JPS58202590A - Method of producing substrate for printed circuit - Google Patents

Method of producing substrate for printed circuit

Info

Publication number
JPS58202590A
JPS58202590A JP8496682A JP8496682A JPS58202590A JP S58202590 A JPS58202590 A JP S58202590A JP 8496682 A JP8496682 A JP 8496682A JP 8496682 A JP8496682 A JP 8496682A JP S58202590 A JPS58202590 A JP S58202590A
Authority
JP
Japan
Prior art keywords
oxide film
aluminum oxide
solution
treatment
polyimide resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8496682A
Other languages
Japanese (ja)
Other versions
JPH0128514B2 (en
Inventor
勝川 博
治 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibigawa Electric Industry Co Ltd
Original Assignee
Ibigawa Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibigawa Electric Industry Co Ltd filed Critical Ibigawa Electric Industry Co Ltd
Priority to JP8496682A priority Critical patent/JPS58202590A/en
Publication of JPS58202590A publication Critical patent/JPS58202590A/en
Publication of JPH0128514B2 publication Critical patent/JPH0128514B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、プリント配線用基板の製造力゛法に関するも
のであり、特に本発明は、一連の連続的処理による耐熱
性ならびに耐電圧の高いプリント配線用基板の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing printed wiring boards, and in particular, the present invention relates to a method for manufacturing printed wiring boards with high heat resistance and withstand voltage through a series of continuous treatments. It is related to.

従来、シリンド配線基板は紙或いはガラス繊維と熱硬化
性樹脂と銅箔より構成される銅張り積層板が最も広く用
いられており、放熱効果が悪く耐熱性が乏しかった。こ
のため放熱効果が大きい基板として例えば特公昭46−
13234号により、陽極酸化により酸化アルミニウム
皮膜が施されたアルミニウム基板が提案された。しかし
、前記酸化アルミニウム皮膜とアルミニウムとの熱膨張
係数の差により酸化プルミニラム皮膜に発生する高温時
のクララ□り、前記酸化アルミニウム皮膜に存在する微
細孔等のために酸化アルミニウム皮膜のみでは電気的絶
縁性の点で不完全であるので、これらをできるだけ少な
くさせる方法或いはこれらを封着させる方法が種々提案
されている。
Conventionally, copper-clad laminates made of paper or glass fiber, thermosetting resin, and copper foil have been most widely used as cylinder wiring boards, which have poor heat dissipation effects and poor heat resistance. For this reason, as a substrate with a large heat dissipation effect, for example,
No. 13234 proposed an aluminum substrate on which an aluminum oxide film was applied by anodic oxidation. However, due to the cracking that occurs in the pulminilum oxide film at high temperatures due to the difference in thermal expansion coefficient between the aluminum oxide film and aluminum, and the micropores that exist in the aluminum oxide film, the aluminum oxide film alone cannot provide electrical insulation. Since they are imperfect in terms of their properties, various methods have been proposed to reduce them as much as possible or to seal them together.

例えば特開昭54−13967号によれば、アルミニウ
ム基板の表面に陽極酸化によ抄酸化アルミニウム皮膜を
i成させた後に微細孔を封孔する際、長時間)の□封孔
処理を施すと加熱の際にクラレフが発生するので、短時
間の封孔処理を余儀なくされているが、かかる方法によ
ればいまだクラックの発生を完全になくすることは困難
であった。また特開昭54−66463号によれば、ア
ルミニウム基板の表面に陽極酸化により酸化アルミニウ
ム皮膜を形成させ、前記酸化皮膜にできた微細孔゛を封
孔処理した後、加熱して前記酸化皮膜にクラックを発生
させ、再び陽極酸化を行う方法であるが、この方法によ
ればなお前記陽極酸化されたクラック部分に再びクラッ
クが発生して電気的絶縁性の点では信頼性に乏しかった
。また特開昭54−66462号によれば、アルミニウ
ム基板と該アルミニウム基板の表面に陽極酸化により形
成された酸化皮膜と該酸化皮膜に発生したクラックと該
クラック内に含浸された液状絶縁物とを具備した基板で
あるが、この基板の製造方法によれば前記クラックの発
生する高温処理により微細孔内が乾燥するので微細孔内
に液状絶縁物を完全に充填させることは困難であった。
For example, according to Japanese Patent Application Laid-Open No. 54-13967, when sealing micropores after forming an aluminum oxide film on the surface of an aluminum substrate by anodizing, a long period of □ sealing treatment is performed. Since cracks are generated during heating, a short-time sealing treatment is unavoidable, but it has been difficult to completely eliminate the occurrence of cracks using such methods. Furthermore, according to Japanese Patent Application Laid-open No. 54-66463, an aluminum oxide film is formed on the surface of an aluminum substrate by anodizing, and after sealing the fine pores formed in the oxide film, heating is performed to seal the oxide film. This method generates cracks and then performs anodic oxidation again, but with this method, cracks occur again in the anodized cracked portions, resulting in poor reliability in terms of electrical insulation. Furthermore, according to JP-A No. 54-66462, an aluminum substrate, an oxide film formed on the surface of the aluminum substrate by anodization, cracks generated in the oxide film, and a liquid insulator impregnated in the cracks are described. However, according to the manufacturing method of this substrate, it is difficult to completely fill the micropores with the liquid insulator because the micropores become dry due to the high-temperature treatment that causes the cracks.

本発明は、従来のプリント配線用基板の有する前記欠点
を除去、改良した製造方法を提供することを目的とし、
一連の連続的処理による放熱効果が大きい耐熱性ならび
に耐電圧の高いシリンド配線用基板の製造方法を提供す
ることによって前記目的を達成することができる。即ち
本発明はアルミニウム基板を陽極酸化して形成させた酸
化アルミニウム皮膜に発生する高温時のクラックを完全
になくし、また前記酸化アルミニウム皮膜の微細孔等を
完全に封着する一連の連続処理によって、電気的に完全
な絶縁皮膜を極めて容易に形成させることを特徴とする
ものである。
An object of the present invention is to provide a manufacturing method that eliminates and improves the above-mentioned drawbacks of conventional printed wiring boards,
The above object can be achieved by providing a method for manufacturing a cylinder wiring board with high heat resistance and withstand voltage, which has a large heat dissipation effect through a series of continuous treatments. That is, the present invention completely eliminates cracks that occur at high temperatures in an aluminum oxide film formed by anodizing an aluminum substrate, and also completely seals micropores in the aluminum oxide film through a series of continuous treatments. It is characterized by the ability to form an electrically perfect insulating film extremely easily.

次に本発明のプリント配線用基板の製造方法を図面に基
づいて詳細に説明する。
Next, the method for manufacturing a printed wiring board according to the present invention will be explained in detail based on the drawings.

第1図は本発明の製造方法中アルミニウム基板に第1回
目の陽極酸化を施した後のアルミニウム基板と酸化アル
ミニウム皮膜との縦断面図であり、アルミニウム基板1
の少なくとも一面を苛性ンーダ溶液或いはリン酸系溶液
中で脱脂、研摩した後、水洗し、次いで硝酸溶液中で酸
洗した後、水洗し、次いでリン酸、クロム酸の何れか少
なくとも1種の溶液中で陽極酸化して酸化アルミニウム
皮膜2が形成されている。なお第2図は前記アルミニウ
ム基板と酸化アルミニウム皮膜とを拡大した縦断、面図
であり、前記酸化アルミニウム皮膜2中には微細孔3が
並んで存在し、この微細孔3の最奥端はアルミニウム基
板1の表面近くにまで達している。棟だ第3図に示す如
く前記酸化アルミニウム皮膜2中には通常酸化アルミニ
ウムが欠落している開口欠陥孔4.ならびに非開口欠陥
空洞5の如き欠陥部が点在している。本発明によれば前
記第1回目の陽極酸化を施した後、水洗し、次いでホウ
酸アンモニウム、酒石酸アンモニウムの何れカ少なくと
も1種の水溶液とメタノール、エタノール。
FIG. 1 is a longitudinal cross-sectional view of an aluminum substrate and an aluminum oxide film after the first anodic oxidation is performed on the aluminum substrate in the manufacturing method of the present invention.
After degreasing and polishing at least one side of the base in a caustic powder solution or a phosphoric acid solution, washing with water, then pickling in a nitric acid solution, washing with water, and then applying a solution of at least one of phosphoric acid and chromic acid. An aluminum oxide film 2 is formed by anodic oxidation inside. Note that FIG. 2 is an enlarged longitudinal cross-sectional view and cross-sectional view of the aluminum substrate and the aluminum oxide film. In the aluminum oxide film 2, micropores 3 exist in a row, and the innermost ends of the micropores 3 are formed of aluminum. It reaches close to the surface of the substrate 1. As shown in FIG. 3, the aluminum oxide film 2 usually has open defect holes 4 in which aluminum oxide is missing. Also, defects such as non-open defect cavities 5 are scattered. According to the present invention, after performing the first anodic oxidation, it is washed with water, and then an aqueous solution of at least one of ammonium borate and ammonium tartrate, methanol, and ethanol.

N−メチルぎロリドンのなかから選ばれる何れか少なく
とも1種との混合溶液中で再び陽極酸化してさらに酸化
アルミニウム皮膜を形成させる。第4図はこのように第
2回目の陽極酸化、を施してさ5− らに酸化アルミニウム皮膜を形成させた後のアルミニウ
ム基板と酸化アルミニウム皮膜とを拡大した縦断面図で
あり、微細孔3の最奥端部とアルミニウム基板lとの間
に形成されている酸化アルミニウム皮膜は下方のアルミ
ニウム基板中へ侵入成長し、その部分の酸化アルミニウ
ム皮膜厚が厚くなっている。同図中6は上述の酸化アル
ミニウム皮膜が成長してその厚さが厚くなった部分であ
る。
Anodizing is performed again in a mixed solution with at least one selected from N-methylgyrolidone to form an aluminum oxide film. FIG. 4 is an enlarged vertical cross-sectional view of the aluminum substrate and the aluminum oxide film after the second anodic oxidation and further formation of the aluminum oxide film, and shows the micropores 3. The aluminum oxide film formed between the innermost end of the aluminum substrate 1 and the aluminum substrate l grows into the aluminum substrate below, and the aluminum oxide film becomes thicker at that portion. Reference numeral 6 in the figure indicates a portion where the aluminum oxide film described above has grown and its thickness has increased.

前記第2回目の陽極酸化を施した後、必要により引き続
いてN−メチルピロリドン液中で洗浄後、直ちにポリイ
ミド樹脂のN−メチルピロリドン溶液中に浸漬させた後
、前記ポリイミド樹脂を乾燥。
After performing the second anodic oxidation, if necessary, the polyimide resin is washed in an N-methylpyrrolidone solution, immediately immersed in an N-methylpyrrolidone solution, and then the polyimide resin is dried.

硬化させ、前記酸化アルミニウム皮膜2に存在5する微
細孔3と開口欠陥孔4.非開口欠陥空洞5の如き欠陥部
とを前記鍬すイきド樹脂により封着させる。なお、非開
口欠陥空洞5の中にも前記微細孔3を経てポリイミド樹
脂が滲透する。
The fine pores 3 and open defect pores 4 existing in the aluminum oxide film 2 are cured. A defective portion such as a non-open defective cavity 5 is sealed with the above-mentioned plowed resin. Note that the polyimide resin permeates into the non-open defect cavity 5 through the fine pores 3 as well.

次に本発明の製造方法中第1回目の陽極酸化処理につい
て説明する。リン酸、クロム酸の何れか少なくとも1種
の溶液中の正リン酸換算濃度1〜6− 800 f/43 、無水クロム酸換算濃度1〜400
7.句。
Next, the first anodic oxidation treatment in the manufacturing method of the present invention will be explained. Concentration in terms of orthophosphoric acid in a solution of at least one of phosphoric acid and chromic acid: 1 to 6-800 f/43, concentration in terms of chromic anhydride 1 to 400
7. clause.

液温0〜70C,電流密度0.1〜10 k/dm2.
電圧10〜200Vの条件により陽極酸化し、酸化皮膜
厚1〜50μとなすことが好オしい。
Liquid temperature 0-70C, current density 0.1-10 k/dm2.
It is preferable to carry out anodic oxidation under conditions of a voltage of 10 to 200 V to form an oxide film with a thickness of 1 to 50 μm.

次に第2回目の陽極酸化処理について説明する。Next, the second anodic oxidation treatment will be explained.

ホウ酸アンモニウム、酒石酸アンモニウムの何れか少な
くとも1種の水溶液とメタノール、エタノール、N−メ
チルぎロリドンのなかから選ばれる何れか少なくとも1
種との混合溶液中の四ホウ酸アンモニウム濃度0.1〜
100i%/A、酒石酸アンモニウム濃度0.1〜10
0?β、水10〜9oofPA+  液温0〜70 t
:’ 、電流密度0.01〜I A/dm2.電圧lO
〜1000 Vの条件により陽極酸化するが、酸化皮膜
厚の測定が困難であるのでその処理時間を10〜120
闘とすることが好オしい。
An aqueous solution of at least one of ammonium borate and ammonium tartrate and at least one of methanol, ethanol, and N-methylgyrolidone.
Ammonium tetraborate concentration in mixed solution with seeds 0.1~
100i%/A, ammonium tartrate concentration 0.1-10
0? β, water 10~9oofPA+ liquid temperature 0~70t
:', current density 0.01 to I A/dm2. Voltage lO
Anodic oxidation is performed under the condition of ~1000 V, but since it is difficult to measure the oxide film thickness, the processing time is 10~120 V.
It is better to make it a fight.

次に前記第2回目の陽極酸化処理後のボリイミP樹脂の
N−メチルピロリドン溶液中への浸漬処理について説明
する。前記溶液中のポリイミド樹脂濃度10〜700□
、液温100 C以下とし、その浸漬時間をITrIi
R以上とすることが好ましい。
Next, the immersion treatment of the Boliimi P resin in the N-methylpyrrolidone solution after the second anodic oxidation treatment will be described. Polyimide resin concentration in the solution 10-700□
, the liquid temperature was 100 C or less, and the immersion time was ITrIi
It is preferable to set it to R or more.

ところで本発明によれば第1回目の陽極酸化処理、第2
回目の陽極酸化処理ならびにポリイミド樹脂溶液中への
浸漬処理は連続的に施すことが必要である。もし前記第
1回目の陽極酸化処理と第2回目の陽極酸化処理とを連
続して施さないと、第1回目の陽極酸化処理により生じ
た微細孔に空気が取り込まれ、第2回目の陽極酸化処理
が完全には施されなくなる。また同様の理由により第2
回目の陽極酸化処理とポリイミド樹脂溶液中への浸漬処
理との間に酸化アルミニウム皮膜が乾燥すると、微細孔
中にポリイミド樹脂が完全に充填されない部分が発生し
、酸化アルミニウム皮膜の電気的信頼性を向上させるこ
とができない。即ち本発明は、特に酸化アルミニウム皮
膜を形成させる処理と微細孔ならびに欠陥部すなわち開
口欠陥孔ならびに非開口欠陥空洞を封着させる処理とを
連続させることによって電気的に完全な絶縁皮膜を極め
て容易に形成させることを特徴とするものである。
However, according to the present invention, the first anodizing treatment and the second anodizing treatment
It is necessary to perform the second anodizing treatment and the immersion treatment in the polyimide resin solution continuously. If the first anodizing treatment and the second anodizing treatment are not performed consecutively, air will be drawn into the micropores created by the first anodizing treatment, and the second anodizing treatment will be performed. The process will not be completed completely. Also, for the same reason, the second
If the aluminum oxide film dries between the second anodic oxidation treatment and the immersion treatment in the polyimide resin solution, parts of the micropores will not be completely filled with polyimide resin, reducing the electrical reliability of the aluminum oxide film. cannot be improved. That is, the present invention makes it possible to extremely easily form an electrically perfect insulating film by sequentially performing a process for forming an aluminum oxide film and a process for sealing micropores and defective areas, that is, open defective holes and non-open defective cavities. It is characterized by forming.

第1回目の陽極酸化処理により形成させた酸化アルミニ
ウム皮膜は3000以上の高温時でもクラックを発生し
ないが、第1回目の陽極酸化処理溶液以外の溶液9例え
ば硫酸溶液或いはシュウ酸溶液中での陽極酸化処理によ
り形成させた酸化アルミニウム皮膜は200C<らいで
多数のクラックを発生する。この理由は第1回目の陽極
酸化処理により形成させた酸化アルミニウム皮膜の微細
孔が比較的大きいために、酸化アルミニウム皮膜とアル
ミニウムとの熱膨張係数の差が吸収されることによるも
のであると考えられる。
The aluminum oxide film formed by the first anodizing treatment does not generate cracks even at high temperatures of 3,000 or higher, but the anode in a solution other than the first anodizing solution 9, such as a sulfuric acid solution or an oxalic acid solution, The aluminum oxide film formed by oxidation treatment generates many cracks at temperatures below 200C. The reason for this is thought to be that the micropores in the aluminum oxide film formed by the first anodizing treatment are relatively large, which absorbs the difference in thermal expansion coefficient between the aluminum oxide film and aluminum. It will be done.

また第2回目の陽極酸化処理によりさらに酸化アルミニ
ウム皮膜を形成させることによって耐電圧が向上する。
Furthermore, the second anodic oxidation treatment further forms an aluminum oxide film, thereby improving the withstand voltage.

この理由は前述の如く酸化アルミニウム皮膜厚増加部分
6が新たに形成されることによるものであるが、いまだ
充分な電気的信頼性に乏しい。
The reason for this is that the increased aluminum oxide film thickness portion 6 is newly formed as described above, but it still lacks sufficient electrical reliability.

第2回目の陽極酸化処理後、?リイミド樹脂溶液中への
浸漬処理により酸化アルミニウム皮膜に存在する微細孔
ならびに欠陥部すなわち開口欠陥孔ならびに非開口欠陥
空洞をポリイミド樹脂によ9− り封着させることによって耐電圧が向上する。なおポリ
イミド樹脂は比較的耐熱性゛ならびに耐−品性が高いの
で、他の樹脂を用いた場合よりも耐熱性ならびに耐薬品
性において優れている。また前記樹脂により封着された
基板表面には前記樹脂め薄い皮膜が自動的に形成されて
いる。
After the second anodizing treatment? The dipping treatment in the polyimide resin solution improves the withstand voltage by sealing the fine pores and defective portions, that is, open defective holes and non-open defective cavities, present in the aluminum oxide film with the polyimide resin. Note that polyimide resin has relatively high heat resistance and product resistance, so it is superior in heat resistance and chemical resistance to cases where other resins are used. Further, a thin film of the resin is automatically formed on the surface of the substrate sealed with the resin.

次に本発明を実施例ならびに比較例につ仏で説明する。Next, the present invention will be explained with reference to Examples and Comparative Examples.

実施例1 アルミニウム基板の少なくとも一面をリン酸溶液中の正
リン酸換算濃度55?々、液温25C2電流密度I A
/dm2.電圧120Vの条件により陽極酸化して酸化
アルミニウム皮膜厚20μ−を形成させた後、水洗腰衣
いでホウ酸アンモニウム水溶液′とN−メチルピロリド
ンとの混合溶液中の四ホウ酸アンモニウム濃度11−/
A、水1007/ffl、液温20C2電流密度0゜0
5 A/dm2.電圧500V、処i時間60駆の条件
により再び陽極酸化し、引き続いてN−メチルピロリド
ン液中で洗浄後、直ちにポリイミド樹脂のN−メチルピ
ロリドン溶液中のポリ10− イミP樹脂濃度200 t/43 、液温25C9浸漬
時間60−の条件によりポリイミド樹脂溶液中に浸漬さ
せて、酸化アル電ニウム皮膜に存在する微細孔ならびに
欠陥部すなわち開口欠陥孔ならびに非開口欠陥空洞をポ
リイミド樹脂により封着させた。
Example 1 At least one surface of an aluminum substrate was coated with an orthophosphoric acid equivalent concentration of 55? in a phosphoric acid solution. liquid temperature 25C2 current density IA
/dm2. After anodizing at a voltage of 120 V to form an aluminum oxide film with a thickness of 20 μ-, the concentration of ammonium tetraborate in the mixed solution of ammonium borate aqueous solution and N-methylpyrrolidone was 11-/
A, water 1007/ffl, liquid temperature 20C2 current density 0°0
5 A/dm2. After anodizing again under the conditions of voltage 500V and treatment time 60 hours, and subsequent washing in N-methylpyrrolidone solution, the polyimide resin was immediately washed with poly10-imiP resin at a concentration of 200t/43 in N-methylpyrrolidone solution. The aluminum oxide film was immersed in a polyimide resin solution at a temperature of 25C and an immersion time of 60°C to seal the fine pores and defects present in the aluminum oxide film, that is, open defect pores and non-open defect cavities, with the polyimide resin. .

前記一連の連続的処理により形成させた絶縁皮膜は30
0Cでもクラックを発生せず、300Cでの熱処理後の
耐電圧は2. OKV、熱伝導率は0.42 ml/’
R1−・鐸・Cであった。
The insulating film formed by the series of continuous treatments was 30
No cracks occur even at 0C, and the withstand voltage after heat treatment at 300C is 2. OKV, thermal conductivity is 0.42 ml/'
It was R1-・Taku・C.

実施例2 アルミニウム塙板の少なくとも一面をリン酸溶液中のE
 17ン酸換算濃度5554/−6.液温25C9電流
密度IA/dm”+電圧120vの条件により陽極酸化
して酸化アルばニウム皮膜厚20μを形成させた後、水
洗し、次いでホウ酸アンモニウム水溶液とエタノールと
の混合溶液中の四ホウ酸アンモニウム濃度7.5 t/
43 、水200 t/I3. 、液温20C9電流密
度0.05 A/dm2. IK圧500 V 、処理
時間60騙の条件により再び陽極酸化し、引き続いてN
−メチルピロリドン液中で洗浄後、直ちにポリイミド樹
脂のN−メチルぎロリドン溶液中のポリイミド樹脂濃度
200P/A、液温25C9浸漬時間60駆の条件によ
りポリイミド樹脂溶液中に浸漬させて、酸化アルミニウ
ム皮膜に存在する微細孔ならびに欠陥部すなわち開口欠
陥孔ならびに非開口欠陥空洞を/ IJイミド樹脂によ
り封着させた。前記一連の連続的処理により形成させた
絶縁皮膜は300Cでもクラックを発生せず、300C
での熱処理後の耐電圧は2. OKV、熱伝導率はQ、
 42 ad/kl−t*−Cであった。
Example 2 At least one side of an aluminum wall plate was exposed to E in a phosphoric acid solution.
17 phosphoric acid equivalent concentration 5554/-6. After forming an anodic oxide film with a thickness of 20μ at a liquid temperature of 25C9 and a current density of 1A/dm” and a voltage of 120V, it was washed with water, and then diluted with tetraboron in a mixed solution of ammonium borate aqueous solution and ethanol. Ammonium acid concentration 7.5 t/
43, water 200t/I3. , liquid temperature 20C9 current density 0.05 A/dm2. Anodizing was performed again under the conditions of IK pressure of 500 V and treatment time of 60 min, followed by N
- After washing in the methylpyrrolidone solution, the polyimide resin is immediately immersed in the polyimide resin solution under the conditions of a polyimide resin concentration of 200P/A in the N-methylpyrrolidone solution, a solution temperature of 25C, and an immersion time of 60cm to form an aluminum oxide film. The micropores and defective areas, that is, open defective holes and non-open defective cavities, present in the IJ imide resin were sealed with /IJ imide resin. The insulating film formed by the above series of continuous treatments does not generate cracks even at 300C.
The withstand voltage after heat treatment is 2. OKV, thermal conductivity is Q,
42 ad/kl-t*-C.

実施例3 アルミニウム基板の少なくとも一面をクロム酸溶液中の
無水クロム酸換算濃度30y−/A、液ill!40C
9電流密度0.5A/dm2g電圧100Vの条件によ
り陽極酸化して酸化アルミニウム皮膜厚20μを形成さ
せた後、水洗し、次いで酒石酸アンモニウム水溶液とメ
タノールとの混合溶液中の酒石酸アンモニウム濃度7.
5b句、水200f/、、e、液潟20C9電流密度0
.05 A/dm* 、電圧400V、処理時間6〇−
の条件により再び陽極酸化し、引き続いてN−メチルピ
ロリドン液中で洗浄後、直ちにポリイミド樹脂のN−メ
チルピロリドン溶液中の4リイミド樹脂濃度200b句
、液温25C2浸漬時間60m+111の条件によりポ
リイミド樹脂溶液中に浸漬させて酸化アルミニウム皮膜
に存在する微細孔ならびに欠陥部すなわち開口欠陥孔な
らびに非開口欠陥空洞をポリイミド樹脂により封着させ
た。前記一連の連続的処理により形成させた縁結皮膜は
300Cでもクラックを発生せず、300t:’での熱
処理後の耐電圧は1.8KV、熱伝導率は0.42 c
al、AC−tyn、Cであった。
Example 3 At least one surface of an aluminum substrate was coated in a chromic acid solution at a concentration of 30y-/A in terms of chromic acid anhydride. 40C
9. After forming an aluminum oxide film with a thickness of 20μ by anodizing under conditions of a current density of 0.5 A/dm2g and a voltage of 100 V, it was washed with water, and then the ammonium tartrate concentration in the mixed solution of ammonium tartrate aqueous solution and methanol was 7.
5b clause, water 200f/, e, liquid lagoon 20C9 current density 0
.. 05 A/dm*, voltage 400V, processing time 60-
The polyimide resin solution was anodized again under the following conditions, and then washed in an N-methylpyrrolidone solution, and immediately after the polyimide resin was washed with a polyimide resin solution under the following conditions: 4-limide resin concentration in the N-methylpyrrolidone solution was 200b, the liquid temperature was 25C, and the immersion time was 60m + 111cm. The polyimide resin was immersed in the polyimide resin to seal the fine pores and defects present in the aluminum oxide film, that is, open defect holes and non-open defect cavities. The edge membrane formed by the series of continuous treatments does not generate cracks even at 300C, has a withstand voltage of 1.8KV and a thermal conductivity of 0.42c after heat treatment at 300T:'.
al, AC-tyn, and C.

比較例1 アルミニウム基板の少なくとも一面をリン酸溶液中の正
リン酸換算濃度55b句、液温25C9電流密度I A
/dtn” +電圧120■の条件により陽極酸化して
酸化アルミニウム皮膜厚20μを形成させた後、水洗し
、乾燥させた。次にホウ酸アンモニウム水溶液とN−メ
チルピロリドンとの混合溶液中の四ホウ酸アンモニウム
濃度10 t/13 、水100 PEA。
Comparative Example 1 At least one surface of an aluminum substrate was coated in a phosphoric acid solution with an equivalent concentration of orthophosphoric acid of 55b, a liquid temperature of 25C9, and a current density of IA.
/dtn'' + voltage 120μ to form an aluminum oxide film with a thickness of 20μ, followed by washing with water and drying. Ammonium borate concentration 10 t/13, water 100 PEA.

液温20C,電流密度0.05 A/dm2.電圧50
0 V 、処理時間60wtの条件により再び陽極酸化
し、N−メ13− チルピロリドン液中で洗浄後、乾燥させた。次にポリイ
ミド樹脂のN−メチルピロリドン溶液中のポリイミド樹
脂濃度200・f−/−8、液温25C1浸漬時間60
11111の条件によりポリイミド樹脂溶液中に浸漬さ
せて、酸化アルミニウム皮膜に存在する微細孔ならびに
欠陥部すなわち開口欠陥孔ならびに非開口欠陥空洞をポ
リイミド樹脂により封着させた。
Liquid temperature 20C, current density 0.05 A/dm2. voltage 50
It was anodized again under the conditions of 0 V and treatment time of 60 wt, washed in N-methylpyrrolidone solution, and then dried. Next, polyimide resin concentration in N-methylpyrrolidone solution of polyimide resin is 200 f-/-8, liquid temperature is 25C, immersion time is 60
The aluminum oxide film was immersed in a polyimide resin solution under the conditions of No. 11111 to seal the micropores and defects present in the aluminum oxide film, that is, open defect holes and non-open defect cavities, with the polyimide resin.

前記不連続処理により形成させた絶縁皮膜は300Cで
もクラックを発生せず、300Cでの熱処理後の耐電圧
は1.0fvと低かった。
The insulating film formed by the discontinuous treatment did not generate cracks even at 300C, and the withstand voltage after heat treatment at 300C was as low as 1.0 fv.

比較例2 アルミニウム基板の少なくとも一面を硫酸溶液中の硫酸
換算濃度183P/#、液温25C9電流密度IA/d
m2.電圧10Vの条件により陽極酸化して酸化アルミ
ニウム皮膜厚20μを形成させた後、水洗し、乾燥させ
た。次にホウ酸アンモニウム水溶液中の四ホウ酸アンモ
ニウム濃度31/A、液温20C1電流密度0.IVd
rn2+電圧350V、処理時間60順の条件により再
び陽極酸化し、水洗後、乾燥させた。次にポリイミド樹
脂のN−メチルビロリド14− ン溶液中のポリイミド樹脂濃度200 f/43 、液
温25C9浸漬時間60−の条件によりポリイミド樹脂
溶液中に浸漬させて、酸化アルミニウム皮膜に存在する
微細孔ならびに欠陥部すなわち開口欠陥孔ならびに非開
口欠陥空洞をポリイミド樹脂により封着させた。前記不
連続処理により形成させた絶縁皮膜は200Cでクラッ
クを発生し、300t:’での熱処理後の耐電圧は0.
5 KVと低かった。また前記方法により酸化アルミニ
ウム皮膜厚5μを形成させた場合には絶縁皮膜は300
Cでもクラックを発生しない場合もあるが300Cでの
熱処理後の耐電圧は0.3に’Vと極めて低かった。
Comparative Example 2 At least one surface of an aluminum substrate was coated in a sulfuric acid solution with a sulfuric acid equivalent concentration of 183P/# and a liquid temperature of 25C9 and a current density of IA/d.
m2. After anodizing at a voltage of 10 V to form an aluminum oxide film with a thickness of 20 μm, it was washed with water and dried. Next, the ammonium tetraborate concentration in the ammonium borate aqueous solution was 31/A, the liquid temperature was 20C, and the current density was 0. IVd
It was anodized again under the following conditions: rn2+ voltage 350V, treatment time 60, washed with water, and then dried. Next, the polyimide resin was immersed in a polyimide resin solution under the conditions of a polyimide resin concentration of 200 f/43 in the N-methylpyrrolidone solution, a liquid temperature of 25 C, and an immersion time of 60 mm to remove the micropores present in the aluminum oxide film and The defective parts, that is, the open defect holes and the non-open defect cavities, were sealed with polyimide resin. The insulating film formed by the above-mentioned discontinuous treatment cracked at 200C, and the withstand voltage after heat treatment at 300t:' was 0.
It was as low as 5 KV. Furthermore, when an aluminum oxide film with a thickness of 5 μm is formed by the above method, the insulation film has a thickness of 30 μm.
Even with C, cracks may not occur in some cases, but the withstand voltage after heat treatment at 300 C was extremely low at 0.3'V.

ところで、特開昭54−66463号によれば第1回目
の陽極酸化処理と第2回目の陽極酸化処理との間に加熱
処理を施すために、第1回目の陽極酸化処理により生じ
た微細孔内が乾燥し、第2回目の陽極酸化処理が微細孔
の最奥端部において完全1 に施されることが困難であるばかりか、なお加熱処理に
よ抄クラックが発生するという欠点を避けることができ
ない。また特開昭54−66462号によれば陽極酸化
処理と液状絶縁物中への浸漬処理との間に高温処理が施
されるために、陽極酸化処理により生じた微細孔内が乾
燥し、微細孔内に液状絶縁物を完全に充填させることが
困難である。
By the way, according to JP-A No. 54-66463, in order to perform heat treatment between the first anodizing treatment and the second anodizing treatment, the fine pores generated by the first anodizing treatment are removed. In addition, it is difficult to perform the second anodic oxidation treatment completely at the innermost end of the micropores due to dryness inside the paper, and it is also difficult to avoid the disadvantage that paper cracks occur due to heat treatment. I can't. Furthermore, according to Japanese Patent Application Laid-Open No. 54-66462, since high temperature treatment is performed between the anodizing treatment and the immersion treatment in the liquid insulator, the inside of the micropores created by the anodizing treatment becomes dry, and the fine pores become dry. It is difficult to completely fill the holes with liquid insulator.

従って本発明は特開昭54−66463号と特開昭54
−66462号とにそれぞれ記載された発明を単に組合
せた発明ではないことは明らかであり、即ち本発明は第
1回目の陽極酸化処理溶液を選定することKよって第1
回目の陽極酸化処理により形成させた酸化アルミニウム
皮膜に発生する高温時のクラックを完全になくし、第1
回目の陽極酸化処理、第2回目の陽極酸化処理ならびに
ポリイミド樹脂溶液中への浸漬処理を連続的に施すこと
によって電気的に完全な絶縁皮膜を極めて容易に形成さ
せることができる。よって本発明の製造方法により得ら
れるシリンド配線用基板は放熱効果が大きく、耐熱性な
らびに耐電圧が高いので、部品実装の高密度化と橋軸性
向上を可能ならしめ、本発明の製造方法がプリント配線
幕板工業に与える利益は大である。
Therefore, the present invention is disclosed in Japanese Patent Application Laid-open No. 54-66463 and Japanese Patent Application Laid-open No. 54
It is clear that the present invention is not simply a combination of the inventions described in No. -66462, respectively. In other words, the present invention is based on the selection of the first anodizing solution.
The cracks that occur at high temperatures in the aluminum oxide film formed by the second anodizing treatment are completely eliminated, and the first
By successively performing the first anodizing treatment, the second anodizing treatment, and the immersion treatment in a polyimide resin solution, an electrically perfect insulating film can be formed extremely easily. Therefore, the cylindrical wiring board obtained by the manufacturing method of the present invention has a large heat dissipation effect, high heat resistance and withstand voltage, so that it is possible to increase the density of component mounting and improve the bridge axis. The benefits to the printed circuit board industry are huge.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアルミニウム基板に第1回目の陽極酸化を施し
た後のアル2ニウム基板と酸化アルミニウム皮膜との縦
断面図、第2図ならびに第3図はそれぞれ前記アルミニ
ウム基板と酸化アルミニウム皮膜とを拡大した縦断面図
、第4図はアルミニウム基板に第2回目の陽極酸化を施
した後のアルきニウム基板と酸化アルミニウム皮膜とを
拡大した縦断面図である。 1・・・アルミニウム基板、2・・・酸化アルミニウム
皮膜、3・・・微細孔、4・・・開口欠陥孔、5・・・
非開口欠陥空洞、6・・・酸化アルミニウム皮膜厚増加
部分。 特許出願人 揖斐川電気工業株式会社 代理人弁理士  村  1)  政  治 17− 第4図 −432−
FIG. 1 is a longitudinal cross-sectional view of an aluminum substrate and an aluminum oxide film after the first anodic oxidation of the aluminum substrate, and FIGS. 2 and 3 are a longitudinal cross-sectional view of the aluminum substrate and an aluminum oxide film, respectively. FIG. 4 is an enlarged vertical cross-sectional view of an aluminum substrate and an aluminum oxide film after the second anodic oxidation is performed on the aluminum substrate. DESCRIPTION OF SYMBOLS 1... Aluminum substrate, 2... Aluminum oxide film, 3... Fine pore, 4... Open defect hole, 5...
Non-opening defect cavity, 6...portion with increased aluminum oxide film thickness. Patent applicant: Ibigawa Electric Industry Co., Ltd. Patent attorney Mura 1) Politics 17- Figure 4-432-

Claims (1)

【特許請求の範囲】 l・ アルミニウム基板の少なくとも一面をリン酸。 クロム酸の何れか少なくとも1種の溶液中で陽極酸化し
て酸化アルミニウム皮膜を形成させた後、水洗し、次い
でホウ酸アンモニウム、酒石酸アンモニウムの何れか少
なくと暫1種の水溶液とメタノール、エタノール、N−
メチルピロリドンのなかから選ばれる何れか少なくとも
1種との混合溶液中で再び陽極酸化してさらに酸化アル
ミニウム皮膜を形成させ、必要により引き続いてN−メ
チルぎロリPン液中で洗浄後、直ちにポリイミド樹脂の
N−メチルぎロリドン溶液中に浸漬させて、前記酸化ア
ルミニウム皮膜に存在する微細孔ならびに欠陥部を前記
ポリイミド樹脂により封着させることを特徴とする一連
の連続的処理による耐熱性ならびに耐電圧の高いプリン
ト配線用基板の製造方法。
[Claims] l. At least one surface of the aluminum substrate is coated with phosphoric acid. After anodizing in a solution of at least one of chromic acid to form an aluminum oxide film, it is washed with water, and then mixed with an aqueous solution of at least one of ammonium borate, ammonium tartrate, methanol, ethanol, N-
Anodic oxidation is performed again in a mixed solution with at least one selected from methylpyrrolidone to further form an aluminum oxide film, and if necessary, after washing in an N-methylpyrrolidone solution, polyimide is immediately removed. Heat resistance and withstand voltage achieved through a series of continuous treatments characterized by immersing the resin in an N-methylgyrolidone solution to seal the micropores and defective areas present in the aluminum oxide film with the polyimide resin. A method for manufacturing printed wiring boards with high performance.
JP8496682A 1982-05-21 1982-05-21 Method of producing substrate for printed circuit Granted JPS58202590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8496682A JPS58202590A (en) 1982-05-21 1982-05-21 Method of producing substrate for printed circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8496682A JPS58202590A (en) 1982-05-21 1982-05-21 Method of producing substrate for printed circuit

Publications (2)

Publication Number Publication Date
JPS58202590A true JPS58202590A (en) 1983-11-25
JPH0128514B2 JPH0128514B2 (en) 1989-06-02

Family

ID=13845359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8496682A Granted JPS58202590A (en) 1982-05-21 1982-05-21 Method of producing substrate for printed circuit

Country Status (1)

Country Link
JP (1) JPS58202590A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61264784A (en) * 1985-05-20 1986-11-22 伊勢電子工業株式会社 Manufacture of printed wiring board
JPH0318088A (en) * 1989-04-24 1991-01-25 Pechiney Rech Insulating metallic substrate and manufacture thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336670A (en) * 1976-09-17 1978-04-05 Oki Electric Ind Co Ltd Method of producing printed circuit board using alumite film
JPS554954A (en) * 1978-06-28 1980-01-14 Oki Electric Ind Co Ltd Method of manufacturing alumite printed circuit board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336670A (en) * 1976-09-17 1978-04-05 Oki Electric Ind Co Ltd Method of producing printed circuit board using alumite film
JPS554954A (en) * 1978-06-28 1980-01-14 Oki Electric Ind Co Ltd Method of manufacturing alumite printed circuit board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61264784A (en) * 1985-05-20 1986-11-22 伊勢電子工業株式会社 Manufacture of printed wiring board
JPH0318088A (en) * 1989-04-24 1991-01-25 Pechiney Rech Insulating metallic substrate and manufacture thereof

Also Published As

Publication number Publication date
JPH0128514B2 (en) 1989-06-02

Similar Documents

Publication Publication Date Title
JPH05501852A (en) How to coat dielectric ceramic pieces
JP2003124068A (en) Anode foil for capacitor, method for manufacturing anode foil and solid electrolytic capacitor using anode foil
JPS58202590A (en) Method of producing substrate for printed circuit
US4003772A (en) Method for preparing thin film integrated circuit
JPH0318088A (en) Insulating metallic substrate and manufacture thereof
JPH11251189A (en) Manufacture of capacitor element in solid-state electrolytic capacitor
JPS63195294A (en) Formation of insulating film on aluminum alloy
JPS59142138A (en) Insulating radiating sheet and its manufacture
JPH0396210A (en) Manufacture of solid electrolytic capacitor
JP2008153556A (en) Manufacturing method of heatsink substrate for electric circuit
JPH0245356B2 (en) ARUMINIUMUSHINPURINTOHAISENYOKIBANNOSEIZOHOHO
JPS61154095A (en) Making of oxide film for printed wiring board
JPS59121896A (en) Method of producing aluminum core printed circuit board
JPH0487317A (en) Capacitor
DE2221072A1 (en) Thin-film metallization process for microcircuits
WO2022118785A1 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
JP3669191B2 (en) Manufacturing method of solid electrolytic capacitor
TW588386B (en) Manufacturing method aluminum foil for capacitor and electrolytic capacitor
JPS62126623A (en) Solid electrolytic capacitor
JPH09246106A (en) Solid capacitor and formation of conductive functional polymer film
SU1381739A1 (en) Method of producing contact land on aluminium or aluminium alloy backing
JP2924252B2 (en) Method for manufacturing solid electrolytic capacitor
JPS62185307A (en) Solid electrolytic capacitor
JPS59124118A (en) Method of producing solid electrolytic condenser
JP2000216051A (en) Thin film capacitor built-in electronic circuit board and manufacture thereof