JPS58205817A - Ultrasonic respiration current meter - Google Patents
Ultrasonic respiration current meterInfo
- Publication number
- JPS58205817A JPS58205817A JP57088811A JP8881182A JPS58205817A JP S58205817 A JPS58205817 A JP S58205817A JP 57088811 A JP57088811 A JP 57088811A JP 8881182 A JP8881182 A JP 8881182A JP S58205817 A JPS58205817 A JP S58205817A
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- flow velocity
- circuit
- pulse
- amplitude
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/667—Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
Abstract
Description
【発明の詳細な説明】 〔発明の技術分野〕 この発明は、超音波を用いた呼吸流速計に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a pneumotachograph using ultrasound.
従来よシ医療用の呼吸流量計としては、差圧式(流路内
に細管又はオリフィスなどの抵抗物を置いてその両端の
圧差より流速を求める)、熱線式(流路内に置かれた熱
線からの熱の移動から流速を求める)1羽根車式(流路
内にタービンを置きその回転数から流速を求める)寿ど
がある。しかし、これらの計測法には流路内部に構造物
がある丸め障害物になったり抵抗となること、計測値が
温度・湿度・気体の組成などの影響により変化すること
、キヤリプレーシロンの操作が煩雑であることなどのた
め長時間連続して呼吸流速を計測することが困難であっ
九。そこで上記の問題点を解決する方法として超音波の
伝搬時間差を用いた呼吸流速針が考案された。この方式
によれば超音波の伝搬時間(TI)と、伝搬時間差(Δ
t)を計測し、下記の式にもとづいて流速(■)が求め
られる。Traditionally, medical pneumoflowmeters include differential pressure type (a resistive object such as a thin tube or orifice is placed in the flow path and the flow rate is determined from the pressure difference between the two ends), hot wire type (a hot wire type placed in the flow path) One-impeller type (a turbine is placed in the flow path and the flow velocity is determined from the number of revolutions) has a long lifespan. However, these measurement methods require that there are structures inside the flow path that may become obstacles or create resistance, that the measured values may change due to the effects of temperature, humidity, gas composition, etc. It is difficult to measure respiratory flow rate continuously for a long period of time due to the complicated nature of the method. Therefore, as a method to solve the above-mentioned problems, a respiratory flow rate needle using the difference in propagation time of ultrasonic waves was devised. According to this method, the propagation time (TI) of ultrasonic waves and the propagation time difference (Δ
t) is measured, and the flow velocity (■) is determined based on the following formula.
しかしながら本方式では、流速が高い場合あるいは流速
が急激に変化するような場合の流路内の気体の乱れによ
り、受信される超音波信号が減衰してしまう。このため
、伝搬時間および時間差の計測が不安定になり流速値の
計測が困難となる。However, in this method, the received ultrasonic signal is attenuated due to gas turbulence in the flow path when the flow velocity is high or when the flow velocity changes rapidly. Therefore, measurement of propagation time and time difference becomes unstable, making it difficult to measure flow velocity values.
この発明は、上述した従来の欠点を改良したもの、超音
波伝搬時間差方式によ多安定に流速を計測する装置を提
供することを目的とする。The object of the present invention is to improve the above-mentioned conventional drawbacks and to provide an apparatus for stably measuring flow velocity using an ultrasonic propagation time difference method.
この目的を達成するため本発明では、各流速計測毎ごと
に超音波受信信号の振巾を検出し、その振巾に応じて、
受信信号の振巾を制御し安定に信号を受信する手段を従
来の超音波呼吸流速計に加えた。In order to achieve this objective, the present invention detects the amplitude of the ultrasonic reception signal for each flow velocity measurement, and according to the amplitude,
A means for stably receiving the signal by controlling the amplitude of the received signal was added to the conventional ultrasonic pneumotachograph.
(発明の実施例〕 以下、本発明の詳細な説明する。(Example of the invention) The present invention will be explained in detail below.
第1図に本発明の呼吸流速針のブロック図を示す。装置
の動作はクロック1の出力クロックに)を基準のクロッ
クとしてすすめられ、本実施例では100 MHzであ
る。タイミングパルス発生回路2はクロック(ト)に駆
動され、装置の動作を制御する全てのパルスを発生する
。第2図に示すように流速値の計測はピークホールドパ
ルスの出力するlQmsa。FIG. 1 shows a block diagram of the respiratory flow rate needle of the present invention. The operation of the device is recommended using the output clock of clock 1) as a reference clock, which is 100 MHz in this embodiment. The timing pulse generation circuit 2 is driven by a clock (g) and generates all pulses that control the operation of the device. As shown in FIG. 2, the flow velocity value is measured using lQmsa, which is output by a peak hold pulse.
毎に行なわれる。またこのピークホールドパルスの出力
と共に1μ式の間隔で5つパルスを1 m5ecflj
J 隔で5@発生する駆動パルスがタイミングパルス発
生回路2よ多出力される。このパルスにょシ駆動回路囚
@3,4よシ超音波振動子(5)(ハ)5,6を駆動す
るパルスが出力される。振動子(6)、(B)5,6よ
ル発射された超音波は対向する振動子(ハ)、(6)6
゜5に向って伝搬してゆく。途中で気体の流れる方向に
よυ伝搬速度を変える。本実施例では気体は矢印の方向
に向って流れているため振動子囚−5よシ振動子@−6
に向って行く超音波速度を速め、逆方向に向う超音波は
遅れる。対向する振動子■。It is done every time. Also, along with the output of this peak hold pulse, 5 pulses are output at 1μ intervals for 1 m5ecflj
The timing pulse generation circuit 2 outputs multiple driving pulses that are generated at J intervals of 5@. This pulse drives the driving circuit 3, 4 and the ultrasonic transducers (5) (c) 5, 6. The ultrasonic waves emitted from the transducers (6), (B) 5 and 6 are transmitted to the opposing transducers (C) and (6) 6.
It propagates towards ゜5. Along the way, the υ propagation speed changes depending on the direction in which the gas flows. In this example, since the gas is flowing in the direction of the arrow, the oscillator @-5 and the oscillator @-6
The speed of ultrasound waves traveling in the opposite direction is delayed. Opposing vibrator■.
@5.6に到着した超音波は電気信号に変換され受信回
路囚@7.8によシ増申される。この受信回路囚@7.
8の入力は第3図に示される通シである。受信回路囚0
7,8の出力は、AGC回路囚(ハ)9,10およびピ
ークホールド回路11に入力される。k:’ −p ホ
ー /L/ド回路11はピークホールドパルスに駆動さ
れ最初の5つの駆動パルスにより送受され九超音波信号
や振巾をとられる。各5つの駆動パルスによる超音波信
号の送受は第3図に示す。The ultrasonic waves arriving at @5.6 are converted into electrical signals and amplified by the receiving circuit @7.8. This receiving circuit prisoner @7.
The input number 8 is the same as shown in FIG. Receiving circuit prisoner 0
The outputs of 7 and 8 are input to AGC circuits 9 and 10 and a peak hold circuit 11. The k:'-p ho/L/do circuit 11 is driven by the peak hold pulse and receives and transmits nine ultrasonic signals and amplitudes using the first five drive pulses. Transmission and reception of ultrasonic signals using each of the five drive pulses is shown in FIG.
5つの駆動パルスの次に出力されるイニシャライズパル
スと受信回路(8)7で受信される超音波信号の4つ目
の波形との時間が超音波伝搬時間Tとして、また、もう
一方の受信回路(B)で受信される超音波信号のやは9
4つ目の波形との時間が超音波伝搬時間差へTとしてと
らえられる。さて、ピークホールド回路11の出力信号
は、AGC回路(5)(ロ)9.10の利得、制御信号
として加えられる。従って次の5つの駆動パルスより送
受される超音波信号は適当な利得倉もったAGO回路囚
(B)9.10によp増巾されることになる。次にこの
増巾された電気信号は波形 形回路に)(B)12.1
3でパルスに変換された(第3図)のちパルス抽出回w
I(5)(B) 14 、15にて4番目のパルスのみ
を抽出され、このパルス(第3図)が超音波伝搬時間を
計測するTカウンタ16、超音波伝搬時間差を計測する
ΔTカウンタ17、さらに流れの方向を判別するフリッ
ププロップ18に入力される。The time between the initialization pulse output next to the five drive pulses and the fourth waveform of the ultrasonic signal received by the receiving circuit (8) 7 is defined as the ultrasonic propagation time T, and The ultrasonic signal received at (B) is 9
The time with the fourth waveform is taken as the ultrasonic propagation time difference T. Now, the output signal of the peak hold circuit 11 is added as a gain and control signal to the AGC circuit (5) (b) 9.10. Therefore, the ultrasonic signals transmitted and received by the next five drive pulses are amplified by the AGO circuit (B) 9.10 having an appropriate gain. Next, this amplified electrical signal is sent to the waveform circuit) (B) 12.1
After being converted into a pulse in step 3 (Figure 3), the pulse extraction time w
Only the fourth pulse is extracted at I(5)(B) 14 and 15, and this pulse (Fig. 3) is sent to the T counter 16 which measures the ultrasonic propagation time, and the ΔT counter 17 which measures the ultrasonic propagation time difference. , which is further input to a flip-flop 18 which determines the direction of flow.
Tカウンタ16は先に述べたようにタイミング発生回路
2・により出力されるイニシャライズパルスによりカウ
ントを開始し、パルス抽出回路囚14の出力パルスによ
pカウントを停止し、Tカウンタ16のり四ツクはりp
ツクに)を分周したクロック(ハ)で行なわれこの場合
10MHzである。またΔTカウンタ17は最初にイニ
シャライズパルスでり!771−1のちパルス抽出回路
(A)@14.15の先着した方のパルスでカウントを
開始し、後着したパルスでカウントを停止してΔTを計
測するがこの時間計測のクロックはクロック(6)で行
なわれる。また方向判別フリップフロップ18も同様に
まずイニシャライズパルスでクリアされたのちパルス抽
出回路(A)(B)14,15のパルスによりセット・
リセットされるもので後着したパルスによりその状態が
決定される。As mentioned above, the T counter 16 starts counting by the initializing pulse output from the timing generating circuit 2, stops p counting by the output pulse from the pulse extracting circuit 14, and then the T counter 16 starts counting. p
The frequency is 10 MHz in this case. Also, the ΔT counter 17 first receives an initialization pulse! After 771-1, the pulse extraction circuit (A) @14.15 starts counting with the pulse that arrived first, stops counting with the pulse that arrives later, and measures ΔT, but the clock for this time measurement is based on the clock (6 ). Similarly, the direction discrimination flip-flop 18 is first cleared by an initializing pulse and then set by pulses from the pulse extraction circuits (A) and (B) 14 and 15.
It is reset and its state is determined by the pulse that arrives later.
このような動作がさらに3回繰返された後、タイミング
パルス発生回路2よシデータ収集パルス(第3図)が割
込みコントローラ19に加えられ、マイクロフロセッサ
20はとの割込みコント四−ラの出力を受けてI10ボ
ート21を介してTカウンタ16、ΔTカウンタ17.
方向判別フリップフロップ18の内容を読み込み、いっ
たんROM/RAM 22にデータを記憶し丸後先の(
1)式にもとづいて数値演算をAPU 23にて行ない
、その結果をD/A 24を介して出力する。従ってD
/Aの出力よ’) l0m5ecごとにサンプルされた
流速値が出力される。After this operation is repeated three more times, the timing pulse generation circuit 2 applies the data collection pulse (FIG. 3) to the interrupt controller 19, and the microprocessor 20 receives the output from the interrupt controller 19. T counter 16, ΔT counter 17 .
Read the contents of the direction determination flip-flop 18, store the data in the ROM/RAM 22, and then
1) The APU 23 performs numerical calculations based on the formula, and outputs the results via the D/A 24. Therefore D
/A output) The flow velocity value sampled every 10 m5ec is output.
以上述べたように本発明によれば流速値をサンプルする
度毎にまず気体の状態を反映する超音波の受信信号の振
巾を検出し、その結果に基いて、AGC回路の利得を制
御するため、安定に且つ適尚な振幅にて超音波信号を処
理することが出来るため高い流速の計測あるいは流速の
急敵な変化による気体の乱れの影響を受けることなく安
定に流速を計測出来る利点がある。As described above, according to the present invention, each time the flow velocity value is sampled, the amplitude of the received ultrasonic signal that reflects the state of the gas is first detected, and the gain of the AGC circuit is controlled based on the result. Therefore, the ultrasonic signal can be processed stably and at an appropriate amplitude, so it has the advantage of being able to measure flow velocity stably without being affected by gas turbulence caused by high flow velocity measurements or sudden changes in flow velocity. be.
第1図は本発明の一実施例のブロック図、第2図、第3
図はとの実施例の動作を説明するためのタイムチャート
である。
3.4・・・駆動回路、 5.6・・・超音波振
動子、7.8・・・受信回路、 11・・・ピ
ークホールド回路、9.10・・・AGC(ロ)路、
16・・・Tカウンタ、17・・・ΔTカウンタ
、18・・・方向判別フリップフロップ。FIG. 1 is a block diagram of one embodiment of the present invention, FIG.
The figure is a time chart for explaining the operation of the embodiment. 3.4... Drive circuit, 5.6... Ultrasonic transducer, 7.8... Receiving circuit, 11... Peak hold circuit, 9.10... AGC (b) path,
16...T counter, 17...ΔT counter, 18... Direction determination flip-flop.
Claims (1)
号を受信する送受信回路と、受信される超音波信号の信
号の大きさを計測する手段と、上記手段の出力により制
御されて利得を変える回路と、前記出力にシ超音波の伝
搬時間あるいは伝搬時間差を計測し、流速を求める超音
波呼吸流速計。A transducer attached to the flow path, a transmitter/receiver circuit that drives the transducer and receives the ultrasonic signal, means for measuring the magnitude of the received ultrasonic signal, and is controlled by the output of the above means. An ultrasonic respiratory current meter that includes a circuit that changes the gain and measures the propagation time or propagation time difference of ultrasonic waves in the output to determine the flow velocity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57088811A JPS58205817A (en) | 1982-05-27 | 1982-05-27 | Ultrasonic respiration current meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57088811A JPS58205817A (en) | 1982-05-27 | 1982-05-27 | Ultrasonic respiration current meter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58205817A true JPS58205817A (en) | 1983-11-30 |
Family
ID=13953272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57088811A Pending JPS58205817A (en) | 1982-05-27 | 1982-05-27 | Ultrasonic respiration current meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58205817A (en) |
-
1982
- 1982-05-27 JP JP57088811A patent/JPS58205817A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4425805A (en) | Respiration flowmeter | |
JP2987156B2 (en) | Speed measuring device | |
JP3023569B2 (en) | Method and apparatus for digitally measuring acoustic burst transit time in a fluid medium | |
JP3016511B1 (en) | Ultrasonic flow velocity measuring method and device | |
GB1472938A (en) | Doppler effect speed measuring apparatus | |
EP0141546A3 (en) | Method and apparatus for measuring fluid flow | |
US3901078A (en) | Ultrasonic system for fluid flow measurement | |
EP0142733A2 (en) | Ultrasonic rangefinder | |
JP3923330B2 (en) | Fluid temperature acoustic measurement arrangement and method | |
JP5467328B2 (en) | Flow measuring device | |
EP0051293B1 (en) | Respiration flowmeter | |
JPH1048009A (en) | Ultrasound temperature current meter | |
JPS58205817A (en) | Ultrasonic respiration current meter | |
JPH0133762B2 (en) | ||
JPH07160407A (en) | Distance measuring instrument and coordinate input device using the same | |
JP3117372B2 (en) | Ultrasonic distance measuring device | |
JP2007064792A (en) | Ultrasonic flow measuring instrument | |
JPH088417Y2 (en) | Ultrasonic flowmeter calibration device | |
JP2005300244A (en) | Ultrasonic flow meter | |
JPH0117090B2 (en) | ||
RU2195635C1 (en) | Method of measurement of level of liquid and loose media | |
RU2085858C1 (en) | Ultrasound method for detection of product volume which runs through pipe and device which implements said method | |
JP3465100B2 (en) | Vortex flow meter | |
JPS577576A (en) | Method of measuring moving velocity by ultrasonic wave | |
GB2099146A (en) | A phase difference flowmeter |