuits.

【0011】[0011]

【発明の効果】本発明は以上説明した如く、温度センサ
及び関数電圧発生回路からなる温度補償回路と、電圧制
御水晶発振器を組み合わせたTCXOにおいて、予め温
度センサの発生電圧と電圧制御水晶発振器の発振周波数
を一定に保持する温度−印加電圧Vcを求め、前記温度
センサの温度特性と前記温度−印加電圧Vcとから、1
次、及び3次の係数を求め、1次電圧及び3次電圧を相
互に独立して調整できるため、従来の調整法よりもはる
かに調整法が容易になり、周波数温度特性を何度も測定
する必要がなく、調整時間が大幅に短縮できるという効
果を奏する。
As described above, according to the present invention, in a TCXO in which a temperature compensating circuit comprising a temperature sensor and a function voltage generating circuit is combined with a voltage controlled crystal oscillator, the voltage generated by the temperature sensor and the oscillation of the voltage controlled crystal oscillator are determined in advance. A temperature-applied voltage Vc for keeping the frequency constant is obtained, and 1 is obtained from the temperature characteristic of the temperature sensor and the temperature-applied voltage Vc.
Since the primary and tertiary voltages can be adjusted independently of each other by determining the secondary and tertiary coefficients, the adjustment method is much easier than the conventional adjustment method, and the frequency temperature characteristics are measured many times. There is no need to perform the adjustment, and the adjustment time can be greatly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る温度補償水晶発振器の調整方法の
一実施例を示す図である。
FIG. 1 is a diagram showing one embodiment of a method of adjusting a temperature compensated crystal oscillator according to the present invention.

【図2】本発明に係る温度補償水晶発振器の調整方法の
他の実施例を示す図である。
FIG. 2 is a diagram showing another embodiment of the method of adjusting the temperature compensated crystal oscillator according to the present invention.

【図3】従来の温度補償水晶発振器の調整方法を示す図
である。
FIG. 3 is a diagram illustrating a method of adjusting a conventional temperature compensated crystal oscillator.

【符号の説明】[Explanation of symbols]

1・・電圧制御水晶発振器 2・・温度センサ 3・・1次関数電圧発生回路 4・・3次関数電圧発生回路 R1、R3・・抵抗 SW1、SW3・・スイッチ A、B、Vcomp・・端子 1. Voltage controlled crystal oscillator 2. Temperature sensor 3. Linear function voltage generator 4. Linear function voltage generator R1, R3. Resistor SW1, SW3. Switch A, B, Vcomp.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電圧制御水晶発振器と該電圧制御発振器
の温度−周波数特性を相殺するために必要な補償電圧を
発生する電圧発生回路とから成る温度補償水晶発振器に
おいて、前記電圧発生回路は温度を変数とする関数電圧
発生回路を複数個備えると共に各関数電圧発生回路の出
力を合成して前記電圧制御水晶発振器に電圧を供給する
ものであって、前記関数電圧発生回路の出力端の少なく
とも1つにスイッチを設けたことを特徴とする温度補償
水晶発振器。
1. A temperature-compensated crystal oscillator comprising a voltage-controlled crystal oscillator and a voltage-generating circuit for generating a compensation voltage necessary for canceling the temperature-frequency characteristic of the voltage-controlled oscillator, wherein the voltage-generating circuit controls the temperature. A plurality of function voltage generating circuits each serving as a variable, and combining the outputs of the function voltage generating circuits to supply a voltage to the voltage controlled crystal oscillator, wherein at least one of the output terminals of the function voltage generating circuit is provided. A temperature-compensated crystal oscillator characterized in that a switch is provided for the crystal oscillator.
【請求項2】 前記関数電圧発生回路が1次関数電圧発
生回路と3次関数電圧発生回路であることを特徴とする
請求項1記載の温度補償水晶発振器。
2. The temperature compensated crystal oscillator according to claim 1, wherein said function voltage generation circuit is a first-order function voltage generation circuit and a third-order function voltage generation circuit.
【請求項3】 前記スイッチを開放して各関数電圧発生
回路の出力電圧を監視しながら、各関数電圧発生回路の
係数調整を行うことを特徴とする請求項1又は2記載の
温度補償水晶発振器の調整方法。
3. The temperature compensated crystal oscillator according to claim 1, wherein said switch is opened to adjust the coefficient of each function voltage generation circuit while monitoring the output voltage of each function voltage generation circuit. Adjustment method.
JP9170897A 1997-03-26 1997-03-26 Temperature compensation crystal oscillator and its adjusting method Pending JPH10270942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9170897A JPH10270942A (en) 1997-03-26 1997-03-26 Temperature compensation crystal oscillator and its adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9170897A JPH10270942A (en) 1997-03-26 1997-03-26 Temperature compensation crystal oscillator and its adjusting method

Publications (1)

Publication Number Publication Date
JPH10270942A true JPH10270942A (en) 1998-10-09

Family

ID=14034024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9170897A Pending JPH10270942A (en) 1997-03-26 1997-03-26 Temperature compensation crystal oscillator and its adjusting method

Country Status (1)

Country Link
JP (1) JPH10270942A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003021765A1 (en) * 2001-08-29 2003-03-13 Seiko Epson Corporation Oscillator and communication appliance
US7253695B2 (en) 2003-10-27 2007-08-07 Matsushita Electric Industrial Co., Ltd. Function generating circuit and temperature characteristic controlling method for function generating circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003021765A1 (en) * 2001-08-29 2003-03-13 Seiko Epson Corporation Oscillator and communication appliance
US7253695B2 (en) 2003-10-27 2007-08-07 Matsushita Electric Industrial Co., Ltd. Function generating circuit and temperature characteristic controlling method for function generating circuit

Similar Documents

Publication Publication Date Title
JP3160299B2 (en) Function generation circuit, crystal oscillation device, and method of adjusting crystal oscillation device
US7482889B2 (en) Apparatus and method of temperature compensating an ovenized oscillator
TWI485986B (en) Method and apparatus for clock signal synthesis
US6882835B2 (en) Oscillator and communication apparatus
JPH104318A (en) Temperature compensation type crystal oscillator
JP2003115720A (en) Temperature-compensated oscillator, the adjusting method thereof, and temperature-compensated oscillation integrated circuit
TW200302623A (en) Temperature compensated oscillator
US5525936A (en) Temperature-compensated oscillator circuit
KR20000057646A (en) Temperature compensation circuit for a crystal oscillator
US7583154B1 (en) Voltage controlled oscillator
US20070075797A1 (en) Method of manufacturing crystal oscillator and the crystal oscillator manufactured by the method
JP2002076774A (en) Method for regulating temperature compensated oscillator
JPH10270942A (en) Temperature compensation crystal oscillator and its adjusting method
JPH09297623A (en) Voltage and current regulator circuit
JP2975386B2 (en) Digital temperature compensated oscillator
JP2002135051A (en) Piezoelectric oscillator
US7005934B2 (en) Crystal oscillator with temperature compensated through a vibrator current control circuit
JP4370893B2 (en) Piezoelectric oscillator and manufacturing method
JPH0846427A (en) Voltage controlled crystal oscillator
JP3911722B2 (en) Analog / digital input / output switch circuit
JP3272659B2 (en) Temperature compensated piezoelectric oscillator with frequency correction circuit
JP2002198736A (en) Temperature compensation crystal oscillator
JPH1168461A (en) Piezoelectric oscillation circuit
JPH11251838A (en) Temperature compensating-type quartz oscillator
JP2005124019A (en) Temperature compensation piezoelectric resonator