JPS58202574A - Metal oxide semiconductor transistor - Google Patents

Metal oxide semiconductor transistor

Info

Publication number
JPS58202574A
JPS58202574A JP8744282A JP8744282A JPS58202574A JP S58202574 A JPS58202574 A JP S58202574A JP 8744282 A JP8744282 A JP 8744282A JP 8744282 A JP8744282 A JP 8744282A JP S58202574 A JPS58202574 A JP S58202574A
Authority
JP
Japan
Prior art keywords
drain
oxide film
diffusion layer
gate oxide
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8744282A
Other languages
Japanese (ja)
Inventor
Masayuki Masuda
増田 昌之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8744282A priority Critical patent/JPS58202574A/en
Publication of JPS58202574A publication Critical patent/JPS58202574A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To form a low-concentration impurity diffusion layer to a section just under a gate oxide film through a comparatively simple method in which photoengraving and ion implantation processes are added, and to improve drain dielectric resistance by forming the diffusion layer extending from a drain region to the section just under the oxide film. CONSTITUTION:A source region 2, the drain region 3, a field oxide film 4 and the gate oxide film 5 are formed to a silicon substrate 1. For form the low- concentration impurity diffusion layer, the whole upper surface is coated with a photo-resist 8, an opening section 9 is bored to an upper section in the vicinity of a boundary section between the drain 3 and the gate oxide film 5, and an impurity 10 of the same conduction type as the source 2 and the drain 3 is introduced to a section adjacent to the drain 3 just under the gate oxide film 5 so as to extend from the drain 3 through ion implantation as the arrow I in the figure. The photo-resist 8 is removed, and the low-concentration impurity diffusion layer 11 is formed through thermal annealing for activating the impurity 10 implanted.

Description

【発明の詳細な説明】 この発明はMOS )ランジスタに係シ、特にそのドレ
イン降伏電圧の向上を図るだめの橋造の改良に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a MOS transistor, and more particularly to an improvement in a bridge structure for improving the drain breakdown voltage of the transistor.

近年、MO8集漬回路(MO8工C)の高密度集積化の
だめに比堡縮少則により不純物拡散深さの浅薄化、圧の
低圧化が進められているoしかし、一方MO8IOの周
辺回路では、例えば螢光表示管のように、数十ボルトの
高い駆動電圧の必要な素子で構成されり場合も多く、従
って、MO8O2O3出力回路のMOSトランジスタ(
MO8T)には数十ボルトの高いドレイン耐圧が要求さ
れる。
In recent years, due to the high density integration of MO8 integrated circuits (MO8C), the impurity diffusion depth has become shallower and the pressure has been lowered due to Hiba's reduction law.However, on the other hand, in the peripheral circuits of MO8IO, , for example, a fluorescent display tube, which is often composed of elements that require a high driving voltage of several tens of volts. Therefore, the MOS transistor (
MO8T) is required to have a high drain breakdown voltage of several tens of volts.

第1図は従来の基本的なMOEITを示す断面図で、(
1)はシリコン基板、(2)はソース領域、(3)はド
レイン領域、(4)はフィールド酸化膜、(5)はゲー
ト酸化膜、(6)はゲート電極である。いま、ゲート電
極(6)を接地電位にして、ドレイン(3)の電位を上
げて行くと、ドレイン(3)とゲート酸化膜(5)との
境界部a(破線円で示す)で電界強度が最大となるので
、ドレイン(3)近傍の等電位線すは一点鎖線で示すよ
うになり、この境界部aで最初に電界集中によるなだれ
降伏を起こす。このような電界集中はドレイン(3)の
拡散深さ、ゲート酸化膜(5)の膜厚、境界部aOp形
、n形の不純物濃度匂配等により左右され、MO8IO
の高密度集積化にともなう不純物拡散深さの浅薄化、ゲ
ート酸化膜厚の薄膜化によってドレイン耐圧の低下を余
儀なくされている。
Figure 1 is a sectional view showing a conventional basic MOEIT.
1) is a silicon substrate, (2) is a source region, (3) is a drain region, (4) is a field oxide film, (5) is a gate oxide film, and (6) is a gate electrode. Now, when the gate electrode (6) is set to the ground potential and the potential of the drain (3) is increased, the electric field strength increases at the boundary a (indicated by the broken line circle) between the drain (3) and the gate oxide film (5). is at its maximum, so the equipotential line near the drain (3) becomes as shown by a dashed-dotted line, and avalanche breakdown occurs first at this boundary a due to electric field concentration. Such electric field concentration depends on the diffusion depth of the drain (3), the thickness of the gate oxide film (5), the impurity concentration distribution of the aOp type and n type at the boundary, etc.
As the impurity diffusion depth becomes shallower and the gate oxide film becomes thinner due to higher density integration, the drain breakdown voltage is forced to decrease.

第2図はこの境界部aでの電界集中を緩和1〜、ドレイ
ン耐圧を向上させるようにした先行技術になるMOBT
を示す断面図で、ドレイン(3)をゲート酸化膜(5)
の直下部分にまで到達しないように形成するとともに、
ドレイン(3)とゲート酸化膜(5)の直下部分との間
に、ソース(2)およびドレイン(3)と同じ伝導形で
、これによシネ細物濃度の低い拡散層(7)を設け、ド
レイン電圧をこの拡散層(7)で吸収し、かつ、領域a
での不純物濃度匂配を緩やかにして電界集中を緩和しよ
うとするものである。
Figure 2 shows a prior art MOBT that alleviates the electric field concentration at the boundary a and improves the drain breakdown voltage.
In this cross-sectional view, the drain (3) is connected to the gate oxide film (5).
In addition to forming it so that it does not reach the part directly below the
A diffusion layer (7) having the same conductivity type as the source (2) and drain (3) and having a low concentration of cine particles is provided between the drain (3) and the portion immediately below the gate oxide film (5). , the drain voltage is absorbed by this diffusion layer (7), and the region a
The purpose is to soften the impurity concentration gradient in the wafer and to alleviate electric field concentration.

しかし、この構造のMOBTではドレイン耐圧の大幅な
向上は得られるものの、不純物濃度の低い拡散層(7)
の導電度が、その上層のフィールド酸化膜(4)中、お
よびフィールド酸化膜(4)表面の電荷の影響を受けて
変動し易い欠点がある。また、ソ」ス(2)、ドレイン
(3〉の高4度不純物拡散と拡散層(7)の低濃度不純
物拡散とを独立に行なわねばならず、製造工程が複雑に
なるという欠点もあった。
However, although MOBT with this structure can significantly improve drain breakdown voltage, the diffusion layer (7) with low impurity concentration
There is a drawback that the conductivity of the field oxide film (4) tends to fluctuate due to the influence of charges in the field oxide film (4) and the surface of the field oxide film (4). Another disadvantage was that the high-4 degree impurity diffusion in the source (2) and drain (3) and the low-concentration impurity diffusion in the diffusion layer (7) had to be performed independently, complicating the manufacturing process. .

この発明は以上のような点に鑑みてなされたもので、低
濃度拡散j−をゲート酸化膜の直下部分に形成すること
によって、上述の従来方式の欠点がなく、比較的簡単な
方法で、ドレインの高耐圧化を達成できるBIIO8T
の構造を提供することを目的としている。
This invention has been made in view of the above points, and by forming the low concentration diffusion j- directly under the gate oxide film, it is a relatively simple method that does not have the drawbacks of the above-mentioned conventional method. BIIO8T that can achieve high drain voltage breakdown
The purpose is to provide a structure for

第3図A−0はこの発明の一実施例の構成の理解を深く
するために、その製造工程の主要段階での状態を示す断
面図で、まず、第3図Aに示すように、通常のシリコン
酸化膜生成、写真食刻、不純物拡散等の工程の繰返しに
よってシリコン基板(1)にソース領域(2)、ドレイ
ン領域(3)、フィールド酸化膜(4)およびゲート酸
化膜(5)を形成する。次に、この発明のMOBTの特
徴である低濃度不純物拡散層を形成するために、第3図
Bに示すように全上面をホトレジスト(8)で覆った後
ドレイン(3)とゲート酸化膜(5)との境界部近傍の
上の部分に写真製版技術で開孔部(9)を設け、しかる
後に図示矢印Iのようにイオンを注入してソース(2)
、ドレイン(3)と同じ伝導形の不純物αQをゲート酸
化膜(5)の直下のドレイン(3)に隣接する部分にド
レイン(3)から延在するように導入する。つづいて、
第3図0に示すようにホトレジスト(8)を除去し、注
入不純物αQの活り化のため熱アニールを行なって低濃
度不純物拡散層αυを形成した後、ソース(2)および
ドレイン(3)へのコンタクト孔(図示省略)の開孔、
同電極(図示省略)およびゲート電極(6)の形成工程
を経てこの実施例のMOBTは完成する。
FIG. 3A-0 is a sectional view showing the state at the main stage of the manufacturing process in order to deepen the understanding of the configuration of one embodiment of the present invention. First, as shown in FIG. A source region (2), a drain region (3), a field oxide film (4), and a gate oxide film (5) are formed on the silicon substrate (1) by repeating the steps of silicon oxide film formation, photoetching, impurity diffusion, etc. Form. Next, in order to form a low concentration impurity diffusion layer, which is a feature of the MOBT of the present invention, the entire upper surface is covered with a photoresist (8) as shown in FIG. 3B, and then the drain (3) and gate oxide film ( A hole (9) is formed in the upper part near the boundary with the source (2) by photolithography, and then ions are implanted as shown by arrow I in the figure to form the source (2).
, an impurity αQ having the same conductivity type as the drain (3) is introduced into a portion adjacent to the drain (3) immediately below the gate oxide film (5) so as to extend from the drain (3). Continuing,
As shown in FIG. 30, after removing the photoresist (8) and performing thermal annealing to activate the implanted impurity αQ to form a low concentration impurity diffusion layer αυ, the source (2) and drain (3) Opening of a contact hole (not shown) to
The MOBT of this example is completed through the steps of forming the same electrode (not shown) and the gate electrode (6).

このMOBTではドレイン(3)からゲート酸化膜(5
)の(/υ 直下の一部に延在する低濃度不純物拡散層毎の先端部近
傍領域aの不純物濃度匂配が緩和されるので、領域aで
の電界集中が弱められ、ドレイン耐圧の向上が達成でき
る。この場合、ドレイン耐圧が最大になるようにする。
In this MOBT, from the drain (3) to the gate oxide film (5
) of (/υ) Since the impurity concentration gradient in the region a near the tip of each low-concentration impurity diffusion layer extending directly below is relaxed, the electric field concentration in region a is weakened, and the drain breakdown voltage is improved. can be achieved.In this case, the drain breakdown voltage should be maximized.

には、拡散層α力の不純物濃度および熱アニール条件を
最適に選べばよい。
For this purpose, the impurity concentration of the diffusion layer α and the thermal annealing conditions can be optimally selected.

なお、上記実施例ではメタルゲート・従来方式のMOB
Tにこの発明を適用した場合について説明したが、シリ
コンゲート・選択酸化方式のMOBTについてもこの発
明は適用できる。
In addition, in the above embodiment, metal gate/conventional MOB
Although the case where the present invention is applied to a T is described, the present invention can also be applied to a silicon gate/selective oxidation type MOBT.

以上詳述したようにこの発明になるMOBTではドレイ
ン領域から延在する低濃度不純物拡散層をゲート酸化膜
の直下部分に形成するようにしたので、写真製版、イオ
ン注入工程を追加するという比較的簡単な方法で形成で
き、ドレイン耐圧の向上が達成できるばかシでなく、こ
の低濃度不純物拡散層の導電度がフィールド酸化膜表面
などの電荷の影響を受けて変動することもない。
As detailed above, in the MOBT according to the present invention, the low concentration impurity diffusion layer extending from the drain region is formed directly under the gate oxide film, which requires additional photolithography and ion implantation steps. It can be formed by a simple method and can improve the drain breakdown voltage, and the conductivity of this low concentration impurity diffusion layer does not change due to the influence of charges on the surface of the field oxide film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の基本的なMOBTを示す断面図、第2図
はドレイン耐圧を向上させるようにした先行技術になる
MOBTの断面図、第3図A〜0はこの発明の一実施例
の製造工程の主要段階での状態を示す断面図である。 図において、(1)はシリコン基板、(2)はソース領
域、(3)はドレイン領域、(5)はゲート酸化膜、<
11)は低濃度不純物拡散層である。 なお、図中同一符号は同一または相当部分を示す0 代理人 葛野信−(外1名) 第1図 第2図 第3図
Fig. 1 is a sectional view showing a conventional basic MOBT, Fig. 2 is a sectional view of a prior art MOBT with improved drain breakdown voltage, and Figs. FIG. 3 is a cross-sectional view showing the state at the main stages of the manufacturing process. In the figure, (1) is a silicon substrate, (2) is a source region, (3) is a drain region, (5) is a gate oxide film,
11) is a low concentration impurity diffusion layer. In addition, the same reference numerals in the figures indicate the same or equivalent parts. 0 Agent Makoto Kuzuno (1 other person) Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)  ゲート絶縁膜直下におってドレイン領域に隣
接する領域に、上記ドレイン領域と同じ伝導形を七−シ
上記ドレイン領域よシも低い濃度の不純物拡散層を上記
ドレイン領域から延在するように設けたことを特徴とす
るMOS )ランジスタ。
(1) In a region immediately below the gate insulating film and adjacent to the drain region, an impurity diffusion layer having the same conductivity type as the drain region and having a lower concentration than the drain region is extended from the drain region. A MOS (MOS) transistor characterized by being provided in the.
JP8744282A 1982-05-21 1982-05-21 Metal oxide semiconductor transistor Pending JPS58202574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8744282A JPS58202574A (en) 1982-05-21 1982-05-21 Metal oxide semiconductor transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8744282A JPS58202574A (en) 1982-05-21 1982-05-21 Metal oxide semiconductor transistor

Publications (1)

Publication Number Publication Date
JPS58202574A true JPS58202574A (en) 1983-11-25

Family

ID=13914967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8744282A Pending JPS58202574A (en) 1982-05-21 1982-05-21 Metal oxide semiconductor transistor

Country Status (1)

Country Link
JP (1) JPS58202574A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773976A (en) * 1980-10-27 1982-05-08 Hitachi Ltd Mos type semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773976A (en) * 1980-10-27 1982-05-08 Hitachi Ltd Mos type semiconductor device

Similar Documents

Publication Publication Date Title
US7214591B2 (en) Method of fabricating high-voltage MOS device
JPH08264787A (en) Edge termination method of power mosfet and its structure
US4502069A (en) Contact for an MIS-semiconductor component and method for manufacturing the same
JPH0525393B2 (en)
US4507846A (en) Method for making complementary MOS semiconductor devices
US4212100A (en) Stable N-channel MOS structure
JPS58153368A (en) Insulated gate field effect transistor
JPS58202574A (en) Metal oxide semiconductor transistor
JP2001077356A (en) Vertical mos semiconductor device
JPS5925242A (en) Semiconductor device
JP2557206B2 (en) Method for manufacturing semiconductor device
JP3193984B2 (en) High voltage MOS transistor
JPS6325713B2 (en)
JPH06268162A (en) Semiconductor device and its manufacture
JP3693181B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
JPS6016469A (en) Manufacture of mis semiconductor device
JPS6072274A (en) Manufacture of semiconductor device
JPH02296342A (en) Manufacture of mosfet
JPH06283551A (en) Manufacturing method of mos type semiconductor element
JPH0243740A (en) Manufacture of mos semiconductor element
JPH02102576A (en) Semiconductor device
JP2002217309A (en) Method of manufacturing dmos transistor
JPH07183498A (en) Semiconductor device
JPH1187530A (en) Semiconductor device and its manufacture
JPH08204177A (en) Manufacture of high breakdown voltage mos transistor