JPS58203358A - Controller for absorption type cold and hot water machine utilizing solar heat - Google Patents

Controller for absorption type cold and hot water machine utilizing solar heat

Info

Publication number
JPS58203358A
JPS58203358A JP8471782A JP8471782A JPS58203358A JP S58203358 A JPS58203358 A JP S58203358A JP 8471782 A JP8471782 A JP 8471782A JP 8471782 A JP8471782 A JP 8471782A JP S58203358 A JPS58203358 A JP S58203358A
Authority
JP
Japan
Prior art keywords
temperature
low
heat
water
temperature water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8471782A
Other languages
Japanese (ja)
Inventor
日比野 陽三
亀島 鉱二
奈良 安晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8471782A priority Critical patent/JPS58203358A/en
Publication of JPS58203358A publication Critical patent/JPS58203358A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、太陽熱で加熱した低温水を主熱源とし、蒸気
あるいは燃料を補助熱源とする太陽熱利用吸収式冷温水
機の制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for a solar heat absorption type water chiller/heater that uses low-temperature water heated by solar heat as a main heat source and steam or fuel as an auxiliary heat source.

従来の太陽熱利用吸収式冷温水機においては、太陽熱で
加熱した低温水を加熱源とする低温熱源発生器に、集熱
器あるいは蓄熱槽からの低温水を供給していた。この時
、低温熱源発生器内の溶液と低温水との相対的な温度に
もとづいて低温水を投入する方策がとられている。この
方策によると、低温水の温度が極めて高く、これに反し
て低温熱源発生器内の溶液温度が低くなっている場合に
は、低温水によって相対的に多量の熱量が瞬時に投入さ
れるが、低温熱源発生器における溶液と低温水との熱交
換量には制限があるため、低温水の熱量は溶液側に移行
することなく、十分熱交換されない低温水が、そのまま
集熱器や蓄熱槽に戻される。
In conventional solar heat absorption type water chillers/heaters, low-temperature water from a heat collector or a heat storage tank is supplied to a low-temperature heat source generator whose heat source is low-temperature water heated by solar heat. At this time, measures are taken to introduce low-temperature water based on the relative temperature of the solution in the low-temperature heat source generator and the low-temperature water. According to this strategy, if the temperature of the low-temperature water is extremely high and the solution temperature in the low-temperature heat source generator is low, a relatively large amount of heat will be instantly input by the low-temperature water. Since there is a limit to the amount of heat exchange between the solution and the low-temperature water in the low-temperature heat source generator, the heat amount of the low-temperature water does not transfer to the solution side, and the low-temperature water without sufficient heat exchange is directly transferred to the heat collector or heat storage tank. will be returned to.

このため、途中の配管における熱ロスや、戻ってきた低
温水によるもとの低温水の混合ロス等が生ずる恐れがあ
る。一方、低温熱源発生器の温度が低過ぎると、低温水
を投入しても、たんに溶液の温度を上げるだけになって
、低温水の温度が急激に低下してしまい、以後低温水を
投入してもこれが冷凍出力に生かされない恐れがあった
For this reason, heat loss in the pipes along the way, loss of mixing of the original low-temperature water due to returning low-temperature water, etc. may occur. On the other hand, if the temperature of the low-temperature heat source generator is too low, adding low-temperature water will only raise the temperature of the solution, causing the temperature of the low-temperature water to drop rapidly, and then adding low-temperature water However, there was a risk that this would not be utilized in terms of refrigeration output.

本発明の目的は太陽熱で加熱した低温水を最大限に利用
するとともに、補助熱源を有効に利用することによって
省エネルギーを図るだめの太陽熱利用吸収式冷温水機の
制御装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a control device for a solar heat absorption type water chiller/heater that makes maximum use of low temperature water heated by solar heat and saves energy by effectively utilizing an auxiliary heat source.

本発明の特徴とするところは、太陽熱で加熱した低温水
を加熱源とする低温熱源発生器と、太陽熱が不足した場
合に補助熱源を加熱源とする高温発生器および低温発生
器を備えた吸、6温水機において、低温熱源発生器の温
度に応じて低温水の投入熱量を制御するようにしたとこ
ろにある。
The present invention is characterized by a low-temperature heat source generator that uses low-temperature water heated by solar heat as a heating source, and an absorption generator that includes a high-temperature generator and a low-temperature generator that use an auxiliary heat source as a heating source when solar heat is insufficient. , 6 water heater, in which the amount of heat input to low-temperature water is controlled according to the temperature of the low-temperature heat source generator.

以下本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の太陽熱利用吸収式冷温水機の系統図を
示すものである。冷温水機は、補助加熱源1によって稀
溶液を加熱して冷媒蒸気(水蒸気)を発生する高温発生
器2と、高温発生器2で生成された冷媒蒸気によって稀
溶液を加熱して冷媒隻蒸気(水蒸気)を発生する低温発
生器3と、太陽熱で加熱された低温水管4内の低温水に
より稀溶液を加熱して冷媒蒸気(水蒸気)を発生する低
温熱源発生器5と、低温水を低温熱源発生器5に投入す
る低温水ポンプ6と、これら発生器2,3゜5で生成さ
れた冷媒蒸気を冷却水管7を通る冷却水により冷却して
液化させる凝縮器8と、凝縮器8で液化した冷媒液を蒸
発させ、その際の気化潜熱を冷水管9内を流れる水から
奪って冷水(冷力)を発生させる蒸発器10と、冷却水
管7内を流れる冷却水で冷却しつつ蒸発器10で蒸発し
た冷媒蒸気を発生器2,3.5から導入した濃溶液に吸
収させて稀溶液を生成する吸収器11と、吸収器I 伊で生成された稀溶液を発生器2,3.5に送る溶液ポ
ンプ12と、吸収器11から発生器へ送られる稀溶液と
発生器から吸収器11へ戻る濃溶液との間で熱の授受を
行なう高温熱交換器13および低温熱交換器14と、蒸
発器10の冷媒を循環する冷媒ポンプ15とから構成さ
れている。さらに本発明の太陽熱利用吸収式冷温水機で
は、蓄熱槽あるいは集熱器等の太陽熱で加熱された低温
水の供給源16と、低温水管4における低温水量を調整
する弁17とを備えている。18は低温熱源発生器5の
溶液温度を検出する検出器、19は低温水の出口温度を
検出する検出器、20は低温水の入口温度を検出する検
出器、21は低温水の蓄熱槽の高温部の温度を検出する
検出器である。制御装置22は上記の温度検出器18,
19,20゜21の検出信号にもとづいて、補助加熱源
1、低温水ポンプ6、溶液ポンプ12、冷媒ポンプ15
および弁17を制御する。
FIG. 1 shows a system diagram of the solar heat absorption type water chiller/heater of the present invention. The cold/hot water machine includes a high-temperature generator 2 that heats a dilute solution using an auxiliary heating source 1 to generate refrigerant vapor (steam), and a high-temperature generator 2 that heats the dilute solution with the refrigerant vapor generated by the high-temperature generator 2 to generate refrigerant vapor. a low-temperature heat source generator 5 that generates refrigerant vapor (steam) by heating a dilute solution with low-temperature water in a low-temperature water pipe 4 heated by solar heat; A low-temperature water pump 6 that feeds into the heat source generator 5, a condenser 8 that cools and liquefies the refrigerant vapor generated by the generators 2 and 3 with cooling water passing through the cooling water pipe 7; An evaporator 10 that evaporates the liquefied refrigerant liquid and extracts the latent heat of vaporization from the water flowing in the cold water pipe 9 to generate cold water (cold power), and evaporates while being cooled by the cooling water flowing in the cooling water pipe 7. An absorber 11 absorbs the refrigerant vapor evaporated in the absorber 10 into a concentrated solution introduced from the generators 2 and 3.5 to generate a dilute solution, and an absorber 11 absorbs the refrigerant vapor evaporated in the absorber 10 into a concentrated solution introduced from the generators 2 and 3.5 to generate a dilute solution. .5, a high temperature heat exchanger 13 and a low temperature heat exchanger that exchange heat between the dilute solution sent from the absorber 11 to the generator and the concentrated solution returned from the generator to the absorber 11. 14, and a refrigerant pump 15 that circulates the refrigerant in the evaporator 10. Furthermore, the solar heat absorption type water cooler/heater of the present invention includes a supply source 16 of low temperature water heated by solar heat such as a heat storage tank or a heat collector, and a valve 17 for adjusting the amount of low temperature water in the low temperature water pipe 4. . 18 is a detector for detecting the solution temperature of the low-temperature heat source generator 5; 19 is a detector for detecting the outlet temperature of the low-temperature water; 20 is a detector for detecting the inlet temperature of the low-temperature water; 21 is a detector for detecting the inlet temperature of the low-temperature water; This is a detector that detects the temperature of a high temperature section. The control device 22 includes the temperature detector 18,
Based on the detection signals of
and controls valve 17.

前述した本発明の制御装置22の第1の実施例の動作を
第2図によって説明する。
The operation of the first embodiment of the control device 22 of the present invention described above will be explained with reference to FIG.

第2図は低温熱源発生器5内の溶液温度と低温水温度の
相対的関係にもとづいて、どのような制御方策をとるか
を示している。横軸は溶液温度。
FIG. 2 shows what control measures are taken based on the relative relationship between the solution temperature in the low temperature heat source generator 5 and the low temperature water temperature. The horizontal axis is the solution temperature.

LTで、Lはその実用上の上限値を示している。In LT, L indicates its practical upper limit.

縦軸は低温水温度HTで、aはその実用上の下限値、b
は実用上の上限値、Cは上限値を示している。一方低温
水から溶液に熱量が与えられるためには、少なくとも低
温水温度HTと溶液温度LTとが等しくなければならな
い。この関係は、図中の直線にで評価される。しかし実
用上は低温水温度HTは溶液温度よりもおる程度高くな
ければならない。この関係は図中の直線にで評価される
The vertical axis is the low temperature water temperature HT, a is its practical lower limit, b
indicates the practical upper limit, and C indicates the upper limit. On the other hand, in order for the low-temperature water to impart heat to the solution, the low-temperature water temperature HT and the solution temperature LT must at least be equal. This relationship is evaluated by the straight line in the figure. However, in practice, the low temperature water temperature HT must be somewhat higher than the solution temperature. This relationship is evaluated by the straight line in the figure.

この関係は制御装置22内に記憶されている。上記の関
係にもとづいて、図に示すような4つの領域I〜■を決
め、各検出器18〜21の検出値により設定される各領
域■〜■に応じて次のような制御方策を実行する。すな
わち、 領域Iに該当する場合、すなわち低温水温度が極めて高
い場合には、低温水を多量に低温熱源発生器5に投入し
ても、低温水の熱量が十分に溶液に移行することなく、
そのまま蓄熱槽16に戻されるので、途中の放熱や混合
による熱のロスを生ずる恐れがある。従って、低温水に
よる投入熱量を制限する方が得策である。この具体的方
策としては、第1図に示したように、弁17によって発
生器5への低温水の流量を減少させ、また低温水ポンプ
6の吐出容量を減らすことなどで可能である。この方策
により、溶液の温度を確実に上昇させるのに必要十分な
熱量が低温水によって投入でき、また熱のロスを生じな
いように低温水の利用効率を高くできる。
This relationship is stored within the control device 22. Based on the above relationship, the four regions I to ■ shown in the figure are determined, and the following control measures are executed according to each region ■ to ■ set by the detection values of each detector 18 to 21. do. That is, in the case of falling under Region I, that is, when the low temperature water temperature is extremely high, even if a large amount of low temperature water is introduced into the low temperature heat source generator 5, the calorific value of the low temperature water is not sufficiently transferred to the solution.
Since it is returned to the heat storage tank 16 as it is, there is a risk of heat loss due to heat dissipation or mixing during the process. Therefore, it is better to limit the amount of heat input by low-temperature water. As a concrete measure for this, as shown in FIG. 1, it is possible to reduce the flow rate of low-temperature water to the generator 5 using the valve 17, and to reduce the discharge capacity of the low-temperature water pump 6. By this measure, sufficient heat can be inputted by low-temperature water to reliably raise the temperature of the solution, and the efficiency of utilization of low-temperature water can be increased so as not to cause heat loss.

領域πに該当する場合、すなわち低温水の温度が比較的
高い場合には、低温水の熱量が有効に溶液に伝達される
ので、弁17を全開に制御するか、あるいは低温水ポン
プ6の容量1肇大きく制御する。
In the case of falling under the region π, that is, when the temperature of the low-temperature water is relatively high, the heat amount of the low-temperature water is effectively transferred to the solution, so the valve 17 is controlled to be fully open, or the capacity of the low-temperature water pump 6 is Control by one arm.

領域■に該当する場合、すなわち低温水の温度が低い場
合には、低温水の投入による効果はあまり期待できない
が、溶液の温度も低いので、必要に応じて弁17および
低温水ポンプ16を制御して低温水を投入する。
If it falls under region ■, that is, if the temperature of the low-temperature water is low, we cannot expect much effect from adding low-temperature water, but since the temperature of the solution is also low, the valve 17 and low-temperature water pump 16 can be controlled as necessary. and add low temperature water.

領域■に該当する場合、すなわち溶液の温度が高い場合
には、低温水の投入はかえって損失となるので、低温水
ポンプ6を停止制御する。この時ポンプ12.15を駆
動して溶液や冷媒を強制的に循環させたり、低温の溶液
を低温熱源発生器5に強制的に供給することによシ、低
温水温度よりも溶液温度を下げて低温水を投入できるよ
うにすることもできる。
In the case of region (3), that is, when the temperature of the solution is high, the low-temperature water pump 6 is controlled to stop, since adding low-temperature water will result in a loss. At this time, by driving the pumps 12 and 15 to forcibly circulate the solution and refrigerant, or by forcibly supplying the low-temperature solution to the low-temperature heat source generator 5, the solution temperature can be lowered below the low-temperature water temperature. It is also possible to add low-temperature water.

次に、本発明の制御装置の第2の実施例の動作を第3図
によって説明する。第3図は低温熱源発生器5の溶液温
度LTと低温水温度HTとの相対的関係にもとづいて、
どのような制御方策をとるかを示している。横軸は溶液
温度LTで、Lパはその実用上の上限値を示している。
Next, the operation of the second embodiment of the control device of the present invention will be explained with reference to FIG. FIG. 3 is based on the relative relationship between the solution temperature LT of the low temperature heat source generator 5 and the low temperature water temperature HT.
It shows what kind of control measures to take. The horizontal axis is the solution temperature LT, and Lpa indicates its practical upper limit.

縦軸は低温水温度)(Tで、a′・は・実用上の下限値
 c/は上限値を示している。一方、低温水から溶液に
熱量が与えられるためには、少なくとも低温水温度と溶
液温度とが等しくなければならない。この関係は図中の
直線に′で評価される。しかし、実用上は低温水温度H
Tは溶液温度LTよりもある程度高くなければならない
。この関係は、図中の直線に′で評価される。さらに、
低温水温度HTが溶液温度LTよりもかなり高い場合を
、図中の直線mで評価する。制御装置22は上記の関係
にもとづいて、図に示すような4つの領域1′〜■′を
決め、検出器18〜21の検出値により決定される各領
域工′〜■′に応じて次のような制御方策を実行する。
The vertical axis is the low-temperature water temperature) (T, where a' is the practical lower limit and c/ is the upper limit. On the other hand, in order for the low-temperature water to give the solution heat, at least the low-temperature water temperature must be and the solution temperature must be equal. This relationship is evaluated by ′ on the straight line in the figure. However, in practice, the low temperature water temperature H
T must be higher than the solution temperature LT to some extent. This relationship is evaluated by ′ on the straight line in the figure. moreover,
The case where the low temperature water temperature HT is considerably higher than the solution temperature LT is evaluated using the straight line m in the figure. Based on the above relationship, the control device 22 determines the four areas 1' to ■' as shown in the figure, and selects the next area according to the detection values of the detectors 18 to 21. Implement control measures such as

すなわち、 領域工Iに該当する場合、すなわち低温水温度が極めて
高い場合には、低温水を多量に低温熱源発生器5に投入
しても、低温水の熱量が十分に移行することなく、その
まま蓄熱槽16に戻されるので、途中の放熱や混合によ
る熱のロスを生ずる恐れがある。従って、低温水による
熱量の投入を一時見合わせて、まず補助加熱源1によっ
て効率良く溶液を加熱して、冷凍機全体の運転状態を定
格状態の近くまで移行させ、溶液の温度が上昇して冷凍
機が円滑に冷力を出すようになってからは(9) じめて低温水による熱量の投入を開始する。この方策に
より、溶液の温度を確実に上昇させるのに必要十分な熱
量が低温水によって投入でき、また熱のロスを生じない
低温水の利用効率を高くできる。
In other words, in the case of area work I, that is, when the low temperature water temperature is extremely high, even if a large amount of low temperature water is poured into the low temperature heat source generator 5, the heat amount of the low temperature water will not be sufficiently transferred and will remain as it is. Since it is returned to the heat storage tank 16, there is a risk of heat loss due to heat radiation or mixing during the process. Therefore, the input of heat by low-temperature water is temporarily suspended, and the solution is first efficiently heated by the auxiliary heating source 1, and the operating state of the entire refrigerator is shifted to near the rated state, and the temperature of the solution rises, causing the solution to freeze. Only after the machine is able to smoothly produce cooling power (9) will we begin to input heat using low-temperature water. With this measure, sufficient heat can be inputted by low temperature water to reliably raise the temperature of the solution, and the efficiency of using low temperature water without heat loss can be increased.

領域■′に該当する場合、すなわち低温水の温度が比較
的高い場合には、低温水の熱量が有効に溶液に伝達され
るので、弁17は全開制御するか、あるいは低温水ポン
プ6の容量は大きく制御する。
In the case of region ■′, that is, when the temperature of the low-temperature water is relatively high, the heat amount of the low-temperature water is effectively transferred to the solution, so the valve 17 is controlled to be fully open, or the capacity of the low-temperature water pump 6 is is largely controlled.

領域■′に該当する場合、すなわち低温水の温度が低い
場合には、低温水の投入による効果はあまシ期待できな
いが、溶液の温度も低いので、必要に応じて弁17およ
び低温水ポンプI6を制御して低温水を投入する。
If it falls under region ■', that is, if the temperature of the low-temperature water is low, no significant effect can be expected from adding low-temperature water, but since the temperature of the solution is also low, valve 17 and low-temperature water pump I6 should be turned on as necessary. is controlled and low-temperature water is added.

領域■′に該当する場合、すなわち溶液の温度が高い場
合には、低温水の投入はかえって損失となるので、低温
水ポンプ6を停止する。この時、ポンプ12.15を駆
動して溶液や冷媒を強制的に循環させたり、低温の溶液
を低温熱源発生器5に強制的に供給することによシ、低
温水温度より(10) も溶液温度を下げて低温水を投入できるようにすること
もできる。
In the case corresponding to the region (■'), that is, when the temperature of the solution is high, the low-temperature water pump 6 is stopped, since adding low-temperature water will result in a loss. At this time, by driving the pump 12.15 to forcibly circulate the solution or refrigerant, or by forcibly supplying the low-temperature solution to the low-temperature heat source generator 5, the temperature of the low-temperature water can be lowered by (10). It is also possible to lower the solution temperature so that low-temperature water can be introduced.

以上の実施例においては、冷凍出力すなわち冷水を出す
場合について説明したが、暖房出力すなわち温水を出す
場合にも適用できる。暖房出力を出す場合には、太陽熱
で加熱した低温水を蒸発器10に通し低温熱源発生器5
に通した熱源水もしくは主熱源によりくみ上げるととも
に、低温熱源発生器5に通した熱源水もしくは主熱源に
より温水を製造する太陽熱利用吸収式ヒートポンプにも
適用できる。
In the above embodiments, the explanation has been given of the case where the refrigeration output, that is, the output of cold water, is provided, but the present invention can also be applied to the case where the output of the heating output, that is, the output of hot water. When generating heating output, low-temperature water heated by solar heat is passed through the evaporator 10 to the low-temperature heat source generator 5.
It can also be applied to a solar heat absorption type heat pump that pumps up heat source water passed through a low temperature heat source generator 5 or a main heat source, and produces hot water using heat source water passed through a low temperature heat source generator 5 or a main heat source.

以上述べたように、本発明によれば、低温熱源発生器内
の溶液と低温水との相対温度によって、低温水のもつ熱
量を溶液に有効に移行させることができる。したがって
、太陽熱を有効に利用することができるのみならず、補
些加熱源の節約も可能になり省エネルギー効果を煮しく
することができるものである。
As described above, according to the present invention, the heat amount of the low-temperature water can be effectively transferred to the solution depending on the relative temperature of the solution in the low-temperature heat source generator and the low-temperature water. Therefore, not only can solar heat be used effectively, but additional heating sources can be saved, thereby increasing the energy saving effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の制御装置を備えた太陽熱利用(11) 吸収式冷温水機の系統図、第2図および第3図は本発明
の制御装置における制御動作例を示す説明図である。 1・・・補助加熱源、2・・・高温発生器、3・・・低
温発生器、4・・・低温水管、5・・・低温熱源発生器
、6・・・低温水ポンプ、7・・・冷却水管、8・・・
凝縮器、9・・・冷水管、10・・・蒸発器、11・・
・吸収器、12・・・溶液ポンプ、13.14・・・熱
交換器、15・・・冷媒ポンプ、16・・・蓄熱槽、1
7・・・弁、18〜21・・・温度検出器、22・・・
制御装置。 17 (12)
FIG. 1 is a system diagram of a solar heat absorption type water chiller/heater (11) equipped with the control device of the present invention, and FIGS. 2 and 3 are explanatory diagrams showing examples of control operations in the control device of the present invention. 1... Auxiliary heat source, 2... High temperature generator, 3... Low temperature generator, 4... Low temperature water pipe, 5... Low temperature heat source generator, 6... Low temperature water pump, 7... ...Cooling water pipe, 8...
Condenser, 9... Cold water pipe, 10... Evaporator, 11...
・Absorber, 12... Solution pump, 13.14... Heat exchanger, 15... Refrigerant pump, 16... Heat storage tank, 1
7... Valve, 18-21... Temperature detector, 22...
Control device. 17 (12)

Claims (1)

【特許請求の範囲】 1、太陽熱で加熱した低温水を加熱源とする低温熱源発
生器と、太陽熱が不足した場合に補助加熱源を加熱源と
する高温発生器および低温発生器を備えた吸収式冷温水
機において、低温熱源発生器内の溶液と低温水の相対温
度に応じて低温熱源発生器への低温水の投入熱量を制御
する制@j部を備えたことを特徴とする太陽熱利用吸収
式冷温水機の制御装置。 2、制御部は低温水の温度に応じて低温熱源発生器への
低温水の投入熱量を制御することを特徴とする特許請求
の範囲第1項記載の太陽熱利用吸収式冷温水機の制御装
置。 3、制御部は低温水の流量を制御することを特徴とする
特許請求の範囲第2項記載の太陽熱利用吸収式冷温水機
の制御装置。 4、制御部は低温水の投入熱量に応じて低温熱源発生器
の温度を補助加熱源によって制御することを特徴とする
特許請求の範囲第1項記載の太陽熱利用吸収式冷温水機
の制御装置。 5、制御部は低温水の投入熱量に応じて低温熱源発生器
の温度を溶液ポンプおよび冷媒ポンプの駆動によるその
循環量によって制御することを特徴とする特許請求の範
囲第1項記載の太陽熱利用吸収式冷温水機の制御装置。
[Claims] 1. Absorption device equipped with a low-temperature heat source generator that uses low-temperature water heated by solar heat as a heating source, and a high-temperature generator and a low-temperature generator that use an auxiliary heating source as a heating source when solar heat is insufficient. A solar heat utilization system characterized in that the type water chiller/heater is equipped with a control part that controls the amount of heat input to the low temperature heat source generator according to the relative temperature of the solution in the low temperature heat source generator and the low temperature water. Control device for absorption type water chiller/heater. 2. The control device for a solar heat absorption type water chiller/heater according to claim 1, wherein the control unit controls the amount of heat input to the low temperature heat source generator according to the temperature of the low temperature water. . 3. The control device for a solar heat absorption type water cooler/heater according to claim 2, wherein the control unit controls the flow rate of low-temperature water. 4. The control device for a solar heat absorption type water chiller/heater according to claim 1, wherein the control unit controls the temperature of the low temperature heat source generator using an auxiliary heating source according to the input heat amount of the low temperature water. . 5. Solar heat utilization according to claim 1, wherein the control unit controls the temperature of the low-temperature heat source generator according to the input heat amount of low-temperature water by the amount of circulation thereof by driving a solution pump and a refrigerant pump. Control device for absorption type water chiller/heater.
JP8471782A 1982-05-21 1982-05-21 Controller for absorption type cold and hot water machine utilizing solar heat Pending JPS58203358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8471782A JPS58203358A (en) 1982-05-21 1982-05-21 Controller for absorption type cold and hot water machine utilizing solar heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8471782A JPS58203358A (en) 1982-05-21 1982-05-21 Controller for absorption type cold and hot water machine utilizing solar heat

Publications (1)

Publication Number Publication Date
JPS58203358A true JPS58203358A (en) 1983-11-26

Family

ID=13838426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8471782A Pending JPS58203358A (en) 1982-05-21 1982-05-21 Controller for absorption type cold and hot water machine utilizing solar heat

Country Status (1)

Country Link
JP (1) JPS58203358A (en)

Similar Documents

Publication Publication Date Title
US4070870A (en) Heat pump assisted solar powered absorption system
JPS58195763A (en) Device for operating solar heat utilizing absorption type cold and hot water machine
JP2019052780A (en) Solar heat air conditioning system
JPS58195765A (en) Solar heat utilizing absorption type cold and hot water machine
JP6814071B2 (en) Absorption chiller system and absorption chiller using waste heat
CN1214440A (en) Double effect absorption cold or hot water generating machine
JP2015081728A (en) Absorption type cool/hot water system
JPS58203358A (en) Controller for absorption type cold and hot water machine utilizing solar heat
JP3245116B2 (en) Waste heat absorption chiller / heater with load fluctuation control function
JP3578207B2 (en) Steam heating type double effect absorption refrigerator / cooler / heater, power generation / cooling / heating / hot water supply system using the same, and system control method thereof
JP2575006Y2 (en) Absorption refrigeration cycle system
JPS5828508B2 (en) Absorption cold/hot water supply device
JP2858921B2 (en) Control device for absorption refrigerator
JPS58160780A (en) Controller for absorption refrigerator
JPS5813968A (en) Absorption refrigerator
JPS58203361A (en) Absorption type cold and hot water machine utilizing solar heat
JP2004092968A (en) Absorption type cold and hot-water machine
JPS58129170A (en) Method of controlling solar-heat utilizing absorption type refrigerator
JPS6033462A (en) Absorption heat pump device
JPH04161766A (en) Control device for absorption type freezer
JPS6157445B2 (en)
JPH0353547B2 (en)
JPS58140577A (en) Controller for solar-heat utilizing absorption type refrigerator
JPS5974467A (en) Absorption type heat pump
JPS6217147B2 (en)