JP2915255B2 - Air-fuel ratio control device for gas engine - Google Patents

Air-fuel ratio control device for gas engine

Info

Publication number
JP2915255B2
JP2915255B2 JP21760893A JP21760893A JP2915255B2 JP 2915255 B2 JP2915255 B2 JP 2915255B2 JP 21760893 A JP21760893 A JP 21760893A JP 21760893 A JP21760893 A JP 21760893A JP 2915255 B2 JP2915255 B2 JP 2915255B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
fuel
temperature
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21760893A
Other languages
Japanese (ja)
Other versions
JPH0771322A (en
Inventor
達司 宮田
育朗 野津
洋 松田
寛 高田
延雄 浜崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUSAN DEIIZERU KOGYO KK
Original Assignee
NITSUSAN DEIIZERU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUSAN DEIIZERU KOGYO KK filed Critical NITSUSAN DEIIZERU KOGYO KK
Priority to JP21760893A priority Critical patent/JP2915255B2/en
Publication of JPH0771322A publication Critical patent/JPH0771322A/en
Application granted granted Critical
Publication of JP2915255B2 publication Critical patent/JP2915255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高圧の天然ガスを燃料と
するガスエンジンの空燃比制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control device for a gas engine using high-pressure natural gas as fuel.

【0002】[0002]

【従来の技術】高圧の天然ガスを燃料として用いるガス
エンジンは、例えば実開昭60−92742号公報等に
も開示されているが、高圧ボンベからの燃料を減圧弁
(ガスレギュレータ)により減圧し、混合器によってエ
ンジン吸入空気と所定の割合で混合し、この混合気をエ
ンジンに供給している。
2. Description of the Related Art A gas engine using high-pressure natural gas as fuel is disclosed, for example, in Japanese Utility Model Laid-Open Publication No. 60-92742. The fuel from a high-pressure cylinder is depressurized by a pressure reducing valve (gas regulator). The mixture is mixed with the engine intake air at a predetermined ratio by a mixer, and this mixture is supplied to the engine.

【0003】[0003]

【発明が解決しようとする課題】ところで、天然ガスを
燃料として理論空燃比付近でエンジンを運転する場合、
とくに高負荷時には燃焼排気ガス温度が高くなり過ぎ
(800〜900℃)、熱負荷によるエンジン耐久信頼
性が低下するという問題があった。
By the way, when the engine is operated near the stoichiometric air-fuel ratio using natural gas as fuel,
In particular, when the load is high, the temperature of the combustion exhaust gas becomes too high (800 to 900 ° C.), and there is a problem that the engine durability reliability due to the heat load is reduced.

【0004】これに対して、所定の負荷、回転数までは
排気センサの出力に基づいて空燃比を理論空燃比にフィ
ードバック制御するが、負荷または回転数が一定値以上
になると、空燃比のフィードバック制御を解除し、一定
の希薄空燃比に切り換えるようにしたものがある。
On the other hand, the air-fuel ratio is feedback-controlled to the stoichiometric air-fuel ratio based on the output of the exhaust sensor up to a predetermined load and rotation speed. In some systems, the control is released to switch to a constant lean air-fuel ratio.

【0005】この場合、エンジン耐久性の点からは有効
であっても、三元触媒による排気浄化効率の低下や出力
性能の低下などの新たな問題が生じる。運転状態が一定
の条件になったからと言って、必ずしも燃焼温度が上限
付近に達するとは限らず、この場合にフィードバック制
御を解除して一定の希薄空燃比に固定してしまえば、そ
の間の排気浄化効率は低下する。また逆に燃焼温度を下
げるために希薄空燃比にしても、温度が十分に下がる前
に運転状態が変動し、回転数や負荷が一定以下になれ
ば、再び理論空燃比に切り換わってしまい、この場合に
は負荷や回転数がそれほど高くなくても、燃焼ガス温度
は高いままで、熱的な耐久信頼性が損なわれる可能性が
ある。
In this case, although effective in terms of engine durability, new problems such as a reduction in exhaust gas purification efficiency and a reduction in output performance due to the three-way catalyst arise. Just because the operating condition has reached a certain condition does not mean that the combustion temperature does not always reach the vicinity of the upper limit.In this case, if the feedback control is released and fixed to a constant lean air-fuel ratio, the exhaust Purification efficiency is reduced. Conversely, even if the lean air-fuel ratio is set to lower the combustion temperature, the operating state fluctuates before the temperature is sufficiently lowered, and if the rotational speed or the load falls below a certain level, the air-fuel ratio is switched again to the stoichiometric air-fuel ratio. In this case, even if the load and the number of revolutions are not so high, the combustion gas temperature remains high, and the thermal durability reliability may be impaired.

【0006】本発明はこのような問題を解決、すなわ
ち、エンジンの熱的耐久性を維持しつつ、エンジン出力
や排気組成の改善を図ることを目的とする。
An object of the present invention is to solve such a problem, that is, to improve the engine output and the exhaust composition while maintaining the thermal durability of the engine.

【0007】[0007]

【課題を解決するための手段】そこでこの発明は、図1
に示すように、高圧の天然ガスを燃料とするガスエンジ
ンにおいて、吸気通路に設けた燃料供給手段(11)
と、運転状態を検出する手段(8,18)と、運転状態
に応じて理論空燃比を基本とする目標空燃比を設定する
手段(A)と、排気空燃比を検出する手段(9)と、
空燃比が目標空燃比と一致するように燃料供給量をフ
ィードバック制御する手段(B)と、排気温度を検出す
る手段(16)と、この排気温度が予め設定した温度を
越えたら前記目標空燃比を希薄側に補正する手段(C)
とを備える。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a method as shown in FIG.
As shown in (1), in a gas engine using high-pressure natural gas as fuel, fuel supply means (11) provided in an intake passage
Means (8, 18) for detecting an operating state, means (A) for setting a target air-fuel ratio based on a stoichiometric air-fuel ratio according to the operating state, and means (9) for detecting an exhaust air-fuel ratio. This
And means for air-fuel ratio of the feedback control of the fuel supply quantity so as to coincide with the target air-fuel ratio (B), and means (16) for detecting the exhaust gas temperature, the target air-Once beyond the temperature at which the exhaust temperature is preset Means for correcting fuel ratio to lean side (C)
And

【0008】[0008]

【作用】基本的には理論空燃比の混合気で運転が行われ
るが、例えば高負荷時に排気温度が設定値以上になる
と、温度に応じて目標空燃比を希薄側に移し、温度が下
がれば理論空燃比側に戻す。このため、必要以上に空燃
比が希薄側に制御されることがなく、広い運転領域で排
気性能と出力性能を確保しつつ、エンジンの熱的負荷に
対する高い耐久信頼性を維持することができる。
[Function] Basically, the operation is performed with a mixture of the stoichiometric air-fuel ratio. For example, when the exhaust gas temperature becomes higher than a set value at a high load, the target air-fuel ratio is shifted to a lean side according to the temperature, and if the temperature falls, Return to the stoichiometric air-fuel ratio. For this reason, the air-fuel ratio is not controlled to the lean side more than necessary, and high durability reliability against the thermal load of the engine can be maintained while ensuring exhaust performance and output performance in a wide operating range.

【0009】[0009]

【実施例】図2はこの発明の実施例であり、ガスエンジ
ン1の吸気通路17には絞弁19が設けられ、絞弁19
は図示しないアクセルペダルに連動し、絞弁開度に応じ
て吸入空気量が制御される。絞弁19の上流には主燃料
供給系として、混合器10が設けられ、吸入空気量に対
応してガス燃料を混合し、所定の希薄混合気を生成す
る。混合器10には高圧の天然ガスを充填したガスボン
ベ15からの燃料が、ガスレギュレータ13を介して所
定の圧力まで減圧された状態で導かれ、吸入空気量に比
例してベンチュリ部に発生する負圧に応じて吸入され
る。
FIG. 2 shows an embodiment of the present invention, in which a throttle valve 19 is provided in an intake passage 17 of the gas engine 1.
Is linked to an accelerator pedal (not shown), and the amount of intake air is controlled according to the throttle valve opening. A mixer 10 is provided upstream of the throttle valve 19 as a main fuel supply system, and mixes gas fuel in accordance with the intake air amount to generate a predetermined lean air-fuel mixture. Fuel from a gas cylinder 15 filled with high-pressure natural gas is guided to the mixer 10 in a state where the fuel is reduced to a predetermined pressure via a gas regulator 13, and negative pressure generated in a venturi portion in proportion to the amount of intake air. Inhaled according to pressure.

【0010】また、燃料の一部は前記絞弁19の近傍上
流に設けた副燃料供給系としての燃料電磁弁11に導か
れ、電磁弁11の開弁により、吸気通路17にガス燃料
を追加供給する。
A part of the fuel is guided to a fuel solenoid valve 11 as an auxiliary fuel supply system provided upstream of the throttle valve 19 in the vicinity of the throttle valve 19, and gas fuel is added to the intake passage 17 by opening the solenoid valve 11. Supply.

【0011】エンジン燃焼室24には混合気に圧縮上死
点付近で点火する点火栓7が設けられる。
The engine combustion chamber 24 is provided with an ignition plug 7 for igniting the air-fuel mixture near the compression top dead center.

【0012】これら電磁弁11や点火栓7の作動を制御
し、またガスレギュレータ16によって調圧される燃料
圧力を制御するコントロールユニット2が備えられ、コ
ントロールユニット2は電磁弁11からの燃料の供給量
を、各気筒に供給される混合気の空燃比が運転状態に応
じて決まる目標空燃比と一致するように制御し、また点
火栓7を最適点火時期において点火させるように制御す
る。
A control unit 2 for controlling the operation of the solenoid valve 11 and the spark plug 7 and for controlling the fuel pressure regulated by the gas regulator 16 is provided. The control unit 2 supplies fuel from the solenoid valve 11. The amount is controlled so that the air-fuel ratio of the air-fuel mixture supplied to each cylinder coincides with a target air-fuel ratio determined according to the operation state, and the ignition plug 7 is controlled to be ignited at the optimum ignition timing.

【0013】このため、コントロールユニット2には、
エンジン回転数、クランク角度を検出するクランク角セ
ンサ8、絞弁下流の吸入負圧を検出する負圧センサ18
からの運転状態を代表する信号が入力すると共に、排気
弁22下流の排気通路19の排気空燃比(酸素濃度)を
検出する排気センサ(傾斜型O2センサ)9、排気温度
を検出する排気温センサ16からの信号が入力し、これ
らに基づいて、運転状態に応じて目標空燃比を決定し、
排気センサ9の出力から実際の空燃比と目標空燃比との
偏差、並びに排気温センサ16からの排気温度に基づい
て、燃料噴射弁11から噴射する追加燃料の供給量を算
出する。さらに、点火栓7を運転状態に応じて最適な点
火時期をもって点火させるように、パワートランジスタ
5の導通を制御し、イグニッションコイル6から高電圧
を点火栓7に印加する。
For this reason, the control unit 2 includes:
Crank angle sensor 8 for detecting engine speed and crank angle, negative pressure sensor 18 for detecting suction negative pressure downstream of the throttle valve
, An exhaust sensor (inclined O 2 sensor) 9 for detecting an exhaust air-fuel ratio (oxygen concentration) in an exhaust passage 19 downstream of the exhaust valve 22, and an exhaust temperature for detecting an exhaust temperature. A signal from the sensor 16 is input, and based on these, a target air-fuel ratio is determined according to the driving state,
The supply amount of the additional fuel injected from the fuel injection valve 11 is calculated based on the deviation between the actual air-fuel ratio and the target air-fuel ratio from the output of the exhaust sensor 9 and the exhaust temperature from the exhaust temperature sensor 16. Further, the conduction of the power transistor 5 is controlled so that the ignition plug 7 is ignited at an optimum ignition timing according to the operation state, and a high voltage is applied to the ignition plug 7 from the ignition coil 6.

【0014】また、コントロールユニット2にはバッテ
リ4に接続するイグニッションスイッチ3からの信号も
入力し、これにより前記ガスボンベ15からの燃料通路
を遮断する燃料遮断弁12と14をイグニッションスイ
ッチ3のオン時に開くようになっている。
A signal from an ignition switch 3 connected to the battery 4 is also input to the control unit 2, whereby fuel shutoff valves 12 and 14 for shutting off a fuel passage from the gas cylinder 15 are turned on when the ignition switch 3 is turned on. It is designed to open.

【0015】ここで、図3のフローチャートを参照しな
がら、コントロールユニット2による燃料電磁弁11の
燃料制御についてさらに詳しく説明する。
Here, the fuel control of the fuel solenoid valve 11 by the control unit 2 will be described in more detail with reference to the flowchart of FIG.

【0016】まず、ステップ1〜3で、回転数センサ8
と吸気負圧センサ18の信号に基づき運転状態を読み込
み、運転状態に対応しても目標空燃比(基本的には理論
空燃比)をマップの検索により求め、目標空燃比を決定
する。
First, in steps 1 to 3, the rotation speed sensor 8
Then, the operating state is read based on the signal from the intake negative pressure sensor 18 and the target air-fuel ratio (basically, the stoichiometric air-fuel ratio) is determined by searching a map even in response to the operating state to determine the target air-fuel ratio.

【0017】次いで、排気温センサ16の出力から排気
温度を読み込み、予め設定されている排気温度よりも高
いかどうかを判断する(ステップ4、5)。もし、設定
温度以上ならば、ステップ6に移り、目標空燃比を一定
量だけ希薄側に補正する。
Next, the exhaust gas temperature is read from the output of the exhaust gas temperature sensor 16 and it is determined whether or not it is higher than a preset exhaust gas temperature (steps 4 and 5). If the temperature is equal to or higher than the set temperature, the process proceeds to step 6, where the target air-fuel ratio is corrected to a lean side by a fixed amount.

【0018】ステップ7で排気センサ9の出力から実際
の空燃比を読み込み、補正された目標空燃比と実際の空
燃比とが一致するように燃料の供給量を演算したら、こ
の燃料供給信号を電磁弁11に出力する(ステップ8、
9)。
In step 7, the actual air-fuel ratio is read from the output of the exhaust sensor 9, and the fuel supply amount is calculated so that the corrected target air-fuel ratio matches the actual air-fuel ratio. Output to the valve 11 (step 8,
9).

【0019】なお、ステップ5で排気温度が設定温度以
下のときは、ステップ3で算出された目標空燃比に基づ
いて、ステップ8で燃料供給量を演算する。
When the exhaust temperature is equal to or lower than the set temperature in step 5, the fuel supply amount is calculated in step 8 based on the target air-fuel ratio calculated in step 3.

【0020】このようにして、コントロールユニット2
は、各サイクル毎に電磁弁11からの燃料供給量を制御
する。
Thus, the control unit 2
Controls the amount of fuel supplied from the solenoid valve 11 for each cycle.

【0021】次に全体の作用について説明する。Next, the overall operation will be described.

【0022】ガスエンジン1に供給される混合気は、吸
気通路17の絞弁19の上流の混合器10において、予
め所定の希薄空燃比となるように生成される。この混合
気は運転状態にかかわらず概略一定値となるが、要求空
燃比よりも薄く、これだけでは円滑に燃焼しない。しか
し、絞弁23の近傍に設けた電磁弁11により、補助的
に燃料が供給され、目標空燃比(理論空燃比)となるよ
うにフィードバック制御されるので、排気通路19に設
ける図示しない三元触媒の浄化効率は高く、エンジンの
出力性能も良好に維持される。
The air-fuel mixture supplied to the gas engine 1 is generated in the mixer 10 in the intake passage 17 upstream of the throttle valve 19 so as to have a predetermined lean air-fuel ratio in advance. Although this air-fuel mixture has a substantially constant value irrespective of the operation state, it is thinner than the required air-fuel ratio and does not burn smoothly by itself. However, fuel is supplementarily supplied by the electromagnetic valve 11 provided in the vicinity of the throttle valve 23, and feedback control is performed so that the target air-fuel ratio (the stoichiometric air-fuel ratio) is obtained. The purification efficiency of the catalyst is high and the output performance of the engine is well maintained.

【0023】一方、運転中に排気温度が、エンジンの熱
的耐久性から決められた設定温度よりも上昇すると、目
標空燃比が希薄側に補正され、これにより温度上昇が抑
制される。この場合、温度が設定値よりも高い間は、空
燃比が希薄化されているので、温度を確実に下げること
ができる。
On the other hand, when the exhaust gas temperature rises above a set temperature determined from the thermal durability of the engine during operation, the target air-fuel ratio is corrected to a lean side, thereby suppressing the temperature rise. In this case, while the temperature is higher than the set value, the air-fuel ratio is reduced, so that the temperature can be surely lowered.

【0024】図4はエンジン回転数と点火時期を一定と
したときの、空燃比と燃焼排気温度との関係を示す特性
図であるが、理論空燃比付近のときに最高温度をとり、
希薄化するに従って温度は低下することが分かる。
FIG. 4 is a characteristic diagram showing the relationship between the air-fuel ratio and the combustion exhaust gas temperature when the engine speed and the ignition timing are constant. The maximum temperature is obtained near the stoichiometric air-fuel ratio.
It can be seen that the temperature decreases with dilution.

【0025】そして、排気温度が設定温度よりも下がれ
ば、空燃比は運転状態によって決まる目標空燃比に戻
り、このようにして、原則として目標空燃比を維持し、
温度の高いときだけ、必要に応じて空燃比を希薄化する
ので、エンジンの熱的な耐久性を確保しつつ、出力や排
気性能を最良状態に維持することが可能となる。
Then, when the exhaust gas temperature falls below the set temperature, the air-fuel ratio returns to the target air-fuel ratio determined by the operating condition, and thus, in principle, the target air-fuel ratio is maintained.
Only when the temperature is high, the air-fuel ratio is diluted as needed, so that the output and exhaust performance can be maintained in the best state while ensuring the thermal durability of the engine.

【0026】なお、この実施例では、燃料供給系とし
て、混合器10と電磁弁11を設け、電磁弁11をフィ
ードバック制御するようにしたが、混合器10のみとし
たり、あるいは燃料噴射弁を設け、燃料供給量を制御す
るようにしても良い。
In this embodiment, the mixer 10 and the solenoid valve 11 are provided as the fuel supply system, and the solenoid valve 11 is feedback-controlled. However, only the mixer 10 or the fuel injection valve is provided. Alternatively, the fuel supply amount may be controlled.

【0027】以上のよう本発明は、高圧の天然ガスを
燃料とするガスエンジンにおいて、吸気通路に設けた燃
料供給手段と、運転状態を検出する手段と、運転状態に
応じて理論空燃比を基本とする目標空燃比を設定する手
段と、排気空燃比を検出する手段と、この空燃比が目標
空燃比と一致するように燃料供給量をフィードバック制
御する手段と、排気温度を検出する手段と、この排気温
度が予め設定した温度を越えたら前記目標空燃比を希薄
側に補正する手段とを備えたため、基本的には理論空燃
比の混合気で運転が行われるが、例えば高負荷時に排気
温度が設定値以上になると、温度に応じて目標空気比を
希薄側に移し、温度が下がれば理論空燃比側に戻し、し
たがって、必要以上に空燃比が希薄側に制御されること
がなく、広い運転領域で排気性能と出力性能を確保しつ
つ、エンジンの熱的負荷に対する高い耐久信頼性を維持
することができる。
As described above, according to the present invention, in a gas engine using high-pressure natural gas as a fuel, a fuel supply means provided in an intake passage, a means for detecting an operation state, and a stoichiometric air-fuel ratio in accordance with the operation state are provided. means for setting a target air-fuel ratio of the basic means for detecting an exhaust air-fuel ratio, and means for feedback controlling a fuel supply amount so that the air-fuel ratio coincides with the target air-fuel ratio, means for detecting the exhaust gas temperature , due to a means for correcting the target air-fuel ratio when exceeding the temperature at which the exhaust temperature is preset to lean side is basically operated with the air-fuel mixture of the stoichiometric air-fuel ratio is made the exhaust, for example when a high load When the temperature is equal to or higher than the set value, the target air ratio is shifted to the lean side in accordance with the temperature, and is returned to the stoichiometric air-fuel ratio side when the temperature is lowered.Therefore, the air-fuel ratio is not controlled to the lean side more than necessary, Wide driving While ensuring the exhaust performance and power performance in range, it is possible to maintain high endurance reliability against thermal load of the engine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を示す構成図である。FIG. 1 is a configuration diagram showing the present invention.

【図2】本発明の実施例を示す構成断面図である。FIG. 2 is a structural sectional view showing an embodiment of the present invention.

【図3】燃料の制御動作をあらわすフローチャートであ
る。
FIG. 3 is a flowchart showing a fuel control operation.

【図4】空燃比と燃焼排気温度との関係を示す特性図で
ある。
FIG. 4 is a characteristic diagram showing a relationship between an air-fuel ratio and a combustion exhaust temperature.

【符号の説明】[Explanation of symbols]

1 ガスエンジン 2 コントロールユニット 7 点火栓 8 クランク角(回転数)センサ 9 排気センサ 10 混合器 11 電磁弁 15 ガスボンベ 18 吸入負圧センサ DESCRIPTION OF SYMBOLS 1 Gas engine 2 Control unit 7 Spark plug 8 Crank angle (rotation speed) sensor 9 Exhaust sensor 10 Mixer 11 Solenoid valve 15 Gas cylinder 18 Suction negative pressure sensor

フロントページの続き (72)発明者 高田 寛 埼玉県上尾市大字壱丁目一番地 日産デ ィーゼル工業株式会社内 (72)発明者 浜崎 延雄 埼玉県上尾市大字壱丁目一番地 日産デ ィーゼル工業株式会社内 (56)参考文献 実開 平5−24922(JP,U) (58)調査した分野(Int.Cl.6,DB名) F02M 21/02 F02D 19/02 F02D 41/14 F02D 45/00 Continuing on the front page (72) Inventor Hiroshi Takada Ichibanchi, Dai-Chome, Ageo-shi, Saitama Nissan Diesel Kogyo Co., Ltd. (72) Inventor Nobuo Hamasaki Nissan Diesel Industrial Co., Ltd. (56) References JP-A 5-24922 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) F02M 21/02 F02D 19/02 F02D 41/14 F02D 45/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高圧の天然ガスを燃料とするガスエンジン
において、吸気通路に設けた燃料供給手段と、運転状態
を検出する手段と、運転状態に応じて理論空燃比を基本
とする目標空燃比を設定する手段と、排気空燃比を検出
する手段と、この空燃比が目標空燃比と一致するように
燃料供給量をフィードバック制御する手段と、排気温度
を検出する手段と、この排気温度が予め設定した温度を
越えたら前記目標空燃比を希薄側に補正する手段とを備
えたことを特徴とするガスエンジンの空燃比制御装置。
1. A gas engine using high-pressure natural gas as a fuel, a fuel supply means provided in an intake passage, a means for detecting an operation state, and a stoichiometric air-fuel ratio based on the operation state.
Means for detecting and means for setting a target air-fuel ratio, means for detecting the exhaust air-fuel ratio, and means for feedback controlling a fuel supply amount so that the air-fuel ratio coincides with the target air-fuel ratio, the exhaust gas temperature to, air-fuel ratio control system for a gas engine, characterized in that the target air-fuel ratio When exceeding the temperature at which the exhaust temperature is preset and means for correcting the lean side.
JP21760893A 1993-09-01 1993-09-01 Air-fuel ratio control device for gas engine Expired - Fee Related JP2915255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21760893A JP2915255B2 (en) 1993-09-01 1993-09-01 Air-fuel ratio control device for gas engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21760893A JP2915255B2 (en) 1993-09-01 1993-09-01 Air-fuel ratio control device for gas engine

Publications (2)

Publication Number Publication Date
JPH0771322A JPH0771322A (en) 1995-03-14
JP2915255B2 true JP2915255B2 (en) 1999-07-05

Family

ID=16706962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21760893A Expired - Fee Related JP2915255B2 (en) 1993-09-01 1993-09-01 Air-fuel ratio control device for gas engine

Country Status (1)

Country Link
JP (1) JP2915255B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010062198B4 (en) 2010-11-30 2015-08-20 Mtu Onsite Energy Gmbh Method and control device for operating an Otto gas engine
JP7457663B2 (en) * 2021-02-12 2024-03-28 三菱重工エンジン&ターボチャージャ株式会社 Engine control device, engine control method and program

Also Published As

Publication number Publication date
JPH0771322A (en) 1995-03-14

Similar Documents

Publication Publication Date Title
JP3211677B2 (en) Ignition timing control system for in-cylinder injection internal combustion engine
EP0926327A3 (en) Combustion controller for lean burn engines
JP3306871B2 (en) Control device for in-cylinder injection internal combustion engine
JP4470838B2 (en) Control device for hydrogen engine
US6748927B2 (en) Method, computer programme and control and/or regulation device for operating an internal combustion engine
JP2915255B2 (en) Air-fuel ratio control device for gas engine
JP4239582B2 (en) Engine control device
JPH0261612B2 (en)
JP2966249B2 (en) Gas engine idle rotation control device
JP2822804B2 (en) Control device for internal combustion engine
JPS63246460A (en) Output control device for gas engine
JP3106823B2 (en) Evaporative fuel processor for engine
JP2880882B2 (en) Gas engine fuel supply control device
JP3204113B2 (en) Exhaust gas recirculation control device
JP2867816B2 (en) Air-fuel ratio control device for internal combustion engine
JP2966250B2 (en) Gas engine fuel supply control device
JP3059608B2 (en) Gas engine ignition control device
JP3206447B2 (en) Output control device for internal combustion engine
JPH07119520A (en) Air-fuel ratio controller of engine
JP2921202B2 (en) Fuel control device for internal combustion engine
GB2169111A (en) Air-fuel ratio control method for an internal combustion engine
JP3551744B2 (en) Exhaust gas recirculation control device for in-cylinder injection type internal combustion engine
JP2935625B2 (en) Air-fuel ratio control device for gas engine
JPH11148408A (en) Spark ignition cylinder injection type internal combustion engine
JP2600336Y2 (en) Air-fuel ratio control device for CNG engine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees