JPS58205260A - 符号化デ−タの誤り検出訂正方式 - Google Patents

符号化デ−タの誤り検出訂正方式

Info

Publication number
JPS58205260A
JPS58205260A JP57089314A JP8931482A JPS58205260A JP S58205260 A JPS58205260 A JP S58205260A JP 57089314 A JP57089314 A JP 57089314A JP 8931482 A JP8931482 A JP 8931482A JP S58205260 A JPS58205260 A JP S58205260A
Authority
JP
Japan
Prior art keywords
bit
error
code
encoded data
bits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57089314A
Other languages
English (en)
Inventor
Shigeo Kaneda
重郎 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57089314A priority Critical patent/JPS58205260A/ja
Publication of JPS58205260A publication Critical patent/JPS58205260A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/19Single error correction without using particular properties of the cyclic codes, e.g. Hamming codes, extended or generalised Hamming codes

Landscapes

  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Detection And Correction Of Errors (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)
  • Error Detection And Correction (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 本発明は、符号化データ中の1ビット誤り訂正・2ビッ
ト誤り検出・単一4ビットバイト誤り検出可能な誤り検
出訂正方式に関するものである。
汎用情報処理システムの主記憶装置では、装置の高信頼
化を目的として、誤り検出訂正方式の適用が不可欠であ
゛る。誤り検出訂正の対象は主として記憶素子であり、
誤り検出訂正6方式の適用によって、該記憶素子の故障
を救済するのである。ところで、周知のごとく、現状の
主記憶装置では、1個の記憶素子が有するデータ出力線
は1本である。従って、記憶素子が何らかの理由で破壊
されても、誤りは1ビツトの範囲に限定される。このた
め、現状の主記憶装置では、1ビット誤り訂正・2ビッ
ト誤り検出符号が適用され、ビット単位の誤りの救済が
行なわれている。
一方、LSI技術の進展とともに、複数ビット単位のデ
ータ出力線数を有する記憶素子が使用され今様になった
。この種の記憶素子では、素子に故障が生じると、その
素子から出力される複数ビットのデータ出力に誤りが波
及する恐れがある。
従って、今後の主記憶装置では、この複数ビット単位の
誤りを訂正または検出する符号を用いた誤り検出訂正方
式が必要となる。以下、この複数ビット(bビット)単
位の誤りをバイト誤りと呼ぶことにする。
従来、バイト誤りを訂正する符号は、例えば特開昭54
−57849号公報に開示されている。このバイト誤り
を訂正する符号は、装置の高信頼化のためには十分な機
能を有しているが、反面、付加しなげればならない冗長
ビット(検査ビット)が現□ 状の主記憶用符号の倍程度に達し厳しい経済化要・求の
もとで製造される汎用情報処理システムの主記憶装置用
符号としては問題点を残している。
このため、バイト誤りについては訂正せず、誤りの検出
にとどめたバイト誤り検出符号が提案されている。その
なかでも、現状の1ビット誤り訂正・2ビット誤り検出
符号に単一のバイト誤り検出能力を付加した1ビット誤
り訂正・2ビット誤り検出・単一バイト誤り検出符号(
Si(Igle ErrOrCorrecting −
Double Error De、tecting −
Singleb−bit byte Error De
tecting Code ;以下、略して5ED−D
ED−SbED符号と呼ぶ)が、実用的な符号として注
目されている。特に本符号は、検査ビット数が現状の1
ビット誤り訂正・2ビット誤り検出符号(SEC−DE
D符号)とほとんど、かわらぬため、経済的に主記憶装
置に適用できる。
信頼度解析によれば、1個の記憶素子が故障した時に、
2ビツト以上のバイト誤りとなる割合が10%以下であ
れば、5EC−DED−5bED符号を適用できる。も
し、この割合が数十%を越える場合には、経済性を犠牲
にしても、バイト誤り訂正符号を用(・ねばならない。
さて、S EC−D ED−5b ED符号の構成法は
、初めり、 C,Bossen等によって提案された(
例えば、昭和56年11月、金田重部著、電気通信学会
電子計算機研究会゛パリティチェックによりバイト誤り
を検出可能な5EC−DED−8bED符号の構成法゛
′参照)。しかし、このBossen等による5EC−
1)ED−8bED符号の構成法を用いて、もつとも実
用的な諸元と考先られるバイト長1)=4ビット、被符
号化データ長に二64ビットの5EC−1)ED−S4
ED符号を構成すると、その検査ビット数は9ビツトと
なる。
現状の5EC−DED符号の検査ビット数は、k=64
に対して、8ビツトであるから、5EC−DBD−84
ED符号の検査ビットはわずかに1ビツト増加している
にすぎない。しかし、現実には、この1ビツトの増加は
、冗長ビット(@査ビット)を記憶させるための記憶素
子数の増加をひきおこす。また、検査ビットやシンドロ
ーム(後述)は9ビツト幅となって、これらを一時的に
保持するレジスタや転送用のセレクタ等はすべて9ビツ
ト幅になる。高集積の論理LSIは、一般に8ビツトを
単位として作られている。この9ビツト幅の検査ビット
は、高集積論理LSIとの整合性が悪(・。この様な理
由から、従来技術による9ビツトの検査ビットを有する
SE、C−DED−34ED符号は、実用上許容しかた
(・ものである。
上記観点から、本発明者は新しいバイト誤り検出符号の
構成法を特願昭57−3.3403号にお(・て提案し
た。第2図は、この構成法によって得たバイト長り=4
ビット、被符号化データ長に=64ビットのS EC−
DED−84ED符号の例である。第2図はパリティ検
査行列(Hマトリクス)であり、例えば検査ビットCO
の値は、下から2行目の行にお(・て「1」と記入され
たDo−D22までのデータ(合計23ビツト)の排他
的論理和として作成される。検査ビットCo −C7は
8ビツトあり、データピントDo −D63は合計64
ピントある。これから明らかなように、検査ピントは9
ビ、ットから8ビツトに減少し、従来技術の問題点は改
善されている。
しかしながら、第2図の構成法を用(・でも以下に述べ
る問題点を残している。
−1)  第2図の符号では、チェックビットC7を作
成するためには、チェックビットCO,C1の値が必要
となる。このため、検査ビット生成速度は、現在広く用
℃・られている5EC−DED符号に比べて遅延し、装
置動作速度の低下をまねく。
(2)ハリティ検査マトリクス(Hマトリクス)にモジ
ュラな繰返し性がなく、符号化・復号化回路のLSI化
に不向きである。なお、現状の5EC−DED符号では
、はとんどの商用装置においてモジュラな繰返し性のあ
る符号を用(・ている。
(3) Hマトリクスの重み(1の数)が最小となる最
小重み符号は、符号化・復号化回路のゲート量、遅延が
最小となる。しかし、本発明者による前記構成法を用(
・でも、検査ビットが6以下の場合のみ最小重み符号が
得られ、検査ビットがそれ以上では最小重みとはならな
い。Bossen等による従来の構成法では、さらに重
みは大きくなってしまう。
本発明は上記従来の欠点を除去し、同一検査ビット数に
対して従来から知られているどの5ECDED−84E
D符号よりも長い符号長を有するS EC−DED−8
4ED符号による誤り検出訂正を可能とし、さらに符号
化・復号化回路のゲート量を最小化する誤り検出訂正方
式を提供することにある。以下、図面について本発明の
内容を詳細に説明する。
第1図は誤り検出訂正方式の一般的ブロック図である。
第1図において、1は被符号化データであり、該被符号
化データ1が検査ビット生成回路10は入力され、検査
ビット2が生成される。従って、検査ビット生成回路1
0は符号化回路と言える。被憶装置などから読み出され
て誤りを含む可能性のある符号語3はンンドローム生膚
回路]1に入力され、シンドローム情報4が生成される
。このシンドローム情報4は誤りのビット位置を示す情
報を含んでおり、シンドロームデコード回路12によっ
て誤りビット位置指摘信号5となる。又、誤り検出回路
14は7ンドローム情報4から誤りの発生を報告する信
号7を生成する。誤りを含む可能性のある被符号化デー
タ1は誤り訂正回路13に送られ、誤りビット位置指摘
信号5に従って誤りのビットを反転することにより、−
誤りの修正された被符号化データ6となる。
第2図は先にも説明したように、本発明者が特願昭57
−33403号で提案した符号例で、5EC−DED−
84ED符号としては従来提案されているもつとも優れ
た構成法と考えられる。この構成法では、8ビツトの検
査ビットに対して96ビツトの符号長を有する符号が得
られる。第2図の符号は、この96ビツトの符号長を持
つ符号を短縮したものである。
第2図において、符号は64ビツトのデータDO〜D6
3と8ビツトの検査ビットCo −C7から成る。
これらの情報は4ビツトずつ区切られ、18個の・く、
イトを構成している。検査ピッ) Co −C7の位置
は、周知のごとく変更可能である。例えば第2図におい
て、COと示されているビット位置を検査ビットCOと
し、COと示されているビット位置をデータヒツトDo
としてもよい。いずれにせよ、72ビツトの符号長中の
8ビツトは検査ビットとして使われる。ここで、72ビ
ツトの情報を4ビツト毎に区切って、Do、Dl・・D
l7であられすことにする。即ち、4ビツト毎に区切ら
れた情報では添字を下つきとしてあられす。第2図の例
では、Do=(I)Q、 DI、D2.03)、DJ=
(D4、D5、D6、D7 )・・ となる。D1〜D
17から成る符号語IDは、ID = (D、、 D、
、D2− Dl7 )として与えられる。
IDの中の8ビツトの検査ビットは、Hをパリティ検査
マトリクスとすると、 H・ID’二@を 但し、■は8要素のオール゛°o゛列ベグトルtは転置 となるように定められる。一方、この符号化データID
の干に誤りが含まれている可能性のあるものをID’と
すると、シンドロームは H・+D′t= S で与えられる。この符号はS’EC−DED−84ED
符号であるから、ID中に生じた1ビット誤りを訂正で
き1、任意の2ビット誤りを検出でき、さらに1個のり
、(0<p<17)に生じた3ビツト、4ビツトのバイ
ト誤りを検出できる。
さて、本発明は検査ビットrが偶数のとき、新しい5E
C−DED−84ED符号による誤り検出訂正方式を提
供するものである。こ−で、パリティ検査マトリクスH
が定められると、符号化・復号化回路は容易に構成でき
るので、以下では、主にHマトリクスの構成法につ(・
て述べる。
(1)r//2ビットの要素を持つ2進列ベクトルgを
定める。gは任意であるが、最終的に生成されるHマト
リクスの重み(1の数)を少な(するためには、g =
 alF下“が舅ましい。
(2)次に5ビツトの要素を持つ列ベクトルf、を求め
る。但し、gが偶数重みであればf9は奇数重みでなげ
ればならず、gが奇数重みであれば、f。
%=4では、g□Jf、として以下のものを用いて説明
してゆく。
■−1 但し、l\J、0く1、」<22−1である。このf・
、f かも次のr行4列マトリクスTI、1.を、I 
   J 作成する。
(4)  −h  から−hFJ中の3個の列ベクトル
を加えた1、J ものをその列ベクトルとするr行4列のマ) IJりか
ら次のHマトリクスを作る。但し、l←j、0<i、 
 j<lである。
この時、次の性質が成立する。
〔性質1〕 上式(3)で与えるHマ) IJクスを有する符号は5
EC−DED、、−84ED符号であり、その符号長r
−1[ はn=(2−22)で与えられる、符号は奇数重み列の
条件を満足する。
〔性質2〕 バイト誤りeに対するシンドロームe−hi1.ヲ上下
に半分に等分し、これをs、s’とすると、訂正可能な
誤り(eの重みが1)に対しては5〜gがつS’4gと
なる。一方、訂正不能な3ビット誤りが生じているとき
にはs=g又はs′二gとなる。
上記性質2は、シンドロームが奇数重みのときに、バイ
ト内の3ビット誤りと1ビット誤りを区別するために有
用である。
〔性質3〕 gとしてal l HII+をえらぷと、式(3)で与
えられる5EC−DED−34ED符号のHマトリクス
の重みは、r=4.6.8に対して、同一符号長の最小
重み5EC−DED符号の重みに等しく、5EC−DE
D−S4ED符号としても最小重みである。
上記性質3は任意の符号長に対して最小重みの符号が得
られることを主張するものではない。しかし、実際に本
提案の構成法によって得られた符号から列ベクトルなぬ
き出して任意の符号長を有−jるS EC−DED−3
4ED符号を作ると、多くの符号長において最小重みと
なる。後述するr=8ビットの場合には、符号長n−1
6、加、24、あ、32.36.40.88.92.9
6.100.104.108.112ビツトに対して最
小重みとなる。
第3図に本発明のバイト誤・り検出符号の構成を示す。
第3図(a)は4=4の時の”’+Jをすべて列挙して
マトリクスとして示した図である。第3図(b)はこの
第3図(a)から得られたHマトリクスである。
符号長は112ビツトあり、従来のBossen等の符
号よりもl、75倍長く、本発明者による特願昭57−
33403号の符号よりも1,2倍長い。第3図(C)
は第3図(b)の符号の行ベクトルの順序を入れかえ、
しかもバイト間でマトリクスを入れかえたものである。
なお、■は検査ビット位置を示す。あるバイトのマトリ
クスを列方向(上下方向)に2ピツトずつ巡回的に置き
かえてゆくと、通常、他のバイトのマトリ、クスが生成
されること1が図かられかる。このようなモジュラな性
質は本発明の構成法に特有であり後述するように符号化
・復号化回路のLSI化に適する。
次の第1衣は不発明の符号と匠来のBossen  を
二よる1+ち、及び本発明者が特願昭57− a340
3  号で透茶した符笥を−tS威したものである。
第1表 これから、不発明の符号が既存のどのような符号に比べ
ても犬ぎなイ=f号長を持つことがわかる。
TIお言うまでもン工<、符号は最大符号長ではなく、
Hマトリクスかりタリをぬき出して短縮化して用いるこ
とυ・できる。これは、ぬぎ出した夕IJに相当するビ
ットをギに0″として、最大付号景の符号を用いている
と劣えることもできる。
弔4;メ1は本発明に用いるバイト長り=4ビット、デ
ータ長に=64ビットの5BC−L)ED−84HD符
号の例であり、第3図(C)から構成された倹延ビット
CO〜C7と被符、号化データDo−D63からシンド
ローム8ビツト(So、81.・・・87)が作られる
。第4因ではHマトリクスの右上半分と左下半分は一致
し、右1半分と左上半分が一致していることに注意され
たい。このことは、υ0=−D31、Co−C5のため
に作しれた巳回路が、そのままD32〜D63、C4〜
C7のために利用できることを示している。
次に第1図において、本発明を適用した場合の各部・の
具坏的構成例についそ説明する。
弗5凶は第4図の符号にもとづいて構成されたシンドロ
ーム生成回[11の芙施例である。該シンドローム生成
回路は多入力の排他的瑞埋和(X−O几)ゲートから構
成される。この多入力のX−0几ゲートは、2人力排他
的OR換算では5段と°なる。この段数は、現在広く用
いられている同じ符号長の最小重み5EC−DED符号
と同じである。弔5図のLgl路は、CO〜C7に同も
入力しなければ検音ビット生成回路IOとなる。第5図
からはやや読み取りにくいが、SO〜S3を作成するX
−0aゲートEおいて、1)O−D31の代りにD32
〜I)63を人力し、032〜IJ63の代りニD 0
−jL131 全入力し、更に、Co〜C3とC4〜C
7を入れかえると、5o−83を出力すべき出力からは
84〜S7がイモ族される。従って、第5図の回路は容
易に2個の同一回路に分割できる。即ち、回路のLSI
化に適する。
第6図1aJ〜(CJはノンドロームデコード回w、1
2の構成1+l」である。即ら、ンンドロームSO〜S
7から誤りビットg直指摘1M号EO〜Eci3、EC
4〜EC7を生成する。ここで、例えばEO=1である
とデータビット1)0(:mりがあることを示し、ac
o=1であると検査ビットCO(二誤りが生じているこ
とを示す。このノンドロームデコード回始においても、
E O−1!;31 J”、E CO〜EC3を生成1
−る回路において、SO〜′S3とS4〜δ7を父換す
ると、そのまずE31〜E63、EC4〜EC7を生成
する回路となり、回路のLSi化(二連する。
第7図は誤り検出回路14であり、第4図又は第3図(
c)の符号に用いることができる。第7図を見れば明ら
かな様に、不発明のバイト誤り検出符号では、バイト誤
りを少ないゲート数で検出できる。
し上述べたように、本発明の誤り検出訂正方式では、バ
イト長すは4に固定されているが、次のような効果が得
られる。
(1)  従来知られている符号に比べて長い符号長を
有する5EC−DELI−LS4ED、l−f号を構成
できる。
(2)  用いられる符号が最小重みの条件を満足下Φ
ため、符号化・復号化のために必要ン′よゲーIL遅延
を最小化できる。
(3)  ンンドロームな2分し、その各々にある符定
のビットパターンが生じているか否かによって、訂正可
能な誤りと訂正できないバイト内3ビット誤りとを区別
で′きるため、誤りの検出が少いゲート量で高速に実現
できる。
【図面の簡単な説明】
第1図は誤り検出訂正方式の一般的ブロック図、第2図
は従来のバイト誤り検出4”f号の−yllを示す図、
第3・凶は本発明のバイト誤り疾吊符号の構成法?示す
図、第4図()本発明のバイト誤り検出1寸号の一例を
示す図、第5図は本発明によるノンドa−ム生成回給の
惧成汐りを示す図、第6図は同じくンンドロームデコ・
−ド1白路の構成1511を示す図、第7図は同じく誤
り検出・開始の、溝成例を示す図である。 1・・r+号化データ、2・・・検査ビット、3・・・
符号化データ、4・・/ンドローム、5・・誤りビット
位置指摘信号、6・・・誤り訂正後の扱符号化データ、
7・・・誤り検出報告信号、10・・検萱ビット庄成U
路、11・・ンンドローム’IE * li!l’tl
r、12・・二7ンドロームデコード回路、13・・・
誤り訂正回路、14・・・誤り検出回路。 代理人 弁理士 鈴 木   誠 第1 図

Claims (1)

    【特許請求の範囲】
  1. (1)4以上の偶数rに対して、晟ビットの要素を持つ
    任意の2進列ベクトルgを定め、該g中に奇数個の1が
    ある時には偶数個の1を、該g中に偶数個の1がある時
    には奇数個の1を有する4ビツト要素の列ベクトルfq
     (q = Oll、2・・・、2v−’ −2、−1 22−1,)を作成し、該f、を取り出して(これをニ
    ー1 fi、  fjとする。但し0≦F3≦22−1、l師
    Jであ(召=22−1) で与えられるr行(2r−1−22’)列・くリテイ検
    査行列Hに対して、 4ビツトのデータ(これをDpとする)複数イ固力・ら
    構成されたn F (2r−’ −2’2 )ビットの
    2進符号化テータ1D=(Do、Dl−DrL、2、D
    r+−1)中のrビット4 の検査ビットCを H−IDt=O’  (Oはrビットの0゛′からなる
    °タ1jベクトルtは転置を示す。) を満足する様に生成する手段と、 上記符号化データIDに誤りが重畳して(・る恐れのあ
    る符号化データをXD′とする時に、該10’力・1ち
    rビットのシンドロームSを St : H−ID′t に従って生成する手段と、 上記シンドロームから誤りビット位置を指定する信号を
    作り出す手段と、 上記該シンドロームから符号化データID’中に誤りが
    生じていることを検出する手段と、上記誤りビット位置
    を指定する信号に従って、符号化データID’中の誤り
    を訂正する手段とを設け、上記符号化データILI’中
    に生じた1ビツトの誤りを訂正し、2ビツトの誤りを検
    出し、がっ、4ピツトのデータDo−DΩ−1中の1個
    のDp中に生じた3ビット以上の誤りを検出することを
    特徴とする、符号デ″−夕の誤り検出訂正方式。
JP57089314A 1982-05-26 1982-05-26 符号化デ−タの誤り検出訂正方式 Pending JPS58205260A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57089314A JPS58205260A (ja) 1982-05-26 1982-05-26 符号化デ−タの誤り検出訂正方式

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57089314A JPS58205260A (ja) 1982-05-26 1982-05-26 符号化デ−タの誤り検出訂正方式

Publications (1)

Publication Number Publication Date
JPS58205260A true JPS58205260A (ja) 1983-11-30

Family

ID=13967200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57089314A Pending JPS58205260A (ja) 1982-05-26 1982-05-26 符号化デ−タの誤り検出訂正方式

Country Status (1)

Country Link
JP (1) JPS58205260A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6920588B1 (en) * 2002-04-08 2005-07-19 Sanera Systems Inc. Transmitting data in a communication network
US6968491B1 (en) * 2002-04-08 2005-11-22 Sanera Systems Inc. Generating a check matrix for error correction
US7539929B1 (en) 2002-04-08 2009-05-26 Brocade Communications Systems, Inc. Error correction for data communication

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6920588B1 (en) * 2002-04-08 2005-07-19 Sanera Systems Inc. Transmitting data in a communication network
US6968491B1 (en) * 2002-04-08 2005-11-22 Sanera Systems Inc. Generating a check matrix for error correction
US7539929B1 (en) 2002-04-08 2009-05-26 Brocade Communications Systems, Inc. Error correction for data communication

Similar Documents

Publication Publication Date Title
Ramabadran et al. A tutorial on CRC computations
JP4036338B2 (ja) 誤りバイト数を制限したバイト内複数スポッティバイト誤り訂正・検出方法及び装置
US4345328A (en) ECC Check bit generation using through checking parity bits
US4402045A (en) Multi-processor computer system
CA1265253A (en) Self-checking error-correcting encoder/decoder
JPS60163138A (ja) エラ−訂正方式
US8117526B2 (en) Apparatus and method for generating a transmit signal and apparatus and method for extracting an original message from a received signal
CN111078460B (zh) 一种快速纠删码计算方法
JPS6115238A (ja) エラ−訂正方法
BR112012003688B1 (pt) Métodos e equipamento empregando códigos fec com desativação permanente de símbolos para processos de codificação e decodificação
JPH05108495A (ja) データ用誤り訂正検出方法及びコンピユータ・メモリ用 誤り検出回路
US5691996A (en) Memory implemented error detection and correction code with address parity bits
JPS6349245B2 (ja)
EP0793174A3 (en) Error detection and correction method and apparatus for computer memory
JPS61139846A (ja) 誤り訂正・検出方式
JPH0736717A (ja) 単一記号エラーと単一ビット・エラー検出のためのエラー訂正方法及び装置
US3622984A (en) Error correcting system and method
US20140013181A1 (en) Error Correction Coding Using Large Fields
US20020188909A1 (en) Symbol level error correction codes which protect against memory chip and bus line failures
CN102096610B (zh) 利用纠错码和同步信息的数据行存储及传输
US3562709A (en) Correction of block errors in transmission of data
JPS58205260A (ja) 符号化デ−タの誤り検出訂正方式
JP2732862B2 (ja) データ伝送試験装置
JPH0345020A (ja) 巡回符号処理回路
JPS61277230A (ja) 誤り検出訂正符号発生方式