JPS58204137A - Manufacture of porous metallic body - Google Patents

Manufacture of porous metallic body

Info

Publication number
JPS58204137A
JPS58204137A JP8746282A JP8746282A JPS58204137A JP S58204137 A JPS58204137 A JP S58204137A JP 8746282 A JP8746282 A JP 8746282A JP 8746282 A JP8746282 A JP 8746282A JP S58204137 A JPS58204137 A JP S58204137A
Authority
JP
Japan
Prior art keywords
binder
skeleton
metal
heat treatment
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8746282A
Other languages
Japanese (ja)
Other versions
JPS6153417B2 (en
Inventor
Hidefusa Uchikawa
英興 内川
Hideharu Tanaka
英晴 田中
Mutsuo Sekiya
睦生 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8746282A priority Critical patent/JPS58204137A/en
Publication of JPS58204137A publication Critical patent/JPS58204137A/en
Publication of JPS6153417B2 publication Critical patent/JPS6153417B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a porous metallic body having a skeleton composed of fine metallic bodies by a simple method by kneading an org. polymer binder with fine metallic bodies, applying the kneaded material to a substrate of network foamed synthetic resin, and burning out the substrate and the binder by heat treatment. CONSTITUTION:A binder contg. an org. high molecular compound as the principal component is kneaded with fine metallic bodies as a base material. The kneaded material is applied to the skeleton of foamed synthetic resin having three-dimensional network structure by dipping or other method. The skeleton and the binder are then burned out by heat treatment, and the fine metallic bodies are sintered by heat treatment in a nonoxidizing atmosphere. Thus, a porous metallic body having three-dimensional network structure is obtd. simply and easily.

Description

【発明の詳細な説明】 本発明は三次元網目状構造を有する金属多孔体の新規で
簡便な製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel and simple method for manufacturing a porous metal body having a three-dimensional network structure.

従来からある三次元網目状金属多孔体の製造方法として
は、特公昭47−10524  がある。この方法の工
程は、第1図に示したように、網状発泡合成樹脂をカー
ボンやグラファイトで処理することによって導電性をも
たせた上で、めっき槽中においてNiなどの金属を電着
させた後、焼成して内部の合成樹脂を焼失または半焼失
させて電着金属を多孔体の骨格となすものである。この
方法は、三次元網目状金属多孔体を製造するための初の
効果かつ実用的方法として現在でも使用されているが、
その反面、金属を電着するために、あらかじめ導電処理
が不可欠であることおよび電源やめっき檜などの電着装
置が必要であることなどの工程上ならびに設備上の問題
点があった。かつ導電処理による網状発泡合成樹脂表面
の抵抗値、電源電圧、めっき液中の金属イオン濃度、電
流密度およびめっき時間などの多くの因子fこまって電
着速度が決定されるため、これらをすべて調整しなくて
は金属の電着量が調整できないという工程管理上の煩雑
さならびに2種以上の合金からなるものが得られないな
どの問題点もあった。
A conventional method for producing a three-dimensional mesh porous metal body is disclosed in Japanese Patent Publication No. 47-10524. As shown in Figure 1, the process of this method is to treat the reticulated foamed synthetic resin with carbon or graphite to make it conductive, and then electrodeposit a metal such as Ni in a plating bath. , the internal synthetic resin is burnt out or partially burnt out to form the electrodeposited metal as the skeleton of the porous body. This method is still used today as the first effective and practical method for producing three-dimensional mesh porous metal bodies.
On the other hand, there are problems with the process and equipment, such as the need for conductive treatment beforehand in order to electrodeposit the metal, and the need for an electrodeposition device such as a power source and plating cypress. In addition, the electrodeposition speed is determined by many factors such as the resistance value of the surface of the reticulated foamed synthetic resin due to conductive treatment, power supply voltage, metal ion concentration in the plating solution, current density, and plating time, so all of these factors must be adjusted. Otherwise, there were problems in that the amount of metal electrodeposited could not be adjusted, which was complicated in terms of process control, and that it was impossible to obtain a product made of an alloy of two or more types.

本発明は、上記従来法の欠点を解消し、簡便かつ工程管
理の行ない易い新規な金属多孔体の製造方法を提供する
ものである。すなわち、本発明の方法は、第2図の工程
図のように、網状発泡合成樹脂を出発基材として用いる
ことは従来法と同様であるが、従来法の工程および工程
管理を煩雑に ゛している導電被覆処理および電着処理
を用いず1、 。
The present invention eliminates the drawbacks of the above-mentioned conventional methods and provides a novel method for producing a porous metal body that is simple and easy to control the process. That is, as shown in the process diagram of FIG. 2, the method of the present invention is similar to the conventional method in that a reticulated foamed synthetic resin is used as the starting base material, but the process and process control of the conventional method are complicated. 1, without using conductive coating treatment or electrodeposition treatment.

このかわりとして、有機高分子結合剤と金属微小体との
混線物を基材に浸漬、スプレーなどの方法で塗着後熱処
理を行なうことによって、基材ならびに結合剤を焼失さ
せ、かつ金属微小体を焼結して骨格となす工程を用いる
ものである。
As an alternative, heat treatment can be performed after applying a mixture of organic polymer binder and metal microscopic objects by dipping or spraying on the base material, thereby burning out the base material and the binder and removing the metal microscopic objects. This process uses a process of sintering the material to form a skeleton.

以下、図示実施例にしたがって、本発明の詳細な説明す
る。
Hereinafter, the present invention will be described in detail according to the illustrated embodiments.

〔実施例1〕 : 出発基材として三次元網目状構造を有するポリウレタン
フォーム(商品名エバーライトスコツト、プリジストン
タイヤに、に製)を用いた。このウレタン骨格に、下記
組成例1の組成物をボールミルにて約1時間混合した混
線物をスプレーにて均一に塗布した。塗布物を室温で1
紛問および120℃で1吟間乾燥後、880℃ で50
分間焼成した。
[Example 1]: A polyurethane foam having a three-dimensional network structure (trade name: Everlite Scotto, manufactured by Prigiston Tire Co., Ltd.) was used as a starting base material. A mixture obtained by mixing the composition of Composition Example 1 below in a ball mill for about 1 hour was uniformly applied to this urethane skeleton by spraying. 1. Apply the coating at room temperature.
After drying at 120℃ for 1 minute, dry at 880℃ for 50 minutes.
Bake for a minute.

(組成例1.) 結合剤(ウレタンワニス)38 重量%微小体状金属(
AI  粉)42〃 添加剤(エアロジル、硬化剤、シン ナー)25〃 ついで、水素気流中520℃ にて2時間焼成すること
により、第3図に示したような三次元網目状構造を有す
るAl製金属多孔体が得られた。第8図において(1)
は骨格、(2)は空孔である。この表面を走査型電子顕
微鏡にて観察したところ、第4図の模式図のような現象
が見られた。すなわち、水素気流中での焼成前には、第
4図(a)に示したように、A1粉粒子(3)が密に分
散されているのみであるが、焼成後には第4図(b)に
示したように、AI粉粒子(3)は境界面で互いにシン
ナリング(焼結)を起こし、ネック部(4)にて結合さ
れていることがわかった。
(Composition example 1.) Binder (urethane varnish) 38% by weight Microscopic metal (
(AI powder) 42 Additives (aerosil, curing agent, thinner) 25 Then, by firing in a hydrogen stream at 520°C for 2 hours, an aluminum product with a three-dimensional network structure as shown in Figure 3 is produced. A porous metal body was obtained. In Figure 8 (1)
is a skeleton, and (2) is a hole. When this surface was observed with a scanning electron microscope, a phenomenon as shown in the schematic diagram of FIG. 4 was observed. That is, before firing in a hydrogen stream, the A1 powder particles (3) are only densely dispersed, as shown in Figure 4(a), but after firing, as shown in Figure 4(b). ), it was found that the AI powder particles (3) mutually thinned (sintered) at the interface and were bonded at the neck portion (4).

Al製金属多孔体は本質的にAIめっき(電着)を行な
うことがネ可能であることから、前記特公昭47−10
524の従来法では全く製造不可能なものであ   1
っだが、本発明の方法では、三次元網目状構造のA1多
孔体を製作することが可能である利点がある。
Since Al metal porous bodies can essentially be subjected to AI plating (electrodeposition),
524 cannot be manufactured using conventional methods.1
However, the method of the present invention has the advantage that it is possible to produce an A1 porous body with a three-dimensional network structure.

〔実施例52.〕 実施例1.の場合と全く同一のポリウレタンフォームを
用い、下記組成例2.の混合物をボールミルにて約1時
間混線後、粘度調整をしてディッピングにより塗布した
。塗布物を120℃ にて2紛間乾燥後、180℃にて
8吟問および1O−5torrの真空中600℃にて2
時間焼成して第8図のような構造をもつ三次元網目状多
孔体を得た。
[Example 52. ] Example 1. Using the same polyurethane foam as in the case of the following composition example 2. The mixture was mixed in a ball mill for about 1 hour, the viscosity was adjusted, and the mixture was applied by dipping. After drying the coated material for 2 times at 120°C, 8 tests at 180°C and 2 times at 600°C in a vacuum of 10-5 torr.
After firing for a period of time, a three-dimensional network porous body having a structure as shown in FIG. 8 was obtained.

(組成例2.) 結合剤(ポリエステル系ワニス)25gfi%微小体状
金属(Fe−Ni粉、 AI粉)58〃添加剤(硬化促
進剤、シリカ、シンナー)17 重量% このものについても、実施例1.の場合と同様に、走査
型電子顕微鏡にて表面を観察したところ、やはり第4図
(b)の場合と同様に粒子同志がシンナリングにより焼
結されている構成を成し、またX線による分析を行なっ
たところ、Fe−Ni粉とAI粉との界面においては、
真空中での焼成によって、両者の原子が互いに拡散する
ために、Fe−Al系合金が生成していることが判明し
た。
(Composition Example 2) Binder (polyester varnish) 25 gfi% Microscopic metal (Fe-Ni powder, AI powder) 58 Additives (curing accelerator, silica, thinner) 17 wt% This was also carried out. Example 1. When the surface was observed using a scanning electron microscope in the same way as in the case of Figure 4(b), it was found that the particles were sintered together by thinning. As a result, at the interface between Fe-Ni powder and AI powder,
It was found that due to the firing in vacuum, the atoms of the two atoms diffused into each other, resulting in the formation of a Fe-Al alloy.

つぎに、実施例1.および2、で製造した2種の金属多
孔体について、曲げ加工性を調べた。ともに厚さ5jl
jlで板状のものを用意し、これを水平面に対して60
0折り曲げたところ、曲げ部にクラックは全く見られず
、良好な曲げ加工性を有することが明らかとなった。
Next, Example 1. The bending workability of the two types of porous metal bodies manufactured in 2 and 2 was investigated. Both thickness 5jl
Prepare a plate-like object with jl, and hold it at 60 degrees against the horizontal surface.
When the sample was bent to zero, no cracks were observed at the bent portion, indicating that it had good bending workability.

ところで、本発明で用いる有機高分子化合物からなる結
合剤としては、実施例で用いたウレタンやポリエステル
系ワニスのほかに、メラしン、アクリル、エポキシ、ポ
リエチレンスチロールなどを用いることができ、形態と
してはこれら有機高分子化合物の初期重合体を溶剤に溶
解したフェス状のものが使い易い。
By the way, as the binder made of an organic polymer compound used in the present invention, in addition to the urethane and polyester varnishes used in the examples, melasin, acrylic, epoxy, polyethylene styrene, etc. can be used, and the form may vary. It is easy to use a face-shaped product prepared by dissolving the initial polymer of these organic polymer compounds in a solvent.

微小体状金属としては、実施例で用いたような粉末状の
ものが結合剤との混線物として好都合であるが、他の形
状たとえば微小体繊維状、ウィスカー状などのものであ
っても、また、どのような種類の金属または合金であっ
てもさしつかえない。
As for the microscopic metal, powdery ones as used in the examples are suitable for mixing with the binder, but other shapes such as microscopic fibrous or whisker-like metals can also be used. Moreover, any kind of metal or alloy may be used.

三次元網目状構造を有する合成樹脂発泡体としては、実
施例で用いたポリウレタンフォームが、最も一般的であ
り、市場入手性も高いが、他の連続気泡構造の合成樹脂
、たとえばシリコン、塩ビ、スチロール、ポリエステル
などを用いても実施例と同様の金属多孔体が得られる。
As a synthetic resin foam having a three-dimensional network structure, the polyurethane foam used in the examples is the most common and is highly available on the market, but other synthetic resins with an open cell structure, such as silicone, PVC, Even if styrene, polyester, or the like is used, the same porous metal body as in the example can be obtained.

そして、この合成樹脂発泡体骨格に結合剤と微小体状金
属との混線物を塗着させる方法としては、スプレー塗布
、ディッピング、流し塗りなどの一般の塗装方法を用い
ればよくこの際には、塗着物の粘度調整、塗布量により
、工程管理を行なえば、均一な金属多孔体が得られる。
In order to apply the mixture of binder and microscopic metal to this synthetic resin foam skeleton, general coating methods such as spray coating, dipping, and flow coating may be used. A uniform porous metal body can be obtained by controlling the process by controlling the viscosity of the coating material and the amount of coating.

ところで、塗着物を焼成子る場合には、空気中、酸素ガ
ス中、不活性ガス中などの雰囲気を用いればまい。この
場合、合成樹脂骨格は完全に焼失するか半焼失するかも
しくは炭化して残存していてもよいものとする。ただし
、その後の熱処理によって、微小体状金属を互いに結合
(焼結)する場合には、空気中のような酸化性雰囲気中
で行なうと焼結しにくく、またもろいものができてしま
ったので、実施例のまうに、水素気流中、不活性ガス中
および真空中などの非酸化性雰囲気中で行なうことが必
要である。この場合、実施例では、シンタリングおまび
拡散接合を用いて微小体状金属を結合しているが、たと
えばろう材等の低融点金属を用いても、また、液相焼結
により結合してもさしつかえない。
By the way, when baking the coating, an atmosphere such as air, oxygen gas, or inert gas may be used. In this case, the synthetic resin skeleton may be completely burnt out, half burnt out, or carbonized and remain. However, when bonding (sintering) the microscopic metals to each other through subsequent heat treatment, it was difficult to sinter them in an oxidizing atmosphere such as air, and a brittle product was created. As in the examples, it is necessary to conduct the reaction in a non-oxidizing atmosphere such as a hydrogen stream, an inert gas, and a vacuum. In this case, in the example, the microscopic metals are bonded using sintering and diffusion bonding, but they may also be bonded by liquid phase sintering even if a low melting point metal such as a brazing material is used. I can't help it.

以上説明したように、主として有機高分子化合物からな
る結合剤中に主材料となる微小体状金属を混練する工程
、混線物を三次元網目状構造を有する合成樹脂発泡体の
骨格に塗着させる工程、塗着物を熱処理して合成樹脂発
泡体の骨格ならびに結合剤である有機高分子化合物を焼
失または半焼失もしくは炭化させる工程、および非酸化
性雰囲気中での熱処理によって微小体状金属を焼結する
工程を有する本発明の金属多孔体の製造方法であれば、
簡便かつ工程管理の行ない易い方法により三次元網目状
構造を有する金属多孔体が得られるばかりでなく、従来
の方法では得られなかったA1□ 製のものや2種以上の合金製のものも得ることができる
。したがって、各種の金属多孔体製造上、極めて有利な
方法である。
As explained above, the process involves kneading the microscopic metal, which is the main material, into a binder mainly consisting of an organic polymer compound, and applying the mixed material to the skeleton of a synthetic resin foam having a three-dimensional network structure. process, heat treatment of the coated material to burn out, semi-burn or carbonize the skeleton of the synthetic resin foam and the organic polymer compound that is the binder, and sintering of the microscopic metal by heat treatment in a non-oxidizing atmosphere. If the method for producing a porous metal body of the present invention includes the step of
Not only can metal porous bodies with a three-dimensional network structure be obtained using a simple and easy-to-manage method, but also those made of A1□ and those made of two or more types of alloys, which could not be obtained using conventional methods, can also be obtained. be able to. Therefore, it is an extremely advantageous method for producing various metal porous bodies.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の金属多孔体の製造工程図、第2図は本発
明の金属多孔体の製造工程図、第8図および第4図は、
本発明の一実施例により得られた多孔体を示す模式図で
ある。 (1)は骨格、(2)は空孔、(3)は粒子、(4)は
接合部である。 なお、図中同一符号は同一または相当部分を示すものと
する。 代理人 葛野信− 第1図 第2図
FIG. 1 is a manufacturing process diagram of a conventional metal porous body, FIG. 2 is a manufacturing process diagram of a metal porous body of the present invention, and FIGS. 8 and 4 are:
FIG. 1 is a schematic diagram showing a porous body obtained according to an example of the present invention. (1) is the skeleton, (2) is the pore, (3) is the particle, and (4) is the joint. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Makoto Kuzuno - Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 主として有機高分子化合物からなる結合剤中に主材料と
なる微小体状金属を混練する工程、混線物を三次元網目
状構造を有する合成樹脂発泡体の骨格に塗着させる工程
、塗着物を熱処理して合成樹脂発泡体骨格ならびに結合
剤である有機高分子化合物を焼失または半焼失もしくは
炭化させる工程、および非酸化性雰囲気中での熱処理に
よって微小体状金属を焼結する工程を有することを特徴
とする金属多孔体の製造方法。
A process of kneading a microscopic metal as the main material into a binder mainly consisting of an organic polymer compound, a process of applying the mixed material to the skeleton of a synthetic resin foam having a three-dimensional network structure, and a heat treatment of the applied material. and burning out or semi-burning or carbonizing the synthetic resin foam skeleton and the organic polymer compound as the binder, and sintering the microscopic metal by heat treatment in a non-oxidizing atmosphere. A method for manufacturing a porous metal body.
JP8746282A 1982-05-21 1982-05-21 Manufacture of porous metallic body Granted JPS58204137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8746282A JPS58204137A (en) 1982-05-21 1982-05-21 Manufacture of porous metallic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8746282A JPS58204137A (en) 1982-05-21 1982-05-21 Manufacture of porous metallic body

Publications (2)

Publication Number Publication Date
JPS58204137A true JPS58204137A (en) 1983-11-28
JPS6153417B2 JPS6153417B2 (en) 1986-11-18

Family

ID=13915542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8746282A Granted JPS58204137A (en) 1982-05-21 1982-05-21 Manufacture of porous metallic body

Country Status (1)

Country Link
JP (1) JPS58204137A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219405A (en) * 1988-07-05 1990-01-23 Nippon Steel Corp Manufacture of iron porous body
JPH06271904A (en) * 1993-03-19 1994-09-27 Japan Metals & Chem Co Ltd Porous metal
US5881353A (en) * 1994-03-31 1999-03-09 Hitachi Chemical Company, Ltd. Method for producing porous bodies
US5965298A (en) * 1994-11-07 1999-10-12 Sumitomo Electric Industries, Ltd. Electrode plate for battery and process for producing the same
US6103397A (en) * 1997-03-11 2000-08-15 Mazda Motor Corporation Metallic porous product and composite product thereof and method of producing the same
JP2010509068A (en) * 2006-11-10 2010-03-25 カーエス アルミニウム−テヒノロギー ゲゼルシャフトミット ベシュレンクテル ハフツング Cylinder crank casing used in automobiles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892899A (en) * 1994-09-20 1996-04-09 Japan Metals & Chem Co Ltd Mold material for producing pulp mold
JP2016142420A (en) * 2015-01-30 2016-08-08 日立化成株式会社 Porous member for heat exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219405A (en) * 1988-07-05 1990-01-23 Nippon Steel Corp Manufacture of iron porous body
JPH06271904A (en) * 1993-03-19 1994-09-27 Japan Metals & Chem Co Ltd Porous metal
US5881353A (en) * 1994-03-31 1999-03-09 Hitachi Chemical Company, Ltd. Method for producing porous bodies
US5965298A (en) * 1994-11-07 1999-10-12 Sumitomo Electric Industries, Ltd. Electrode plate for battery and process for producing the same
US6103397A (en) * 1997-03-11 2000-08-15 Mazda Motor Corporation Metallic porous product and composite product thereof and method of producing the same
JP2010509068A (en) * 2006-11-10 2010-03-25 カーエス アルミニウム−テヒノロギー ゲゼルシャフトミット ベシュレンクテル ハフツング Cylinder crank casing used in automobiles

Also Published As

Publication number Publication date
JPS6153417B2 (en) 1986-11-18

Similar Documents

Publication Publication Date Title
JPH01189866A (en) Electrode for fuel cell and manufacture thereof
KR970018811A (en) Battery electrode substrate and its manufacturing method
US3577226A (en) Metal bodies of uniform porosity
JPS58204137A (en) Manufacture of porous metallic body
WO2024011715A1 (en) Slurry for preparing capillary structure and preparation method
Tai et al. Plasma spraying of porous electrodes for a planar solid oxide fuel cell
CN108179456A (en) A kind of preparation method of nanometer of thermite film
US3671317A (en) Method of making fuel cell electrodes
JPH0820831A (en) Production of metallic porous body
US3352694A (en) Low temperature metallizing paint and method of making same
JPH04232252A (en) Sputtered scandium oxide coating for dispenser cathode and its manufacture
JP3218845B2 (en) Method for manufacturing three-dimensional copper network structure
JP3407813B2 (en) Method for manufacturing three-dimensional network structure
JP2001329380A5 (en)
JPH09231983A (en) Electrode substrate for battery and its manufacture
JP2004131302A (en) Conductive ceramic and its manufacturing process
JPH0272558A (en) Manufacture of fuel cell electrode
JPS58193357A (en) Method for surface hardening of metal
DE10212052B4 (en) Method for producing an electrochemical energy source
JPS60127209A (en) Production of carbon parts
JPH097607A (en) Manufacture of metal porous body
JPS63105469A (en) Manufacture of nickel substrate for alkaline battery
JPH10183203A (en) Production of metallic porous body
JPH05247690A (en) Electrophoretic deposition method of metallic powder for obtaining deposition layer for coating of superalloy by diffusion brazing heat treatment and electrophoresis bath for the same
JPH08302495A (en) Production of metallic porous body