JPS58204947A - Feedback control method for air-fuel ratio - Google Patents
Feedback control method for air-fuel ratioInfo
- Publication number
- JPS58204947A JPS58204947A JP8858682A JP8858682A JPS58204947A JP S58204947 A JPS58204947 A JP S58204947A JP 8858682 A JP8858682 A JP 8858682A JP 8858682 A JP8858682 A JP 8858682A JP S58204947 A JPS58204947 A JP S58204947A
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel ratio
- output signal
- atmospheric pressure
- feedback control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は内燃エンジンの空燃比帰還制御方法に関する。[Detailed description of the invention] The present invention relates to an air-fuel ratio feedback control method for an internal combustion engine.
内燃エンジンにおいては、排気系に設けられた酸素濃度
センサの出力に基づいて積分処理等による制御量を算出
し、その制mmに応じて混合気の空燃比を適正値に制御
する空燃比帰還制御装置が設けられる場合がある。In internal combustion engines, air-fuel ratio feedback control calculates a control amount through integral processing etc. based on the output of an oxygen concentration sensor installed in the exhaust system, and controls the air-fuel ratio of the mixture to an appropriate value according to the control amount. Equipment may be provided.
エンジン搭載の車両の高地走行の場合には大気圧が平地
に比べて小さくなるので絞弁の開度が同一であっても吸
入空気M量は平地に比べて小さくなり混合気の空燃比が
リッチとなってしまう。吸入空気宙吊の減少はエンジン
出力の低下を招くので、平地と同様の走行をするために
は平地より絞弁の開度を大きくしなければならず使用さ
れる絞弁の開度の変動幅は高地はど大きくなる。このこ
とににり気化器に、13いては絞弁の開度を大きくする
為にブライコリ系のメイン側面から更にはセカンダリ系
から燃r1を供給Mるような領域で運転することにl−
、す、平地におIJる空燃比より更に濃厚な空燃比の混
合気が供給される。よって平地走行時より理論空燃比か
らの空燃比のずれが濃厚側にかなり人きくなる為に空燃
比の変動幅も平地より大きくなるので、予め設定されて
いた単位時間当りの空燃比の調整量では、濃厚側の空燃
比の混合気を供給する時間が長くなり空燃比を帰還目標
値にする帰還制御に遅れを生ずる。従って空燃比を目標
値に補正するために高地にお〔プる空燃比補正の高速化
が要求される。When a vehicle equipped with an engine drives at high altitudes, the atmospheric pressure is lower than on flat ground, so even if the throttle valve opening is the same, the amount of intake air M is smaller than on flat ground, and the air-fuel ratio of the mixture becomes richer. It becomes. Decrease in intake air suspension causes a decrease in engine output, so in order to drive in the same way as on flat ground, the opening of the throttle valve must be larger than that on flat ground, and the range of variation in the opening of the throttle valve used It gets bigger in the highlands. For this reason, in order to increase the opening degree of the carburetor and the throttle valve, we decided to operate in a region where fuel r1 is supplied from the main side of the Bricoli system and further from the secondary system.
The air-fuel mixture is supplied with a richer air-fuel ratio than the air-fuel ratio found on flat ground. Therefore, when driving on flat ground, the deviation of the air-fuel ratio from the stoichiometric air-fuel ratio becomes much more concentrated on the rich side, and the fluctuation range of the air-fuel ratio is also larger than on flat ground, so the amount of adjustment of the air-fuel ratio per unit time that was set in advance is In this case, the time required to supply the air-fuel mixture with the richer air-fuel ratio becomes longer, resulting in a delay in feedback control to bring the air-fuel ratio to the feedback target value. Therefore, in order to correct the air-fuel ratio to the target value, it is necessary to speed up the air-fuel ratio correction at high altitudes.
更に、エンジン運転状態、例えばエンジン負荷或いはエ
ンジン回転数の変化により気化器等の燃料供給手段から
供給される混合器の空燃比を吸気管、燃焼室、排気管を
通じて酸素濃度センサの出力信号により判断するまでの
応答時間が変化するため高負荷或いは高回転時の応答遅
れを防ぐことが望まれている。Furthermore, the air-fuel ratio of the mixer supplied from the fuel supply means such as the carburetor is determined based on the output signal of the oxygen concentration sensor through the intake pipe, combustion chamber, and exhaust pipe depending on the engine operating state, for example, changes in engine load or engine speed. Since the response time required for this change varies, it is desirable to prevent response delays during high loads or high rotations.
そこで、本発明の目的は、高地における空燃比補正の高
速化を図った空燃比帰還制御方法を提供でることである
。更にはその空燃比補正の速度をエンジンの運転状態に
応じて適切に設定するようにした空燃比帰還制御方法を
提供することである。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an air-fuel ratio feedback control method that speeds up air-fuel ratio correction at high altitudes. Another object of the present invention is to provide an air-fuel ratio feedback control method in which the speed of air-fuel ratio correction is appropriately set depending on the operating state of the engine.
本発明による空燃比帰還制御方法においては、大気圧の
大きさに応じて積分処理の積分定数を変1:1・′::
。In the air-fuel ratio feedback control method according to the present invention, the integral constant of the integral process is changed according to the magnitude of atmospheric pressure to 1:1.'::
.
化させるようになされている。更には該積分定数をエン
ジンの運転状態に応じて変化させるようになされている
。It is designed to make it easier to understand. Furthermore, the integral constant is changed depending on the operating state of the engine.
以下、本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.
第1図においで、酸素1III(jセンサ1は内燃エン
ジン(図示せず)の1気系に設【プられ排気ガス中の酸
素温度を横用りるJ:うになされている。酸素濃度セン
サ1の出力端には制御回路2が接続され、制御回jf1
2はマイクロ1ンビコータからなり酸素濃度センサ1の
出力信号に基づいた制御間を表わす制御信号を発生覆る
ようになっている。また制御回路2には高地補正用に大
気圧センサ3及びエンジンの運転状態にJこる補正用と
してエンジン回転数センサ”4が接続され、後述する制
御動作により制mt量を高地補正及びエンジン運転状態
によって補正するように°bなっている。制御回路2の
出力端には駆動回路5を介して燃料供給手段に設けられ
た空燃比調整装置6が接続され、空燃比調整装置6は制
御信号に応じて例えば、気化器のエアブリードの開口面
積番制御する針弁を駆動することにより混合気の空燃比
を調整するようになされている。In Fig. 1, an oxygen concentration sensor 1 is installed in the 1-gas system of an internal combustion engine (not shown) and uses the oxygen temperature in the exhaust gas. A control circuit 2 is connected to the output terminal of the control circuit jf1.
Reference numeral 2 is a micro-coater which generates a control signal representing a control period based on the output signal of the oxygen concentration sensor 1. Also connected to the control circuit 2 are an atmospheric pressure sensor 3 for high altitude correction and an engine rotation speed sensor 4 for correction of engine operating conditions. The air-fuel ratio adjusting device 6 provided in the fuel supply means is connected to the output end of the control circuit 2 via the drive circuit 5, and the air-fuel ratio adjusting device 6 receives the control signal. Accordingly, for example, the air-fuel ratio of the air-fuel mixture is adjusted by driving a needle valve that controls the opening area number of the air bleed of the carburetor.
次に、制御回路2の動作を第2図の動作フロー図を用い
て説明する。Next, the operation of the control circuit 2 will be explained using the operation flow diagram of FIG.
制御回路2は動作を開始すると、先ず、大気圧センサ3
の出力信号を読み取る(ステップ1)。When the control circuit 2 starts operating, first, the atmospheric pressure sensor 3
Read the output signal of (step 1).
次いで、回転数センサ4の出力信号を読み取り(ステッ
プ2)、大気圧センサ3の出力信号レベル及び回転数セ
ンサ4の出力信号レベルから積分定数を決定する(ステ
ップ3)。この積分定数は予めROM等のメモリに記憶
され、大気圧センサ3の出力信号レベル及び回転数セン
サ4の出力信号レベルに応じて各々テーブル索引された
後、演算されても良く、更にはそれら両方の出力信号レ
ベルに応じてマツプから読み出されても、演算されて求
められても良い。この積分定数は大気圧が小さくなるほ
ど大なる数値となると共にエンジン回転数が低いほど小
さい数値に設定される。次に、酸素濃度センサ1の出力
信号を読み取る(ステップ4)。そして酸素濃度センサ
1の出力信号レベルからエンジンに供給された混合気の
空燃比がリッチであるかリーンであるかを判断する(ス
テラ5−
ブ5)。空燃比がリッチであればリーン方向に、またリ
ーンであればリッチ方向に空燃比を制御すべきである制
御信号を1内分定数を基に決定する(ステップ6.7)
。そして、この信号に応じて針弁駆動装置、例えばパル
スモータに与える駆動信号を発生する(ステップ8)。Next, the output signal of the rotation speed sensor 4 is read (step 2), and an integral constant is determined from the output signal level of the atmospheric pressure sensor 3 and the output signal level of the rotation speed sensor 4 (step 3). This integral constant may be stored in a memory such as a ROM in advance, and may be calculated after being looked up in a table according to the output signal level of the atmospheric pressure sensor 3 and the output signal level of the rotational speed sensor 4, or even both of them. It may be read out from a map or calculated and determined according to the output signal level of the map. This integral constant becomes a larger value as the atmospheric pressure decreases, and is set to a smaller value as the engine speed decreases. Next, the output signal of the oxygen concentration sensor 1 is read (step 4). Then, it is determined from the output signal level of the oxygen concentration sensor 1 whether the air-fuel ratio of the air-fuel mixture supplied to the engine is rich or lean (Stella 5-B 5). A control signal that should control the air-fuel ratio in a lean direction if the air-fuel ratio is rich, and in a rich direction if it is lean, is determined based on the division-within-one constant (step 6.7).
. Then, in response to this signal, a drive signal is generated to be applied to a needle valve drive device, for example, a pulse motor (step 8).
駆動パルス当りの回転角度が一定であるパルスモータへ
の単位時間当りの駆動パルス数は駆動信号の大きさ、換
言すれば積分定数応じて変化する。The number of drive pulses per unit time to a pulse motor whose rotation angle per drive pulse is constant varies depending on the magnitude of the drive signal, in other words, the integral constant.
この結果、大気圧が小さくなるほど更にエンジン回転数
が大きくなるほど積分処理速度は大きくなり、積分処理
による単位時間当りの制御信号の変化量が大ぎくイTる
故、空燃比調整装置6の単位時間当りの空燃11;変化
量も大きくすることができる。よって、大気圧が小さい
場合又はエンジン回転数の大きい場合の急速な空燃比補
正が可能となるのである。As a result, as the atmospheric pressure decreases and the engine speed increases, the integral processing speed increases, and the amount of change in the control signal per unit time due to the integral process becomes large. The amount of change in air/fuel per unit 11 can also be increased. Therefore, rapid air-fuel ratio correction is possible when the atmospheric pressure is low or when the engine speed is high.
第3図は本発明の他の実施例を示している。第3図にお
いて、破線で囲んだ部分は第1図の制御回路2に相当す
る部分である。大気圧センサ3の6−
出力端にはバッファ7を介してV−F(電圧−周波数)
変換器8が接続されている。またエンジン運転状態の検
出をなす回転数センサ4の出力端にはバッファ9が接続
されている。一方、酸素濃度センサーの出力端にはバッ
ファ’IOを介して空燃比を判定する比較回路11が接
続されている。比較回路11には判定用の基tp−電圧
Vrが供給され、比較回路11は例えばバッファ10の
出力電圧がM準電圧Vrより小のとき空燃比がリーンで
あるとして出力を低レベルに、大のとき空燃比がリッチ
であるとして出力を高レベルにするようになっている。FIG. 3 shows another embodiment of the invention. In FIG. 3, the portion surrounded by a broken line corresponds to the control circuit 2 in FIG. Atmospheric pressure sensor 3's 6- output terminal is connected to V-F (voltage-frequency) via buffer 7.
A converter 8 is connected. Further, a buffer 9 is connected to the output end of the rotation speed sensor 4 which detects the engine operating state. On the other hand, a comparison circuit 11 for determining the air-fuel ratio is connected to the output end of the oxygen concentration sensor via a buffer 'IO. The comparison circuit 11 is supplied with a reference tp-voltage Vr for determination, and for example, when the output voltage of the buffer 10 is smaller than the M quasi-voltage Vr, the comparison circuit 11 determines that the air-fuel ratio is lean and changes the output to a low level or a high level. When the air-fuel ratio is rich, the output is set to a high level.
比較回路11の出力端には駆動パルス発と1[回路12
が接続され、駆動パルス発生回路12は比較回路11の
出力信号と別に供給されるV−F変換器8の出力パルス
とバッファ9の出力信号とに応じて前述の方法により単
位時間当りの駆動パルス発生数すなわち積分定数を求め
該駆動パル:11::1・・
ス発生数に応じた駆動パルスを発生するようになってい
る。駆動パルスは駆動回路13を介してパルスモータ−
4に供給されるようになされており、パルス■二一夕1
/I l;L 1回の駆動パルスの供給毎に所定の角
度だ(〕回転し、その回転方向は比較回路11の出力信
号によって定まるようになっている。The output terminal of the comparator circuit 11 has a drive pulse generator and a circuit 12.
is connected, and the drive pulse generation circuit 12 generates drive pulses per unit time in accordance with the output signal of the V-F converter 8 and the output signal of the buffer 9, which are supplied separately from the output signal of the comparator circuit 11, in accordance with the above-mentioned method. The number of generated pulses, that is, the integral constant, is determined and a driving pulse corresponding to the number of pulses generated is generated. The drive pulse is sent to the pulse motor via the drive circuit 13.
It is designed to be supplied to 4 pulses, and the pulse
/I l;L It rotates by a predetermined angle every time a drive pulse is supplied, and the direction of rotation is determined by the output signal of the comparator circuit 11.
パルスモータ14の回転軸(図示せず)には回転運動を
回転軸方向の上下運動に変換する、例えば台形ネジ等の
ギヤIll構からなる運動変換器15が設けら()てい
る。運動変換器15の変換出力端には気化器の補正空気
通路16に設けられた針弁17が接続され、副弁17に
よって補正空気通路16の開口面積が変化するJ:うに
なされている。なお、1/Iないし17が第1図の空燃
比調整装置6に相当づる。A rotation shaft (not shown) of the pulse motor 14 is provided with a motion converter 15 formed of a gear Ill structure, such as a trapezoidal screw, for converting rotational motion into vertical motion in the direction of the rotation shaft. A needle valve 17 provided in a correction air passage 16 of the carburetor is connected to the conversion output end of the motion converter 15, and the opening area of the correction air passage 16 is changed by the sub valve 17. Note that 1/I to 17 correspond to the air-fuel ratio adjusting device 6 in FIG.
かかる構成において、駆動パルス発生回路12は比較回
路11の出力信号に応じて発生する駆動パルスの発生順
序、すなわち空燃比の制御方向を決定し、V−Fla換
器8の出力パルス及びバッファ9の出力信号に応じて単
位時間当りの駆動パルス発生数、すなわち積分定数を決
定する。V−F変換器8は第4図に示JJ:うな特性を
有しており、大気圧が低くなる稈V−F変換器8の出力
パルスの発生周波数が大となり、駆動パルスの単位時間
当りの発ケ数も多くなる。このため、比較回路11の出
力信号が第5図(ωに示すような波形の場合、パルスモ
ータ14の回転による針弁17の移動は大気圧が高いと
き及び低いときについて各々第5図(b3 (C)に示
す如くなり、大気圧が低くなる程単位時間当りの駆動パ
ルス発生数が多くなり駆動パルスの発生間隔が短くなる
ので針弁17の単位時間当りの移動範囲が大きくなる。In this configuration, the drive pulse generation circuit 12 determines the generation order of the drive pulses generated according to the output signal of the comparison circuit 11, that is, the control direction of the air-fuel ratio, and determines the output pulse of the V-Fla exchanger 8 and the output pulse of the buffer 9. The number of drive pulses generated per unit time, that is, the integral constant, is determined according to the output signal. The V-F converter 8 has the characteristic shown in FIG. The number of shots will also increase. Therefore, when the output signal of the comparator circuit 11 has a waveform as shown in FIG. 5 (ω), the movement of the needle valve 17 due to the rotation of the pulse motor 14 is as shown in FIG. As shown in (C), as the atmospheric pressure decreases, the number of drive pulses generated per unit time increases and the interval between drive pulses is shortened, so that the movement range of the needle valve 17 per unit time becomes larger.
よって、大気圧の大きさに応じて中位時間当りの空燃比
の補正量が変化するのである。Therefore, the amount of correction of the air-fuel ratio per intermediate time changes depending on the magnitude of the atmospheric pressure.
このように、本発明による空燃比帰還制御方法によれば
、大気圧の大きさに応じて積分処理の積分定数が変化さ
れるため、高地における空燃比補正の高速化を図ること
ができるのである。更に、エンジン運転状態に応じて、
すなわち高負荷、高エンジン回転数においても積分定数
を大きくさせたのでフィードバック系の制御応答遅れを
回避できる。As described above, according to the air-fuel ratio feedback control method according to the present invention, the integral constant of the integral process is changed according to the magnitude of atmospheric pressure, so it is possible to speed up the air-fuel ratio correction at high altitudes. . Furthermore, depending on the engine operating condition,
In other words, since the integral constant is made large even under high loads and high engine speeds, delays in control response of the feedback system can be avoided.
9−
第1図は本発明による空燃比帰還制御方法を用いた制御
装置のブロック図、第2図は第1図の制御回路の動作フ
11−図、413図は本発明の他の実施例を示すブロッ
ク図、第4図は第3図のV−F変換器の変換特性図、第
5図は第3図の回路の各部の動作波形図である。
主要部分の符号の説明
1・・・・・・酸素m度しンリ−
2・・・・・・制御回路
3・・・・・・大気圧センサ
4・・・・・・回転数センサ
6・・・・・・空燃比調整装置
14・・・・・・パルスモータ
15・・・・・・運動変換器
16・・・・・・補正空気路
17・・・・・・針弁
出願人 本口]技研工業株式会社
代理人 弁理士 藤村元彦
10−
械−Y−4−ヒ
8 名 8
+/+J9- Fig. 1 is a block diagram of a control device using the air-fuel ratio feedback control method according to the present invention, Fig. 2 is an operational diagram of the control circuit of Fig. 1, and Fig. 413 is another embodiment of the present invention. 4 is a conversion characteristic diagram of the V-F converter of FIG. 3, and FIG. 5 is an operation waveform diagram of each part of the circuit of FIG. 3. Explanation of symbols of main parts 1...Oxygen level 2...Control circuit 3...Atmospheric pressure sensor 4...Rotational speed sensor 6 ... Air-fuel ratio adjustment device 14 ... Pulse motor 15 ... Motion converter 16 ... Correction air path 17 ... Needle valve applicant Hon. Mouth] Giken Kogyo Co., Ltd. Agent Patent Attorney Motohiko Fujimura 10- Machine-Y-4-hi 8 people 8 +/+J
Claims (2)
ンサの出力信号に基づいた積分処理による制御信号を発
生し、該制御信号に応じて混合気の空燃比を調整する空
燃比帰還制御方法であって、大気圧の低下に応じて前記
積分処理の積分定数を大きくすることを特徴とする空燃
比帰還制御方法。(1) An air-fuel ratio feedback control method that generates a control signal through integral processing based on the output signal of an oxygen concentration sensor installed in the exhaust system of an internal combustion engine, and adjusts the air-fuel ratio of the air-fuel mixture according to the control signal. An air-fuel ratio feedback control method, characterized in that an integral constant of the integral process is increased in accordance with a decrease in atmospheric pressure.
状態に応じて変化することを特徴とする特許請求の範囲
第1項記載の空燃比帰還制御方法。(2) The air-fuel ratio feedback control method according to claim 1, characterized in that the integral constant of the integral process is further changed depending on the operating state of the engine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8858682A JPS58204947A (en) | 1982-05-25 | 1982-05-25 | Feedback control method for air-fuel ratio |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8858682A JPS58204947A (en) | 1982-05-25 | 1982-05-25 | Feedback control method for air-fuel ratio |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58204947A true JPS58204947A (en) | 1983-11-29 |
Family
ID=13946940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8858682A Pending JPS58204947A (en) | 1982-05-25 | 1982-05-25 | Feedback control method for air-fuel ratio |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58204947A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5762055A (en) * | 1995-06-27 | 1998-06-09 | Nippondenso Co., Ltd. | Air-to-fuel ratio control apparatus for an internal combustion engine |
-
1982
- 1982-05-25 JP JP8858682A patent/JPS58204947A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5762055A (en) * | 1995-06-27 | 1998-06-09 | Nippondenso Co., Ltd. | Air-to-fuel ratio control apparatus for an internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60240840A (en) | Control device of air-fuel ratio in internal-combustion engine | |
JPS58204947A (en) | Feedback control method for air-fuel ratio | |
JP2509183B2 (en) | Method for controlling the idling speed of an internal combustion engine | |
US4397279A (en) | Air-fuel ratio control system for an internal combustion engine | |
US4651695A (en) | Air-fuel ratio control system | |
JPH0689686B2 (en) | Air-fuel ratio controller for engine | |
JPS6313012B2 (en) | ||
JP2915255B2 (en) | Air-fuel ratio control device for gas engine | |
JP2577727B2 (en) | Engine starter | |
JP2594943Y2 (en) | Fuel control device for internal combustion engine | |
JPS58176436A (en) | Control device for engine | |
JPS5949346A (en) | Air-fuel ratio control device of internal-combustion engine of electronically controlled fuel injection type | |
GB2142170A (en) | Air fuel ratio control system | |
JPH0375743B2 (en) | ||
JPH04321734A (en) | Control device for internal combustion engine for outboard motor | |
JPH025728A (en) | Air-fuel ratio control method for internal combustion engine | |
JPH05156982A (en) | Auxiliary chamber gas pressure controller in devided gas chamber engine | |
JPS61132741A (en) | Air-fuel ratio controller internal-conbustion engine | |
JPS61132740A (en) | Air-fuel ratio controller of internal-conbustion engine | |
JPH1193717A (en) | Fuel control device for gas engine | |
JPS63105256A (en) | Air-fuel ratio control device for electronically controlled fuel-injection internal combustion engine | |
JPS6140440A (en) | Fuel injection amount control device in internal combustion engine | |
JPS60111051A (en) | Air-fuel ratio controller | |
JPH06299878A (en) | Fuel supply device of gas engine | |
JPH0711252B2 (en) | Air-fuel ratio controller for internal combustion engine |