JPH1168461A - Piezoelectric oscillation circuit - Google Patents
Piezoelectric oscillation circuitInfo
- Publication number
- JPH1168461A JPH1168461A JP9228823A JP22882397A JPH1168461A JP H1168461 A JPH1168461 A JP H1168461A JP 9228823 A JP9228823 A JP 9228823A JP 22882397 A JP22882397 A JP 22882397A JP H1168461 A JPH1168461 A JP H1168461A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- voltage
- compensation
- order function
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Oscillators With Electromechanical Resonators (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は圧電発振器に関し、
特に温度補償型圧電発振器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric oscillator,
In particular, it relates to a temperature compensated piezoelectric oscillator.
【0002】[0002]
【従来の技術】近年需要がより一層増大している携帯電
話機等の移動体通信機には基準周波数源として小型な水
晶発振器がキーパーツである。この様な移動体通信機に
使用する水晶発振器には、その重要な特性の一つである
使用温度範囲内に於ける発振周波数の安定度、即ち、周
波数温度特性として、通常±1〜±3ppmの安定度が
要求されている。一般にATカット水晶振動子は温度変
化に対する周波数特性が3次関数で近似されることが知
られており、これを発振源として使用する水晶発振器の
周波数温度特性も水晶振動子のそれに依存する。水晶振
動子の中でも周波数安定度が高いことで知られているA
Tカット水晶振動子を用いたとしても水晶発振器の周波
数温度特性を−40℃〜+85℃の温度範囲に於いて±
10ppm以内に抑えることは不可能である。この為、
移動体通信機に使用する場合には、水晶振動子の周波数
温度特性を平坦化する為の温度補償回路を備えた温度補
償型水晶発振器(以下TCXOと称す)を用いるのが一
般的である。2. Description of the Related Art A small crystal oscillator is a key part of a mobile communication device such as a portable telephone which has been increasingly demanded in recent years as a reference frequency source. A crystal oscillator used in such a mobile communication device has stability of an oscillation frequency within an operating temperature range which is one of its important characteristics, that is, a frequency temperature characteristic, usually ± 1 to ± 3 ppm. Stability is required. It is generally known that the frequency characteristics of an AT-cut crystal resonator with respect to a temperature change are approximated by a cubic function, and the frequency-temperature characteristics of a crystal oscillator using this as an oscillation source also depend on those of the crystal resonator. A, which is known to have high frequency stability among quartz oscillators
Even if a T-cut crystal oscillator is used, the frequency temperature characteristics of the crystal oscillator can be adjusted within a temperature range of -40 ° C to + 85 ° C.
It is impossible to keep it within 10 ppm. Because of this,
When used in a mobile communication device, it is common to use a temperature-compensated crystal oscillator (hereinafter referred to as TCXO) provided with a temperature compensation circuit for flattening the frequency-temperature characteristics of the crystal resonator.
【0003】この様な前記TCXOの温度補償方式とし
て、アナログ間接型温度補償方式が広く知られている。
アナログ間接型補償方式とは、図4(a)に示すように
発振ループ内に可変容量ダイオード等のリアクタンス値
を電圧制御可能とする可変リアクタンス回路を備えた電
圧制御水晶発振器(以下VCXOと称す)を含めると共
に、前記可変リアクタンス回路の両端に図4(b)に示
すような抵抗素子とサーミスタ素子とから構成する回路
網により導出した3次関数的な変化を呈する電圧を供給
するものである。即ち、発振ループ内に温度変化に対し
3次関数的なリアクタンス変化を与え、水晶発振回路と
しての周波数温度特性を所定値以内に補償するよう構成
したものである。As such a TCXO temperature compensation method, an analog indirect temperature compensation method is widely known.
The analog indirect compensation method is a voltage-controlled crystal oscillator (hereinafter referred to as VCXO) having a variable reactance circuit capable of controlling a reactance value such as a variable capacitance diode in an oscillation loop as shown in FIG. And supplies a voltage exhibiting a cubic change derived from a network composed of a resistance element and a thermistor element as shown in FIG. 4B to both ends of the variable reactance circuit. In other words, a cubic function reactance change is given to the temperature change in the oscillation loop, and the frequency temperature characteristic as the crystal oscillation circuit is compensated within a predetermined value.
【0004】[0004]
【本発明が解決しようとする課題】しかし、従来のアナ
ログ間接型方式のTCXOに於いて、前記温度補償電圧
発生回路を構成するサーミスタ素子の感温特性のバラツ
キや抵抗素子等の温度特性によって、前記温度補償電圧
発生回路を如何に調整しても、水晶振動子の周波数温度
特性を完全に平坦化することは不可能であり、一般にア
ナログ間接型補償方式のTCXOの周波数温度特性の補
償限界値は±1.0ppm以内/−30℃〜+85℃程
度であって、これ以上の安定性を必要とする場合は、デ
ィジタル型温度補償または、恒温槽型の水晶発振器を使
用する必要があった。ディジタル型温度補償とは、周囲
の温度情報をディジタル信号化し、この信号によって各
温度に対応して出力すべき制御電圧コードを記憶したメ
モリ装置から読み出し、該制御電圧コードに基づいて電
圧制御発振器に供給する制御電圧を作出するように構成
した補償回路を備えたものである。しかしながら、ディ
ジタル化した温度情報に基づいて温度補償電圧を変化さ
せる為該温度補償電圧は周囲温度変化に対し不連続な階
段状の変化をする。この温度補償電圧を可変リアクタン
ス素子に印加した場合、発振周波数が温度変化に対し瞬
間的に変化する「位相飛び」の問題が起き、このような
特性を有するTCXOを移動体通信機に用いると通信の
途切れや、誤ったデータの送信をする等の問題が発生す
る。その一方、前記恒温槽型の水晶発振器は高安定な周
波数温度特性を有し、且つ、周波数の「位相飛び」が無
いものの、恒温槽内を+70℃〜+90℃程度に加熱す
る必要がある為、消費電力がTCXOの数十〜数百倍も
必要とする欠点がある他、恒温槽付の水晶発振器は大型
で高価である為に小型で安価な移動体通信機に使用する
ことは不可能である。However, in the conventional analog indirect type TCXO, the temperature compensation characteristics of the thermistor elements constituting the temperature compensation voltage generating circuit and the temperature characteristics of the resistance elements and the like cause the following problems. No matter how the temperature compensation voltage generating circuit is adjusted, it is impossible to completely flatten the frequency temperature characteristics of the crystal unit, and in general, a compensation limit value of the frequency temperature characteristics of the analog indirect compensation type TCXO is used. Is within ± 1.0 ppm / about −30 ° C. to + 85 ° C. If a higher stability is required, it is necessary to use a digital type temperature compensation or a constant temperature oven type crystal oscillator. Digital temperature compensation converts ambient temperature information into a digital signal, reads out a control voltage code to be output corresponding to each temperature from a memory device that stores the temperature signal, and sends a voltage control oscillator to the voltage control oscillator based on the control voltage code. It has a compensation circuit configured to generate a control voltage to be supplied. However, since the temperature compensation voltage is changed based on the digitized temperature information, the temperature compensation voltage changes stepwise discontinuously with respect to the change in the ambient temperature. When this temperature compensation voltage is applied to a variable reactance element, a problem of "phase jump" occurs in which the oscillation frequency changes instantaneously with a change in temperature. If a TCXO having such characteristics is used in a mobile communication device, communication will occur. Problems such as interruption of data transmission and transmission of erroneous data. On the other hand, the thermostatic oven crystal oscillator has a highly stable frequency-temperature characteristic and has no frequency “phase jump”, but it is necessary to heat the thermostat to about + 70 ° C. to + 90 ° C. In addition to the drawback that the power consumption is several tens to several hundred times that of TCXO, the crystal oscillator with a thermostat is large and expensive, so it cannot be used for a small and inexpensive mobile communication device. It is.
【0005】本発明は、前記の問題を解決し「位相飛
び」が無く、従来のアナログ間接型補償方式のTCXO
と比較し、更に高安定な周波数温度特性を有し且つ、小
型化が容易なTCXOを提供することを目的としてい
る。SUMMARY OF THE INVENTION The present invention solves the above-mentioned problem, eliminates "phase jump", and uses a conventional analog indirect compensation type TCXO.
It is an object of the present invention to provide a TCXO which has more stable frequency-temperature characteristics and is easy to downsize.
【0006】[0006]
【課題を解決するための手段】本発明では周波数温度補
償方式として、温度変化に対し発振器周波数の「位相飛
び」の無いアナログ補償方式とし、その中でも集積化が
不可能なサーミスタ素子を使用せず、任意の温度範囲に
於ける発振器出力周波数の温度補償を実現を可能とする
N次関数発生回路を有する温度補償電圧発生回路を用い
たアナログ間接型補償方式としている。 更に、温度補
償精度を向上させる為に、任意の温度範囲に於いて直流
電圧の出力を可能とする前記N次関数発生回路を複数備
えた温度補償電圧発生回路としており、前記温度補償電
圧発生回路の出力である直流電圧を発振回路の発振ルー
プ中の可変リアクタンス素子に印加することにより、周
波数温度補償を実現するTCXOとしている。According to the present invention, the frequency temperature compensation system is an analog compensation system without "phase jump" of the oscillator frequency with respect to a temperature change. Among them, a thermistor element which cannot be integrated is used. An analog indirect compensation system using a temperature compensation voltage generation circuit having an Nth-order function generation circuit capable of realizing temperature compensation of an oscillator output frequency in an arbitrary temperature range. Further, in order to improve the temperature compensation accuracy, the temperature compensation voltage generation circuit includes a plurality of the N-th order function generation circuits capable of outputting a DC voltage in an arbitrary temperature range. Is applied to a variable reactance element in the oscillation loop of the oscillation circuit to realize a TCXO that achieves frequency temperature compensation.
【0007】[0007]
【本発明の実施の形態例】以下に実施例に基づいて本発
明を詳細に説明する。図1は本発明に基づいた温度補償
電圧発生回路を用いたTCXOの一実施例を示すブロッ
ク回路の構成図である。前記図1に示すTCXO5は温
度センサ1と複数のN次関数発生回路(2−1、2−2
・・・2−n)から成る電圧発生回路ブロック2と加算
回路3と電圧制御水晶発振器(VCXO)4で構成して
おり、温度センサ1の出力は複数のN次関数発生回路
(2−1、2−2・・・2−n)にそれぞれ入力するよ
う構成している。また、前記複数のN次関数発生回路
(2−1、2−2・・・2−n)のそれぞれの出力は加
算回路3を介しVCXO4の制御電圧入力部に入力する
構成とすることで前記図1に示すTCXO5を構成して
いる。図1の例では、前記図1中に示すVCXO4は常
温中にて制御電圧入力部に入力する直流電圧を+2Vと
したときに特定の周波数f0を出力するよう設定してい
る。図2(a)は前記図1中のVCXO4の制御電圧を
+2V 一定とした状態に於けるTCXO5の周波数温
度特性の一例を横軸に温度、縦軸に周波数偏差として表
したものである。即ち、温度補償機能無しの状態を示し
たものであり、水晶振動子の周波数温度特性がそのまま
反映されて、常温を変曲点温度として、常温以下の温度
範囲内に極大値、常温以上の温度範囲に極小値が存在す
る3次関数的特徴を呈する。図2(b)は前記図1中の
VCXO4に於ける制御電圧値の変化に伴う発振周波数
の変化を示す周波数制御電圧特性の一例を横軸に制御電
圧値、縦軸に周波数偏差として表したものであり、前記
制御電圧の増加に伴い前記VCXO4の周波数が一次関
数的に上昇することが解る。図2(c)は図1中のN次
関数発生回路2−1の温度に対する出力電圧値を示す温
度補償電圧特性の一例を横軸に温度、縦軸に補償電圧と
して表したものであり、前記温度補償電圧特性は常温を
変曲点温度として、常温より低温の範囲内に+2V以下
の極小値を有し、常温より高温の範囲内に+2V以上の
極大値を有する特性である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on embodiments. FIG. 1 is a configuration diagram of a block circuit showing an embodiment of a TCXO using a temperature compensation voltage generation circuit based on the present invention. The TCXO 5 shown in FIG. 1 includes a temperature sensor 1 and a plurality of N-order function generation circuits (2-1, 2-2).
.. 2-n), an adder circuit 3, and a voltage controlled crystal oscillator (VCXO) 4. The output of the temperature sensor 1 is output from a plurality of N-order function generation circuits (2-1). 2-2... 2-n). The output of each of the plurality of N-order function generation circuits (2-1, 2-2,..., 2-n) is input to the control voltage input unit of the VCXO 4 via the addition circuit 3. This constitutes the TCXO 5 shown in FIG. In the example of FIG. 1, the VCXO 4 shown in FIG. 1 is set to output a specific frequency f 0 when the DC voltage input to the control voltage input unit is +2 V at normal temperature. FIG. 2A shows an example of the frequency-temperature characteristics of the TCXO 5 in a state where the control voltage of the VCXO 4 in FIG. 1 is fixed at +2 V, in which the horizontal axis represents temperature and the vertical axis represents frequency deviation. In other words, it shows a state without the temperature compensation function, and reflects the frequency-temperature characteristics of the crystal unit as it is, and sets a maximum value within a temperature range equal to or lower than normal temperature and a temperature equal to or higher than normal temperature as normal temperature as an inflection point temperature. It exhibits a cubic feature with a local minimum. FIG. 2B shows an example of a frequency control voltage characteristic indicating a change in the oscillation frequency with a change in the control voltage value of the VCXO 4 in FIG. 1 as a control voltage value on the horizontal axis and a frequency deviation on the vertical axis. It can be seen that the frequency of the VCXO4 increases linearly with an increase in the control voltage. FIG. 2C shows an example of a temperature compensation voltage characteristic indicating an output voltage value with respect to the temperature of the Nth-order function generation circuit 2-1 in FIG. 1, in which the horizontal axis represents temperature and the vertical axis represents compensation voltage. The temperature compensation voltage characteristic is a characteristic having a minimum value of +2 V or less in a range lower than room temperature and a maximum value of +2 V or more in a range higher than room temperature, where room temperature is an inflection point temperature.
【0008】また、その他のN次関数発生回路(2−
2、2−3・・・2−n)は出力していないまたは、0
V出力であるとしている。前記図2(a)、(b)の特
性を有する前記図1中のVCXO4の制御電圧入力部に
前記図2(c)に示す温度補償電圧を入力した場合のT
CXO5の周波数温度特性が図2(d)に示す温度範囲
A’からAとB’からBとC’からCに於いて十分に相
殺することができず、これが従来技術に於けるアナログ
間接補償方式での補償限界状態に相当する。前記図2
(d)に示す周波数温度特性を更に高安定な特性とする
為には、同図2中に示す温度範囲A’からAとB’から
BとC’からCの周波数特性を相殺すべく図3(e)に
示すような補正補償電圧をVCXO4の制御電圧入力部
に入力してやればよい。 尚、図3(e)の特性は図2
(b)と図2(d)から求めることができる。また、前
記図3(e)に示すような補正補償電圧は複数の関数式
で表すことが可能であり、この例では本発明の効果を理
解し易くする為に温度範囲A’からA、は2次関数的な
補正補償電圧として、温度範囲B’からBは3次関数的
な補正補償電圧として、温度範囲C’からCは1次関数
的な補正補償電圧としている。この3つの温度範囲の補
正電圧はそれぞれ異なるN次関数発生回路より出力さ
れ、図3(f)は前記N次関数発生回路2−2より出力
する前記図2(d)の温度範囲A’からAの補正補償電
圧であり、図3(g)は前記N次関数発生回路2−3よ
り出力する前記図2(d)の温度範囲B’からBの補正
補償電圧であり、図3(h)は前記N次関数発生回路2
−4より出力する前記図2(d)の温度範囲C’からC
の補正補償電圧である。Further, other N-order function generating circuits (2-
2, 2-3 ... 2-n) is not output or 0
It is assumed that the output is V. 1 when the temperature compensation voltage shown in FIG. 2C is input to the control voltage input section of the VCXO 4 in FIG. 1 having the characteristics of FIGS. 2A and 2B.
The frequency temperature characteristic of CXO5 cannot be sufficiently canceled in the temperature range A 'to A and B' to B and C 'to C shown in FIG. 2D, which is the analog indirect compensation in the prior art. It corresponds to the compensation limit state in the method. FIG. 2
In order to make the frequency-temperature characteristics shown in FIG. 2D more stable, the frequency characteristics of the temperature ranges A 'to A and B' to B and C 'to C shown in FIG. The correction compensation voltage as shown in FIG. 3 (e) may be input to the control voltage input section of the VCXO4. Note that the characteristic of FIG.
It can be obtained from (b) and FIG. 2 (d). The correction compensation voltage as shown in FIG. 3 (e) can be expressed by a plurality of functional expressions. In this example, the temperature ranges A ′ to A are set to facilitate understanding of the effects of the present invention. As a quadratic correction compensation voltage, the temperature ranges B 'to B are cubic correction compensation voltages, and the temperature ranges C' to C are linear function correction compensation voltages. The correction voltages in the three temperature ranges are output from different N-order function generation circuits, respectively, and FIG. 3F shows the output from the temperature range A ′ in FIG. 2D output from the N-order function generation circuit 2-2. FIG. 3 (g) shows the compensation compensation voltage of A, and FIG. 3 (g) shows the compensation compensation voltage of the temperature range B ′ to B in FIG. 2 (d) output from the N-order function generation circuit 2-3. ) Is the N-order function generation circuit 2
-4 from the temperature range C ′ in FIG.
Is the correction compensation voltage.
【0009】前記N次関数発生回路(2−2、2−3、
2−4)より出力する補正補償電圧は前記N次関数発生
回路2−1の出力である補償電圧と前記図1中に示す加
算回路3により加算した後、前記図1中に示すVCXO
4の制御電圧入力部に入力することで、前記図1中に示
すTCXO5の周波数温度特性は図3(i)に示す如く
高安定(例えば±0.5ppm以内/−30℃〜+85
℃)な特性となる。尚、発明に基づく実施例では発振器
圧電素子としてATカット水晶振動子を用いたが本発明
はこれに限るものでなく、前記図1に示すN次関数発生
回路の出力を3次関数に限らないあらゆる関数を用いて
調整することにより様々な圧電素子に適用できる。The N-order function generating circuit (2-2, 2-3,
2-4) is added to the compensation voltage output from the N-order function generation circuit 2-1 by the addition circuit 3 shown in FIG. 1, and then the VCXO shown in FIG.
By inputting the voltage to the control voltage input unit of FIG. 4, the frequency temperature characteristic of the TCXO 5 shown in FIG. 1 is highly stable (for example, within ± 0.5 ppm / −30 ° C. to + 85%) as shown in FIG.
° C). In the embodiment according to the present invention, an AT-cut quartz oscillator is used as the oscillator piezoelectric element. However, the present invention is not limited to this, and the output of the N-order function generating circuit shown in FIG. 1 is not limited to a cubic function. By adjusting using any function, the present invention can be applied to various piezoelectric elements.
【0010】[0010]
【発明の効果】本発明に基づく温度補償電圧発生回路を
備えた温度補償型圧電発振器は、アナログ補償方式であ
る為ディジタル方式で発生する「位相飛び」が無く、ま
た前記温度補償電圧発生回路は任意の温度範囲に於いて
直流電圧の出力を可能とした複数のN次関数発生回路に
より構成する為、従来技術を用いた温度補償型圧電発振
器と比較し、高安定な周波数温度特性を実現することが
可能である。更に、本発明に基づく温度補償電圧発生回
路にはサーミスタ素子を使用していない為、集積化が容
易であり発振器の更なる小型化を可能にする。The temperature-compensated piezoelectric oscillator having the temperature-compensated voltage generating circuit according to the present invention is of an analog compensation type, so that there is no "phase jump" generated by a digital method. Since it is composed of a plurality of N-order function generation circuits capable of outputting a DC voltage in an arbitrary temperature range, it realizes a more stable frequency-temperature characteristic as compared with a temperature-compensated piezoelectric oscillator using a conventional technique. It is possible. Further, the temperature compensation voltage generating circuit according to the present invention does not use a thermistor element, so that it is easy to integrate and further downsize the oscillator.
【0011】[0011]
【図1】本発明に係わるTCXOの一実施例を示すブロ
ック図FIG. 1 is a block diagram showing one embodiment of a TCXO according to the present invention.
【図2】(a)・・補償前の発振器周波数温度特性を示
す (b)・・VCXOの周波数制御電圧特性を示す (c)・・N次関数発生回路2−1の補償電圧を示す (d)・・TCXOの周波数温度特性を示すFIG. 2A shows oscillator frequency temperature characteristics before compensation. FIG. 2B shows frequency control voltage characteristics of VCXO. FIG. 2C shows compensation voltage of N-order function generation circuit 2-1. d) ··· Shows TCXO frequency temperature characteristics
【図3】(e)・・補正補償電圧 (f)・・N次関数発生回路2−2による補正補償電圧 (g)・・N次関数発生回路2−3による補正補償電圧 (h)・・N次関数発生回路2−4による補正補償電圧 (i)・・本発明によるTCXOの周波数温度特性FIG. 3 (e) ··· Compensation compensation voltage (f) ··· Compensation compensation voltage by Nth order function generation circuit 2-2 (g) ··· Compensation compensation voltage by Nth order function generation circuit 2-3 (h) · • Correction compensation voltage by N-order function generation circuit 2-4 (i) • Frequency temperature characteristic of TCXO according to the present invention
【図4】(a)・・従来に於けるアナログ間接型温度補
償発振器ブロック構成図を示す (b)・・補償電圧発生回路の一例を示す4A shows a block diagram of a conventional analog indirect type temperature-compensated oscillator. FIG. 4B shows an example of a compensation voltage generating circuit.
1・・温度センサ 2・・電圧発生回路ブロック (2−1、2−2、2−3・・・2−n)・・N次関数
発生回路 3・・加算回路 4・・電圧制御水晶発振器(VCXO) R1、R2、R3・・・抵抗素子 THR1、THR2・・・サーミスタ素子1. Temperature sensor 2. Voltage generation circuit block (2-1, 2-2, 2-3 ... 2-n) Nth order function generation circuit 3. Addition circuit 4. Voltage controlled crystal oscillator (VCXO) R1, R2, R3: resistance element THR1, THR2: thermistor element
Claims (2)
定の補償電圧を前記電圧制御型発振回路に供給する電圧
発生回路とを有し、前記電圧制御型発振回路の温度変化
に伴う発振周波数の変化を抑えた温度補償型発振器に於
いて、前記電圧発生回路が複数のN次関数電圧発生回路
とこれらの出力を加算する加算手段とを具備したもので
あることを特徴とする温度補償型発振器。A voltage-controlled oscillation circuit for supplying a predetermined compensation voltage to the voltage-controlled oscillation circuit in accordance with a temperature change; In a temperature-compensated oscillator in which a change in frequency is suppressed, the voltage generation circuit includes a plurality of Nth-order function voltage generation circuits and an adding means for adding the outputs of the Nth-order function voltage generation circuits. Type oscillator.
発生回路の少なくとも一つが3次関数発生回路であるこ
とを特徴とする請求項1記載の温度補償型発振器。2. The temperature-compensated oscillator according to claim 1, wherein at least one of the Nth-order function voltage generation circuits constituting said voltage generation circuit is a third-order function generation circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9228823A JPH1168461A (en) | 1997-08-11 | 1997-08-11 | Piezoelectric oscillation circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9228823A JPH1168461A (en) | 1997-08-11 | 1997-08-11 | Piezoelectric oscillation circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1168461A true JPH1168461A (en) | 1999-03-09 |
Family
ID=16882426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9228823A Pending JPH1168461A (en) | 1997-08-11 | 1997-08-11 | Piezoelectric oscillation circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1168461A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003021765A1 (en) * | 2001-08-29 | 2003-03-13 | Seiko Epson Corporation | Oscillator and communication appliance |
WO2004025824A1 (en) * | 2002-08-28 | 2004-03-25 | Asahi Kasei Microsystems Co., Ltd. | DEVICE FOR GENERATING FUNCTION OF APPROXIMATE n-TH DEGREE AND TEMPERATURE COMPENSATION QUARTZ OSCILLATION CIRCUIT |
JP2007104162A (en) * | 2005-10-03 | 2007-04-19 | Kawasaki Microelectronics Kk | Manufacturing method of crystal oscillator, and crystal oscillator |
JP2007325033A (en) * | 2006-06-01 | 2007-12-13 | Matsushita Electric Ind Co Ltd | Function generating circuit |
JP2013038737A (en) * | 2011-08-11 | 2013-02-21 | Nippon Dempa Kogyo Co Ltd | Temperature compensated crystal oscillator |
-
1997
- 1997-08-11 JP JP9228823A patent/JPH1168461A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003021765A1 (en) * | 2001-08-29 | 2003-03-13 | Seiko Epson Corporation | Oscillator and communication appliance |
WO2004025824A1 (en) * | 2002-08-28 | 2004-03-25 | Asahi Kasei Microsystems Co., Ltd. | DEVICE FOR GENERATING FUNCTION OF APPROXIMATE n-TH DEGREE AND TEMPERATURE COMPENSATION QUARTZ OSCILLATION CIRCUIT |
GB2404063A (en) * | 2002-08-28 | 2005-01-19 | Asahi Chemical Micro Syst | Device for generating function of approximate n-th degree and temperature compensation quartz oscillation circuit |
GB2404063B (en) * | 2002-08-28 | 2006-05-10 | Asahi Chemical Micro Syst | Approximate n-th order function generating device and temperature compensation crystal oscillator circuit |
US7154351B2 (en) | 2002-08-28 | 2006-12-26 | Asahi Kasei Microsystems Co., Ltd. | Approximate n-th order function generating device and temperature compensation crystal oscillation circuit |
CN100454756C (en) * | 2002-08-28 | 2009-01-21 | 旭化成电子材料元件株式会社 | Device for generating function of approximate n-th degree and temperature compensation quartz oscillation circuit |
JP2007104162A (en) * | 2005-10-03 | 2007-04-19 | Kawasaki Microelectronics Kk | Manufacturing method of crystal oscillator, and crystal oscillator |
JP2007325033A (en) * | 2006-06-01 | 2007-12-13 | Matsushita Electric Ind Co Ltd | Function generating circuit |
JP2013038737A (en) * | 2011-08-11 | 2013-02-21 | Nippon Dempa Kogyo Co Ltd | Temperature compensated crystal oscillator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7482889B2 (en) | Apparatus and method of temperature compensating an ovenized oscillator | |
TWI388128B (en) | Frequency controller for a monolithic clock generator and timing/frequency reference | |
JP2008054134A (en) | Ring oscillator, semiconductor integrated circuit provided with the same, and electronic equipment | |
WO2002027915A1 (en) | Temperature controlled compensated oscillator | |
JP4745102B2 (en) | Reference current control circuit, crystal oscillator control IC with temperature compensation function, crystal oscillator and mobile phone | |
JP2007208584A (en) | Frequency adjusting circuit | |
JP6377192B2 (en) | Temperature compensated crystal oscillator | |
JPH1168461A (en) | Piezoelectric oscillation circuit | |
JP5034772B2 (en) | Temperature compensated piezoelectric oscillator | |
JP2004208270A (en) | Method for compensating temperature in crystal oscillator | |
JPH06276020A (en) | Temperature compensated crystal oscillator | |
JP2002135051A (en) | Piezoelectric oscillator | |
JP2002026658A (en) | Quartz oscillator circuit | |
JPH11261336A (en) | Temperature compensation-type piezoelectric oscillator | |
JP4428124B2 (en) | Temperature compensated oscillator | |
JP2010109828A (en) | Oscillator | |
JPH11251838A (en) | Temperature compensating-type quartz oscillator | |
JP2002217643A (en) | Temperature compensated voltage generating circuit of crystal oscillator | |
JPH1093343A (en) | Temperature compensation method for piezoelectric oscillating circuit | |
JP4314988B2 (en) | Temperature compensated piezoelectric oscillator | |
JP3272659B2 (en) | Temperature compensated piezoelectric oscillator with frequency correction circuit | |
JP4541805B2 (en) | Temperature compensated crystal oscillator | |
JP3243680B2 (en) | Frequency correction method for digitally controlled oscillator | |
JP2009124401A (en) | Oscillator | |
JP2003258553A (en) | Oscillation circuit |