JPS58204139A - Production of fiber-reinforced aluminum alloy - Google Patents

Production of fiber-reinforced aluminum alloy

Info

Publication number
JPS58204139A
JPS58204139A JP8677082A JP8677082A JPS58204139A JP S58204139 A JPS58204139 A JP S58204139A JP 8677082 A JP8677082 A JP 8677082A JP 8677082 A JP8677082 A JP 8677082A JP S58204139 A JPS58204139 A JP S58204139A
Authority
JP
Japan
Prior art keywords
aluminum
alloy
aluminum alloy
fiber
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8677082A
Other languages
Japanese (ja)
Inventor
Kenji Tsukamoto
塚本 建次
Tsunemasa Miura
三浦 恒正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP8677082A priority Critical patent/JPS58204139A/en
Publication of JPS58204139A publication Critical patent/JPS58204139A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To form a composite product having high strength and elasticity, by laminating reinforcing fibers having good wettability with Al and foil of a low m.p. Al alloy corresponding to an Al brazing alloy alternately, and heating the same under pressure in a nonoxidative atmosphere thereby combining both materials. CONSTITUTION:Reinforcing fibers having good wettability with Al, for example, silicon carbide fibers, or reinforcing fibers having improved wettability, for example, metal-coated carbon fibers, and the foil of a low m.p. aluminum alloy corresponding to an aluminum brazing alloy, for example, the foil of an Al-Si- Mg alloy are laminated alternately. The laminate is heated to the m.p. of the foil of the low m.p. alloy or above and is pressurized in a nonoxidative atmosphere. The entire part of the low m.p. aluminum is thus melted and is impregnated among the reinforcing fibers in one body, whereby the composite material of the fiber-reinforced aluminum alloy is produced.

Description

【発明の詳細な説明】 この発明はアルミニウム合金をマトリックスとし、その
中に強化材として繊維物質を分散せしめた繊維強化アル
ミニウム合金の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a fiber-reinforced aluminum alloy in which an aluminum alloy is used as a matrix and a fiber material is dispersed therein as a reinforcing material.

従来、アルミニウム合金をマトリックスとする繊維−A
I複合材料の製造法としては、主に溶浸法の1つとして
の鋳造法、あるいはホットプレス法が一般によく知られ
ている。しかしながら、概して、鋳造法によるときは、
複合化を行う際の高温により強化材としての繊維が劣化
し易いという問題点かあシ、また、従来のホットプレス
法によるときは、複合化に高圧力、長時間を要するため
、生産性が悪いというような難点があった。
Conventionally, fibers with aluminum alloy as a matrix-A
As a method for manufacturing I-composite materials, a casting method as one of the infiltration methods or a hot pressing method is generally well known. However, in general, when using the casting method,
The problem is that the fibers used as reinforcing materials tend to deteriorate due to high temperatures during compositing.Furthermore, when using the conventional hot press method, compositing requires high pressure and a long time, which reduces productivity. There were some drawbacks.

この発明の目的は上記のような問題点に鑑み、低圧力、
短時間で、マトリックスとなるアルミニウムと強化材と
しての繊維との良好な複合一体化を達成しうる繊維強化
アルミニウム合金の製造方法を提供しようとするもので
ある。
In view of the above-mentioned problems, the purpose of this invention is to provide low pressure,
The object of the present invention is to provide a method for manufacturing a fiber-reinforced aluminum alloy that can achieve good composite integration of aluminum as a matrix and fibers as a reinforcing material in a short time.

而して、この発明は、アルミニウムに対してぬれ性の良
い、またはぬれ性を改善した強化繊維と、アルミニウム
合金相当の低融点アルミニウム合金箔とを交互に積層し
、この積層物を非酸化性雰囲気中で前記低融点アルミニ
ウム合金箔の融点以上に加熱し、かつ加圧することによ
って複合一体化することを特徴とする繊軸強化アルミニ
ウム合金の製造方法に係るものである。
Therefore, the present invention alternately laminates reinforcing fibers that have good or improved wettability with respect to aluminum and low melting point aluminum alloy foil equivalent to aluminum alloy, and makes this laminate non-oxidizing. The present invention relates to a method for producing a filament-strengthened aluminum alloy, which comprises heating the low-melting-point aluminum alloy foil in an atmosphere to a temperature higher than its melting point and pressurizing the foil to form a composite and integral piece.

この発明の実施において、強化繊維の種類は特に限定さ
れるものではなく、繊維強化金属の強化材として従来既
知の各種繊維を任意に選択使用しうる。もっとも、その
繊維が、例えばシリコンカーバイド繊維のようにそれ自
体マトリックス金属に対してぬれ性の良いものである場
合には、これをそのまま用いて低融点アルミニウム合金
箔と積層することができるが、炭素繊維のようにそれ本
来のぬれ性が悪いものである場合には、予め金属を被覆
してぬれ性を改善して用いることが必要である。この金
属被覆の手段は、電着法、プラズマスプレー法等の種々
の方法が採用され得るが、繊維表面に均一な金属被膜を
所望の厚さに形成しうる点でイオンブレーティング法に
よるのが有利である。また、その被覆金属としては、母
材金属であるアルミニウムのほか、ケイ素あるいはチタ
ン等を用いても良い。
In carrying out this invention, the type of reinforcing fibers is not particularly limited, and any conventionally known various fibers may be used as reinforcing materials for fiber-reinforced metals. However, if the fiber itself has good wettability with the matrix metal, such as silicon carbide fiber, it can be used as is and laminated with a low melting point aluminum alloy foil, but carbon In the case of fibers that inherently have poor wettability, it is necessary to coat them with metal in advance to improve their wettability before use. Various methods such as electrodeposition and plasma spraying can be used for this metal coating, but ion blating is preferable because it can form a uniform metal coating on the fiber surface to a desired thickness. It's advantageous. Furthermore, as the coating metal, silicon, titanium, or the like may be used in addition to aluminum, which is the base metal.

マトリックスであるアルミニウムろう合金相当の低融点
アルミニウム合金は、最も一般的にはAI −Si −
Mg系合金からなるものが用いられる。かかるマトリッ
クスは、それ自体低融点であることによって複合時に全
体が溶融して、強化金属繊維間に速やかに浸透し、低圧
力、短時間で複合化を達成しうると共に、ぬれ性の良好
なことも相俟って強化繊維との一体化が良好に行われ、
複合材料に優れた強度、弾性を帯有せしめうるものであ
る。
The low melting point aluminum alloy equivalent to the aluminum brazing alloy that is the matrix is most commonly AI-Si-
A material made of Mg-based alloy is used. Since such a matrix itself has a low melting point, it melts as a whole during compounding and quickly penetrates between the reinforcing metal fibers, making it possible to achieve compounding at low pressure and in a short time, as well as having good wettability. Together with this, the integration with the reinforcing fibers is performed well,
This allows composite materials to have excellent strength and elasticity.

強化繊維と低融点アルミニウム合金箔との複合化操作は
、それらを適当な割合で積層し、この積層物を雄型と雌
型の間にセットし、非酸化性雰囲気、例えば真空中で適
当な圧力をかけ、かつ低融点アルミニウム合金箔の融点
以上に加熱することによって行われる。これにより、マ
トリックスである低融点アルミニウムはその全体が溶融
し、強化繊維間に含浸され、かつそれと一体化されて複
合化が達成されるものである。
The composite operation of reinforcing fibers and low-melting point aluminum alloy foil involves laminating them in an appropriate ratio, setting this laminate between a male mold and a female mold, and heating it in an appropriate non-oxidizing atmosphere, such as a vacuum. This is done by applying pressure and heating above the melting point of the low melting point aluminum alloy foil. As a result, the entire low melting point aluminum matrix is melted, impregnated between the reinforcing fibers, and integrated with the reinforcing fibers, thereby achieving a composite.

この発明に基づ(繊維強化アルミニウム合金の製造方法
によれば、前述のように複合時に、マトリックスである
低融点アルミニウム合金が全体に溶融して強化繊維間に
入り込んでそれと複合されるため、この複合化を低圧力
、短時間で行うことができ、生産性を向上しうると共に
、マI−IJワックス強化繊維との一体性の良好な、複
合材料として遜色のない強度、弾性を保有した製品を得
ることができる。かつ上記の如くマトリックスを溶融し
て複合化するので、平板状の製品に限らす、曲面形状等
の任意の形状に自在に複合成形できる。また、マトリッ
クスに低融点アルミニウム合金を用いることによって、
複合時の高温による繊維劣化のおそれを回避しうるのは
もとより、複合材料の繊維体積率を下げることがない。
Based on this invention (according to the manufacturing method of fiber-reinforced aluminum alloy), as mentioned above, at the time of compounding, the low melting point aluminum alloy that is the matrix melts throughout and enters between the reinforcing fibers and is compounded with it. A product that can be composited at low pressure and in a short time, improving productivity, and has good integration with MAI-IJ wax reinforced fibers and has strength and elasticity comparable to that of a composite material. Moreover, since the matrix is melted and composited as described above, it is possible to freely mold the composite into any shape, such as a curved shape, not just a flat product. By using
Not only can it avoid the possibility of fiber deterioration due to high temperatures during compositing, but it also does not reduce the fiber volume fraction of the composite material.

即ち、例えばマトリックスとしてアルミニウムブレージ
ングシートラ用いたような場合には、そのコア材の存在
のために、複合材料の繊維体積率がそれだけ低下するが
、この発明に於ては、マ) IJワックス全体が溶融し
て複合化されるのでそのような繊維体積率の低下要因が
なく、複合時の加圧力を調整して要すれば余分なマトリ
ックスをはみ出させることにより、あるいはまたマトリ
ックスとして使用する低融点アルミニウム合金箔の厚さ
を選定することにより、複合材料中の繊維体積率を自在
にコントロールすることができる等の種々の優れた利点
がある。
That is, for example, when aluminum brazing sheets are used as a matrix, the fiber volume fraction of the composite material decreases due to the presence of the core material, but in this invention, the entire IJ wax is Because it is melted and composited, there is no such factor that reduces the fiber volume percentage, and by adjusting the pressure during composite and forcing out the excess matrix if necessary, or by adding low melting point aluminum to be used as a matrix. By selecting the thickness of the alloy foil, there are various excellent advantages such as being able to freely control the fiber volume fraction in the composite material.

次に、この発明の実施例を示す。Next, examples of this invention will be shown.

実施例1 直径10μの炭化珪素繊維を強化繊維とし、マトリック
スとして、アルミニウムろう合金4003相当の下記組
成を有するAI −Si −Mg系アルミニウム合金箔
で厚さ0.17mmのものを用いた。
Example 1 Silicon carbide fibers with a diameter of 10 μm were used as reinforcing fibers, and as a matrix, an AI-Si-Mg-based aluminum alloy foil having the following composition and equivalent to aluminum brazing alloy 4003 and having a thickness of 0.17 mm was used.

マトリックス組成 (wt%) AI  Si  Fe  Mn  Mg  Cu  Z
n  Cr  Ti残  6.6 0.18 0.01
 1.97  Tr   O,01Tr   O,01
そして、上記強化繊維とアルミニウム合金箔とを交互に
、前者を7層、後者を8層にして積層し、この積層を雌
型と雄型との間にセットして、l crI′torr 
 の真空中で温度585℃、時間この複合材料は、引張
強度40KSl/111111’、繊維体積率(Vf)
17%のものであった。
Matrix composition (wt%) AI Si Fe Mn Mg Cu Z
n Cr Ti remaining 6.6 0.18 0.01
1.97 Tr O,01 Tr O,01
Then, the reinforcing fibers and aluminum alloy foil are alternately laminated with 7 layers of the former and 8 layers of the latter, and this laminated layer is set between the female mold and the male mold.
This composite material has a tensile strength of 40 KSl/111111' and a fiber volume fraction (Vf) of
It was 17%.

実施例2 直径7μの炭素繊維にイオンブレーティング法によりア
ルミニウムを厚さ15μ被覆してぬれ性を改善したもの
を強化繊維として使用し、マトリックスは前記実施例1
と同様のAI −Si−Mg系アルミニウム合金箔を用
いた。
Example 2 Carbon fibers with a diameter of 7 μm coated with aluminum to a thickness of 15 μm by ion-blating method to improve wettability were used as reinforcing fibers, and the matrix was the same as in Example 1 above.
The same AI-Si-Mg-based aluminum alloy foil was used.

そして、これらを実施例1と同じく積層し、I Q=t
orr  の真空中で温度600℃、時間10分、圧力
23”17/c+IYの条件で複合化し、板状の複合材
料を得た。
Then, these are stacked in the same manner as in Example 1, and IQ=t
The mixture was composited in a vacuum at 600° C. for 10 minutes and at a pressure of 23”17/c+IY to obtain a plate-like composite material.

この複合材料は、引張強度60Ky/+□2、繊維体積
率(Vf)27%のものであった。
This composite material had a tensile strength of 60 Ky/+□2 and a fiber volume fraction (Vf) of 27%.

以  上that's all

Claims (1)

【特許請求の範囲】[Claims] アルミニウムに対してぬれ性の良い、またはぬれ性を改
善した強化繊維と、アルミニウムろう合金相当の低融点
アルミニウム合金箔とを交互に積層し、この積層物を非
酸化性雰囲気中で前記低融点アルミニウム合金箔の融点
以上に加熱しかつ加圧することによって複合化すること
を特徴とする繊維強化アルミニウム合金の製造方法。
Reinforcing fibers with good wettability or improved wettability for aluminum and low melting point aluminum alloy foil equivalent to aluminum brazing alloy are alternately laminated, and this laminate is bonded to the low melting point aluminum in a non-oxidizing atmosphere. 1. A method for producing a fiber-reinforced aluminum alloy, which comprises heating the alloy foil to a temperature higher than its melting point and applying pressure to form a composite.
JP8677082A 1982-05-21 1982-05-21 Production of fiber-reinforced aluminum alloy Pending JPS58204139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8677082A JPS58204139A (en) 1982-05-21 1982-05-21 Production of fiber-reinforced aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8677082A JPS58204139A (en) 1982-05-21 1982-05-21 Production of fiber-reinforced aluminum alloy

Publications (1)

Publication Number Publication Date
JPS58204139A true JPS58204139A (en) 1983-11-28

Family

ID=13895979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8677082A Pending JPS58204139A (en) 1982-05-21 1982-05-21 Production of fiber-reinforced aluminum alloy

Country Status (1)

Country Link
JP (1) JPS58204139A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732314A (en) * 1984-11-12 1988-03-22 Director-General Of Agency Of Industrial Science And Technology Method of manufacturing a metal-based composite material
EP0648593A2 (en) * 1993-10-19 1995-04-19 DEUTSCHE FORSCHUNGSANSTALT FÜR LUFT- UND RAUMFAHRT e.V. Process for manufacturing long-fiber reinforced parts

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732314A (en) * 1984-11-12 1988-03-22 Director-General Of Agency Of Industrial Science And Technology Method of manufacturing a metal-based composite material
WO1993014233A1 (en) * 1984-11-12 1993-07-22 Akira Sakamoto Method of manufacturing compound materials of metal group
EP0648593A2 (en) * 1993-10-19 1995-04-19 DEUTSCHE FORSCHUNGSANSTALT FÜR LUFT- UND RAUMFAHRT e.V. Process for manufacturing long-fiber reinforced parts
EP0648593A3 (en) * 1993-10-19 1995-11-08 Deutsche Forsch Luft Raumfahrt Process for manufacturing long-fiber reinforced parts.

Similar Documents

Publication Publication Date Title
US3419952A (en) Method for making composite material
DE102011012142B3 (en) Aluminum matrix composite, semi-finished aluminum matrix composite material and process for its production
JP3193708B2 (en) Composite material and method for producing the same
US3894677A (en) Method of preparing graphite reinforced aluminum composite
JPS6199692A (en) Fiber reinforced metallic composite material
US4732314A (en) Method of manufacturing a metal-based composite material
EP0668936A1 (en) Metal matrix composite having enhanced toughness and method of making
US3255522A (en) Abrasion resistant material bonding process using boron alloys
WO2024211200A1 (en) Homogenizing heterogeneous foils for light alloy metal parts
JPS58204139A (en) Production of fiber-reinforced aluminum alloy
US5352537A (en) Plasma sprayed continuously reinforced aluminum base composites
WO2004052573A1 (en) Composite material member and method for producing the same
JPH02118002A (en) Sintered laminating body for copper alloy powder sheet
JP2909545B2 (en) Manufacturing method of metal matrix composite material
JPH0122331B2 (en)
JPS6357734A (en) Fiber reinforced metal and its production
US5217815A (en) Arc sprayed continously reinforced aluminum base composites
JPS6039737B2 (en) Manufacturing method for highly conductive metal-carbon fiber composite sliding member
JPS62227049A (en) Manufacture of metal-base composite material
JPH0568530B2 (en)
US4112180A (en) Refractory metal carbide articles and laminating method for producing same
JPS591780B2 (en) Method for manufacturing preliminary metal moldings
JP3218873B2 (en) Solid phase diffusion bonding
JP3391595B2 (en) Al-based composite material and method for producing the same
JP3506388B2 (en) Molded carbon fiber-containing friction material and method for producing the same