JPS6153417B2 - - Google Patents

Info

Publication number
JPS6153417B2
JPS6153417B2 JP8746282A JP8746282A JPS6153417B2 JP S6153417 B2 JPS6153417 B2 JP S6153417B2 JP 8746282 A JP8746282 A JP 8746282A JP 8746282 A JP8746282 A JP 8746282A JP S6153417 B2 JPS6153417 B2 JP S6153417B2
Authority
JP
Japan
Prior art keywords
metal
skeleton
synthetic resin
binder
dimensional network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8746282A
Other languages
Japanese (ja)
Other versions
JPS58204137A (en
Inventor
Hidefusa Uchikawa
Hideharu Tanaka
Mutsuo Sekya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8746282A priority Critical patent/JPS58204137A/en
Publication of JPS58204137A publication Critical patent/JPS58204137A/en
Publication of JPS6153417B2 publication Critical patent/JPS6153417B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は三次元網目状構造を有する金属多孔体
の新規で簡便な製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel and simple method for manufacturing a porous metal body having a three-dimensional network structure.

従来からある三次元網目状金属多孔体の製造方
法としては、特公昭47−10524がある。この方法
の工程は、第1図に示したように、網状発泡合成
樹脂をカーボンやグラフアイトで処理することに
よつて導電性をもたせた上で、めつき槽中におい
てNiなどの金属を電着させた後、焼成して内部
の合成樹脂を焼失または半焼失させて電着金属を
多孔体の骨格となすものである。この方法は、三
次元網目状金属多孔体を製造するための初の効果
かつ実用的方法として現在でも使用されている
が、その反面、金属を電着するために、あらかじ
め導電処理が不可欠であることおよび電源やめつ
き槽などの電着装置が必要であることなどの工程
上ならびに設備上の問題点があつた。かつ導電処
理により網状発泡合成樹脂表面の抵抗値、電源電
圧、めつき液中の金属イオン濃度、電流密度およ
びめつき時間などの多くの因子によつて電着速度
が決定されるため、これらをすべて調整しなくて
は金属の電着量が調整できないという工程管理上
の煩雑さならびに2種以上の合金からなるものが
得られないなどの問題点もあつた。
As a conventional method for manufacturing a three-dimensional network metal porous body, there is Japanese Patent Publication No. 10524/1984. As shown in Figure 1, this method involves treating a reticulated foamed synthetic resin with carbon or graphite to make it conductive, and then applying a metal such as Ni to an electrically conductive layer in a plating bath. After being deposited, the electrodeposited metal is fired to burn out or partially burn out the internal synthetic resin, thereby forming the electrodeposited metal into a skeleton of the porous body. This method is still used today as the first effective and practical method for producing three-dimensional mesh porous metal materials, but on the other hand, a conductive treatment is essential in order to electrodeposit the metal. There were problems with the process and equipment, such as the need for a power source and electrodeposition equipment such as a plating tank. In addition, the electrodeposition speed is determined by many factors such as the resistance value of the surface of the reticulated foamed synthetic resin due to conductive treatment, power supply voltage, metal ion concentration in the plating solution, current density, and plating time. There were also problems such as the complexity of process control in that the amount of metal electrodeposited could not be adjusted without adjusting everything, as well as the inability to obtain a product consisting of an alloy of two or more types.

本発明は、上記従来法の欠点を解消し、簡便か
つ工程管理の行ない易い新規な金属多孔体の製造
方法を提供するものである。すなわち、本発明の
方法は、第2図の工程図のように、網状発泡合成
樹脂を出発基材として用いることは従来法と同様
であるが、従来法の工程および工程管理を煩雑に
している導電被覆処理および電着処理を用いず、
このかわりとして、有機高分子結合剤と金属微小
体との混練物を基材に浸漬、スプレーなどの方法
で塗着後熱処理を行なうことによつて、基材なら
びに結合剤を焼失させ、かつ金属微小体を焼結し
て骨格となす工程を用いるものである。
The present invention eliminates the drawbacks of the above-mentioned conventional methods and provides a novel method for producing a porous metal body that is simple and easy to control the process. That is, as shown in the process diagram of FIG. 2, the method of the present invention is similar to the conventional method in that a reticulated foamed synthetic resin is used as the starting base material, but the process and process control of the conventional method are complicated. Without using conductive coating treatment or electrodeposition treatment,
As an alternative, heat treatment can be performed after application by dipping or spraying a kneaded mixture of an organic polymer binder and metal particles onto the base material, thereby burning out the base material and the binder, and removing the metal. It uses a process of sintering microscopic bodies to form a skeleton.

以下、図示実施例にしたがつて、本発明の詳細
を説明する。
Hereinafter, the present invention will be explained in detail with reference to the illustrated embodiments.

実施例 1 出発基材として三次元網目状構造を有するポリ
ウレタンフオーム(商品名エバーライトスコツ
ト、ブリジストンタイヤK.K製)を用いた。この
ウレタン骨格に、下記組成例1の組成物をボール
ミルにて約1時間混合した混練物をスプレーにて
均一に塗布した。塗布物を室温で15分間および
120℃で10分間乾燥後、380℃で50分間焼成した。
Example 1 A polyurethane foam having a three-dimensional network structure (trade name: Everlite Scotto, manufactured by Bridgestone Tire KK) was used as a starting base material. A kneaded product obtained by mixing the composition of Composition Example 1 below in a ball mill for about 1 hour was uniformly applied to this urethane skeleton by spraying. Leave the application at room temperature for 15 minutes and
After drying at 120°C for 10 minutes, it was baked at 380°C for 50 minutes.

組成例 1 結合剤(ウレタンワニス) 33重量% 微小体状金属(Al粉) 42 〃 添加剤(エアロジル、硬化剤、シンナー)
25 〃 ついで、水素気流中520℃にて2時間焼成する
ことにより、第3図に示したような三次元網目状
構造を有するAl製金属多孔体が得られた。第3
図において1は骨格、2は空孔である。この表面
を走査型電子顕微鏡にて観察したところ、第4図
の模式図のような現象が見られた。すなわち、水
素気流中での焼成前には、第4図aに示したよう
に、Al粉粒子3が密に分散されているのみであ
るが、焼成後には第4図bに示したように、Al
粉粒子3は境界面で互いにシンタリング(焼結)
を起こし、ネツク部4にて結合されていることが
わかつた。
Composition example 1 Binder (urethane varnish) 33% by weight Microscopic metal (Al powder) 42 Additives (Aerosil, hardening agent, thinner)
25 Then, by firing in a hydrogen stream at 520° C. for 2 hours, an Al metal porous body having a three-dimensional network structure as shown in FIG. 3 was obtained. Third
In the figure, 1 is a skeleton and 2 is a hole. When this surface was observed with a scanning electron microscope, a phenomenon as shown in the schematic diagram of FIG. 4 was observed. That is, before firing in a hydrogen stream, the Al powder particles 3 are only densely dispersed as shown in Figure 4a, but after firing, as shown in Figure 4b, ,Al
Powder particles 3 sinter each other at the interface
It was found that they were connected at the network part 4.

Al製金属多孔体は本質的にAlめつき(電着)
を行なうことが不可能であることから、前記特公
昭47−10524の従来法では全く製造不可能なもの
であつたが、本発明の方法では、三次元網目状構
造のAl多孔体を製作することが可能である利点
がある。
Al metal porous bodies are essentially Al-plated (electrodeposition)
However, with the method of the present invention, it is possible to produce an Al porous body with a three-dimensional network structure. This has the advantage of being possible.

実施例 2 実施例1の場合と全く同一のポリウレタンフオ
ームを用い、下記組成例2の混合物をボールミル
にて約1時間混練後、粘度調整をしてデイツピン
グにより塗布した。塗布物を120℃にて20分間乾
燥後、180℃にて30分間および10-5torrの真空中
600℃にて2時間焼成して第3図のような構造を
もつ三次元網目状多孔体を得た。
Example 2 Using the same polyurethane foam as in Example 1, a mixture of Composition Example 2 below was kneaded in a ball mill for about 1 hour, the viscosity was adjusted, and the mixture was applied by dipping. After drying the coated material at 120℃ for 20 minutes, it was dried at 180℃ for 30 minutes and in a vacuum of 10 -5 torr.
After firing at 600°C for 2 hours, a three-dimensional network porous body having the structure shown in Figure 3 was obtained.

組成例 2 結合剤(ポリエステル系ワニス) 25重量% 微小体状金属(Fe−Ni粉、Al粉) 58 〃 添加剤(硬化促進剤、シリカ、シンナー)
17重量% このものについても、実施例1の場合と同様
に、走査型電子顕微鏡にて表面を観察したとこ
ろ、やはり第4図bの場合と同様に粒子同志がシ
ンタリングにより焼結されている構成を成し、ま
たX線による分析を行なつたところ、Fe−Ni粉
とAl粉との界面においては、真空中での焼成に
よつて、両者の原子が互いに拡散するために、
Fe−Al系合金が生成していることが判明した。
Composition example 2 Binder (polyester varnish) 25% by weight Microscopic metal (Fe-Ni powder, Al powder) 58 Additives (hardening accelerator, silica, thinner)
17% by weight When the surface of this material was observed using a scanning electron microscope in the same manner as in Example 1, it was found that the particles were sintered together by sintering, as in the case of Fig. 4b. After constructing the structure and performing X-ray analysis, it was found that at the interface between Fe-Ni powder and Al powder, atoms of both particles diffuse into each other due to firing in vacuum.
It was found that Fe-Al alloy was formed.

つぎに、実施例1および2で製造した2種の金
属多孔体について、曲げ加工性を調べた。ともに
厚さ5mmで板状のものを用意し、これを水平面に
対して60゜析り曲げたところ、曲げ部にクラツク
は全く見られず、良好な曲げ加工性を有すること
が明らかとなつた。
Next, the bending workability of the two types of porous metal bodies produced in Examples 1 and 2 was examined. When both plates were prepared in the form of a plate with a thickness of 5 mm and bent at an angle of 60° to the horizontal plane, no cracks were observed in the bent portions, indicating that they had good bending workability. .

ところで、本発明で用いる有機高分子化合物か
らなる結合剤としては、実施例で用いたウレタン
やポリエステル系ワニスのほかに、メラミン、ア
クリル、エポキシ、ポリエチレンスチロールなど
を用いることができ、形態としてはこれら有機高
分子化合物の初期重合体を溶剤に溶解したワニス
状のものが使い易い。
By the way, as the binder made of an organic polymer compound used in the present invention, in addition to the urethane and polyester varnishes used in the examples, melamine, acrylic, epoxy, polyethylene styrene, etc. can be used. A varnish-like product prepared by dissolving an initial polymer of an organic polymer compound in a solvent is easy to use.

微小体状金属としては、実施例で用いたような
粉末状のものが結合剤との混練物として好都合で
あるが、他の形状たとえば微小体繊維状、ウイス
カー状などのものであつても、また、どのような
種類の金属または合金であつてもさしつかえな
い。
As the microscopic metal, powdered metals such as those used in the examples are suitable for kneading with a binder, but other shapes such as microscopic fibrous or whisker-like metals may also be used. Furthermore, any kind of metal or alloy may be used.

三次元網目状構造を有する合成樹脂発泡体とし
ては、実施例で用いたポリウレタンフオームが、
最も一般的であり、市場入手性も高いが、他の連
続気泡構造の合成樹脂、たとえばシリコン、塩
ビ、スチロール、ポリエステルなどを用いても実
施例と同様の金属多孔体が得られる。そして、こ
の合成樹脂発泡体骨格に結合剤と微小体状金属と
の混練物を塗着させる方法としては、スプレー塗
布、デイツピング、流し塗りなどの一般の塗装方
法を用いればよくこの際には、塗着物の粘度調
整、塗布量により、工程管理を行なえば、均一な
金属多孔体が得られる。ところで、塗着物を焼成
する場合には、空気中、酸素ガス中、不活性ガス
中などの雰囲気を用いればよい。この場合、合成
樹脂骨格は完全に焼失するか半焼失するかもしく
は炭化して残存していてもよいものとする。ただ
し、その後の熱処理によつて、微小体状金属を互
いに結合(焼結)する場合には、空気中のような
酸化性雰囲気中で行なうと焼結しにくく、またも
ろいものができてしまつたので、実施例のよう
に、水素気流中、不活性ガス中および真空中など
の非酸化性雰囲気中で行なうことが必要である。
この場合、実施例では、シンタリングおよび拡散
接合を用いて微小体状金属を結合しているが、た
とえばろう材等の低融点金属を用いても、また、
液相焼結により結合してもさしつかえない。
As the synthetic resin foam having a three-dimensional network structure, the polyurethane foam used in the examples was
Although it is the most common and highly available on the market, the same porous metal body as in the example can be obtained by using other synthetic resins with open cell structures, such as silicone, vinyl chloride, styrene, and polyester. In order to apply the kneaded mixture of binder and microscopic metal to this synthetic resin foam skeleton, general coating methods such as spray coating, dipping, and flow coating may be used. A uniform porous metal body can be obtained by controlling the process by controlling the viscosity of the coating material and the amount of coating. By the way, when baking the coated article, an atmosphere such as air, oxygen gas, or inert gas may be used. In this case, the synthetic resin skeleton may be completely burnt out, half burnt out, or carbonized and remain. However, when bonding (sintering) microscopic metals to each other through subsequent heat treatment, sintering is difficult and brittle if done in an oxidizing atmosphere such as air. Therefore, as in the examples, it is necessary to carry out the process in a non-oxidizing atmosphere such as a hydrogen stream, an inert gas, or a vacuum.
In this case, in the embodiment, the microscopic metals are bonded using sintering and diffusion bonding, but even if a low melting point metal such as a brazing material is used,
Bonding may also be done by liquid phase sintering.

以上説明したように、主として有機高分子化合
物からなる結合剤中に主材料となる微小体状金属
を混練する工程、混練物を三次元網目状構造を有
する合成樹脂発泡体の骨格に塗着させる工程、塗
着物を熱処理して合成樹脂発泡体の骨格ならびに
結合剤である有機高分子化合物を焼失または半焼
失もしくは炭化させる工程、および非酸化性雰囲
気中での熱処理によつて微小体状金属を焼結する
工程を有する本発明の金属多孔体の製造方法であ
れば、簡便かつ工程管理の行ない易い方法により
三次元網目状構造を有する金属多孔体が得られる
ばかりでなく、従来の方法では得られなかつた
Al製のものや2種以上の合金製のものも得るこ
とができる。したがつて、各種の金属多孔体製造
上、極めて有利な方法である。
As explained above, the process involves kneading the microscopic metal, which is the main material, into a binder mainly consisting of an organic polymer compound, and applying the kneaded material to the skeleton of a synthetic resin foam having a three-dimensional network structure. process, a process in which the coated material is heat-treated to burn off, semi-burn off, or carbonize the skeleton of the synthetic resin foam and the organic polymer compound that is the binder; and a process in which the metal particles are removed by heat treatment in a non-oxidizing atmosphere. The method for producing a porous metal body of the present invention, which includes a sintering step, not only allows a porous metal body having a three-dimensional network structure to be obtained by a simple and easy-to-manage method, but also enables the production of a porous metal body that is not obtainable by conventional methods. I couldn't help it
It is also possible to obtain one made of Al or an alloy of two or more types. Therefore, it is an extremely advantageous method for producing various metal porous bodies.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の金属多孔体の製造工程図、第2
図は本発明の金属多孔体の製造工程図、第3図お
よび第4図は、本発明の一実施例により得られた
多孔体を示す模式図である。 1は骨格、2は空孔、3は粒子、4は接合部で
ある。なお、図中同一符号は同一または相当部分
を示すものとする。
Figure 1 is a diagram of the conventional manufacturing process for porous metal bodies;
The figure is a manufacturing process diagram of the metal porous body of the present invention, and FIGS. 3 and 4 are schematic diagrams showing the porous body obtained by one example of the present invention. 1 is a skeleton, 2 is a hole, 3 is a particle, and 4 is a joint. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 主として有機高分子化合物からなる結合剤中
に主材料となる微小体状金属を混練する工程、混
練物を三次元網目状構造を有する合成樹脂発泡体
の骨格に塗着させる工程、塗着物を熱処理して合
成樹脂発泡体骨格ならびに結合剤である有機高分
子化合物を焼失または半焼失もしくは炭化させる
工程、および非酸化性雰囲気中での熱処理によつ
て微小体状金属を焼結する工程を有することを特
徴とする金属多孔体の製造方法。
1. A step of kneading a microscopic metal as the main material into a binder mainly consisting of an organic polymer compound, a step of applying the kneaded material to the skeleton of a synthetic resin foam having a three-dimensional network structure, and a step of applying the applied material to the skeleton of a synthetic resin foam having a three-dimensional network structure. A step of heat-treating the synthetic resin foam skeleton and the organic polymer compound as a binder to burn out, semi-burn or carbonize it, and a step of sintering the microscopic metal by heat treatment in a non-oxidizing atmosphere. A method for producing a porous metal body, characterized in that:
JP8746282A 1982-05-21 1982-05-21 Manufacture of porous metallic body Granted JPS58204137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8746282A JPS58204137A (en) 1982-05-21 1982-05-21 Manufacture of porous metallic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8746282A JPS58204137A (en) 1982-05-21 1982-05-21 Manufacture of porous metallic body

Publications (2)

Publication Number Publication Date
JPS58204137A JPS58204137A (en) 1983-11-28
JPS6153417B2 true JPS6153417B2 (en) 1986-11-18

Family

ID=13915542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8746282A Granted JPS58204137A (en) 1982-05-21 1982-05-21 Manufacture of porous metallic body

Country Status (1)

Country Link
JP (1) JPS58204137A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892899A (en) * 1994-09-20 1996-04-09 Japan Metals & Chem Co Ltd Mold material for producing pulp mold
JP2016142420A (en) * 2015-01-30 2016-08-08 日立化成株式会社 Porous member for heat exchanger

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692606B2 (en) * 1988-07-05 1994-11-16 新日本製鐵株式会社 Method for producing iron porous body
JP2825005B2 (en) * 1993-03-19 1998-11-18 日本重化学工業株式会社 Method for producing porous metal and porous metal obtained by the method
WO1995026844A1 (en) * 1994-03-31 1995-10-12 Hitachi Chemical Company, Ltd. Method for producing porous bodies
US6020089A (en) * 1994-11-07 2000-02-01 Sumitomo Electric Industries, Ltd. Electrode plate for battery
JP3007868B2 (en) * 1997-03-11 2000-02-07 マツダ株式会社 Porous metal body, light alloy composite member, and production method thereof
DE102006053018B4 (en) * 2006-11-10 2010-04-08 Ks Aluminium-Technologie Gmbh Cylinder crankcase for a motor vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892899A (en) * 1994-09-20 1996-04-09 Japan Metals & Chem Co Ltd Mold material for producing pulp mold
JP2016142420A (en) * 2015-01-30 2016-08-08 日立化成株式会社 Porous member for heat exchanger

Also Published As

Publication number Publication date
JPS58204137A (en) 1983-11-28

Similar Documents

Publication Publication Date Title
US3433632A (en) Process for producing porous metal bodies
DE2630548A1 (en) PROCESS FOR MANUFACTURING METALLIC AND / OR METAL-CERAMIC AND / OR CERAMIC SPOOLS
WO1995026844A1 (en) Method for producing porous bodies
JP2020501026A (en) Manufacturing method of metal foam
WO1997031738A1 (en) Porous materials and method for producing
DE2440964B2 (en) METHOD OF APPLYING A LAYER OF PLASTIC-COATED PARTICLES OF INORGANIC MATERIAL
JPS6153417B2 (en)
JP2007502368A (en) Method for producing parts containing nickel-based alloy, and parts produced by the method
US3009979A (en) Positive electrode
JPH0820831A (en) Production of metallic porous body
JP2000355789A (en) High porosity cellular three-dimensional metallic structure made of refractory alloy and its production
JP3218845B2 (en) Method for manufacturing three-dimensional copper network structure
JP2001329380A5 (en)
DE10212052B4 (en) Method for producing an electrochemical energy source
JPS63105469A (en) Manufacture of nickel substrate for alkaline battery
CN109513933A (en) A kind of preparation method of high temperature resistant high surface resistance iron-based soft magnetic magnetic core
JPH06235033A (en) Production of three-dimensional network structural body
DE4015208C1 (en)
JPS60127209A (en) Production of carbon parts
JPH05247690A (en) Electrophoretic deposition method of metallic powder for obtaining deposition layer for coating of superalloy by diffusion brazing heat treatment and electrophoresis bath for the same
JPH0272558A (en) Manufacture of fuel cell electrode
JPS6065464A (en) Manufacture of sintered substrate for battery
JP3180553B2 (en) Method for manufacturing three-dimensional network structure
JPH04202635A (en) Production of porous metallic base material
JPS5866267A (en) Manufacture of substrate for alkaline storage battery