JPS5820234A - Method for washing catalyst - Google Patents

Method for washing catalyst

Info

Publication number
JPS5820234A
JPS5820234A JP56117843A JP11784381A JPS5820234A JP S5820234 A JPS5820234 A JP S5820234A JP 56117843 A JP56117843 A JP 56117843A JP 11784381 A JP11784381 A JP 11784381A JP S5820234 A JPS5820234 A JP S5820234A
Authority
JP
Japan
Prior art keywords
washing
water
catalyst
catalyst layer
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56117843A
Other languages
Japanese (ja)
Inventor
Masao Hino
日野 正夫
Kyoji Kubo
久保 京司
Toru Seto
徹 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP56117843A priority Critical patent/JPS5820234A/en
Publication of JPS5820234A publication Critical patent/JPS5820234A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To reactivate catalytic properties, by a method wherein the gas passing surface of a catalyst layer is divided into plural sections to wash the same successively as well as waste water with low contamination degree is utilized as washing water of the next section to carry out economical washing. CONSTITUTION:The gas passing surface of a catalyst layer 4 is divided into plural sections 4-a, 4-b, 4-c and a washing nozzle 5 is provided so as to be opposed to the gas passing surface as well as a washing liquid receiving tray 6 is provided at every sections below the catalyst layer 4. In this structure, fresh washing water 14 is sprayed toward the catalyst layer 4 from the upper part of said layer 4 through a valve 15-a, a washing nozzle 5-a to wash out and elute the alkali metal component contained in the catalyst composition. After this treatment, the receiving tray 6 receives waste water but waste water 7 containing contaminating substances at high concn. is discarded and a liquid after washing with low contamination degree is supplied to the next section to be succeedingly used in washing. As referred above, the catalyst composition is washed by water in an apparatus to reactivate catalitic properties by a small amount of water within a short time.

Description

【発明の詳細な説明】 本発明は実装置内で充填された触媒が使用途中に被毒物
の蓄積により性能が低下した時水洗によって性能を賦活
させる方法において、より経済的に水洗を実施する方法
に関するものである0 石炭や石油を燃焼させた排ガスを触媒に通過させて排ガ
ス中の窒素酸化物を還元して無害化除去する脱硝反応、
−酸化炭素あるいは炭化水素などを酸化燃焼させる反応
に適用される各種触媒に燃焼排ガス中のダストに含まれ
るアルカリまたはアルカリ土類金属(カリウム、ナトリ
ウム、マグネシウムなど)が蓄積して性能が低下した場
合に特に有効な手段である。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for revitalizing the performance of a catalyst packed in an actual device due to accumulation of poisonous substances during use when its performance is lowered by washing with water, and a method for carrying out water washing more economically. 0 A denitrification reaction in which exhaust gas from burning coal or oil is passed through a catalyst to reduce and detoxify nitrogen oxides in the exhaust gas.
- When alkali or alkaline earth metals (potassium, sodium, magnesium, etc.) contained in dust in combustion exhaust gas accumulate in various catalysts used in reactions that oxidize and burn carbon oxides or hydrocarbons, resulting in a decrease in performance. This is a particularly effective means.

カリウム、ナトリウムなどのアルカリ金属は、脱硝触媒
、燃焼触媒など燃焼排ガスを対象にした触媒反応におい
て触媒活性点を阻害する被毒物質としてできるだけその
含有量を低減させることが望ましいが、合成反応に使用
される触媒と異なり、排ガス処理用の触媒は環境改善が
主目的であり、触媒活性、寿命を保護するように該排ガ
スを前処理するような配慮は皆無であり、最近では燃料
事情の悪化からますますダスト量、ダスト組成で触媒に
悪影智を与えるような排ガス源になってきており、そこ
で使用される触媒に耐ダスト被毒性を要求される状況に
ある。
Alkali metals such as potassium and sodium are poisonous substances that inhibit catalyst active sites in catalytic reactions targeting combustion exhaust gas, such as denitrification catalysts and combustion catalysts, so it is desirable to reduce their content as much as possible, but they are not used in synthesis reactions. Unlike conventional catalysts, the main purpose of exhaust gas treatment catalysts is to improve the environment, and there is no consideration given to pre-treating the exhaust gas to protect catalyst activity and lifespan. Increasingly, dust is becoming a source of exhaust gas that has negative effects on catalysts depending on its amount and composition, and the catalysts used there are now required to be resistant to dust poisoning.

本発明者らも上記の排ガス中に含有される窒素酸化物を
アンモニアで還元除去するに最適な脱硝触媒を開発し、
各排ガス源に対応して触媒組成、形状、製法を変えて、
高活性、長期耐久性のある脱硝装置を提供し、火力発電
所、各種化学工場のボイラで数多〈の実用機が既に数多
く順調に稼動している。
The present inventors have also developed a denitrification catalyst that is optimal for reducing and removing nitrogen oxides contained in the above exhaust gas with ammonia,
By changing the catalyst composition, shape, and manufacturing method to suit each exhaust gas source,
We provide highly active and long-lasting denitrification equipment, and many commercial machines are already in smooth operation in boilers at thermal power plants and various chemical plants.

即ちLNG焚きボイラの如くダスト、SOxを含まない
クリーンガスでは耐SOx性、耐ダスト閉塞性の心配が
ないため、At、0.のような耐SOX性の不十分な担
体でも実用上は何ら問題なく、安価なことからAt20
3にy20. 、 WO3、Fe、 03 、Mo O
sなどの活性成分を組合せた触媒が使用され、ダスト閉
塞性の心配もないことから粒状、円柱状、だ円体状など
に成形された触媒を固定床で使用している。そして排ガ
ス中のダストも皆無に近く〈ダストによる性能低下は全
くないといっても過言ではない。
That is, with a clean gas that does not contain dust or SOx, such as an LNG-fired boiler, there is no concern about SOx resistance or dust blockage resistance, so At, 0. There is no practical problem with carriers with insufficient SOX resistance, such as At20, because they are inexpensive.
3 to y20. , WO3, Fe, 03, MoO
Catalysts are used in combination with active ingredients such as s, and there is no concern about dust clogging, so catalysts shaped into granules, cylinders, ellipses, etc. are used in fixed beds. And there is almost no dust in the exhaust gas (it is no exaggeration to say that there is no deterioration in performance due to dust).

一方、重油焚きボイラや石炭焚きボイラのようにダスト
とSOxを含有するダーティガスでは耐SOx性、耐ダ
スト被毒性、耐ダスト閉塞性、耐ダスト摩耗性などを考
慮して最適な触媒仕様を選定する必要があり、TiO2
を担体にすることで耐SOx性が十分あることから、T
lO2に■203、wo3、Fe20g、MoO3など
の活性成分を組合せた触媒が使用されている。又ダスト
閉塞しない触媒形状としては前述の粒状、円柱状、だ円
体状などに成形された触媒を移動法で使用する方法、板
状、パイプ状、ハニカム状などの触媒構造体、を固定床
にして排ガスを並行流で通過させる方法が比較検討され
、現在では経済性があり保守の簡単なハニカム触媒が主
流となっている0そして石炭焚きボイラの高ダスト側で
の脱硝反応にも硬度の高いハニカム触媒が開発され実用
上はとんど問題のない状態である。
On the other hand, for dirty gas containing dust and SOx, such as heavy oil-fired boilers and coal-fired boilers, the optimal catalyst specifications are selected by considering SOx resistance, dust toxicity resistance, dust clogging resistance, dust abrasion resistance, etc. TiO2
Since it has sufficient SOx resistance by using T as a carrier, T
A catalyst is used in which 1O2 is combined with active components such as ■203, WO3, 20g of Fe, and MoO3. In addition, as catalyst shapes that do not become clogged with dust, catalysts shaped into granules, cylinders, ellipsoids, etc. as mentioned above are used in the moving method, catalyst structures such as plates, pipes, honeycombs, etc. are used as fixed bed catalysts. A method of passing exhaust gas in a parallel flow was compared and studied, and now honeycomb catalysts, which are economical and easy to maintain, are the mainstream. High-efficiency honeycomb catalysts have been developed, and there are virtually no problems in practical use.

しかしダスト成分が触媒内部に入りこみ触媒性能を低下
させるのを防ぐ方法としては、ダストが触媒内部に入り
に〈イ)するような触媒組成にしてできるだけその影響
をやわらげる以外に方法はなく、ダスト成分でも性能低
下に特に悪影響を及ぼすカリウム(K)、ナトリウム(
Na)、マグネシウム(Mg)などのアルカリまたはア
ルカリ土類金属に耐える活性成分の選択が重要であり、
本発明者らも種々のガス源に対応した最適の触媒組成を
見出してきた。重油、石炭は採取される場所によってに
%Na1Mg含有量が大きく異なり、これらの金属含有
量が多い程耐アルカリダスト性が触媒に要求される。し
かしながらこれらの金属は排ガス中では大部分硫酸塩と
して存在しているので、水に可溶であり、触媒表面にダ
ストが付着した状態で水で濡れたり、ボイラ蒸発管や、
エコノマイザ−給水管の破損事故で火炉中のダストを含
んだ蒸気又は触媒を濡らす場合には触媒内部に急激にに
、 Na、 Mgなどの被毒物が増加して、予期してい
ない性能低下をきたし、ボイラ運用できない場合がある
However, the only way to prevent dust components from entering the catalyst and reducing catalyst performance is to soften the effect as much as possible by creating a catalyst composition that allows dust to enter the catalyst (a). However, potassium (K) and sodium (
It is important to select active ingredients that are resistant to alkali or alkaline earth metals such as Na), magnesium (Mg), etc.
The present inventors have also discovered optimal catalyst compositions compatible with various gas sources. The %Na1Mg content of heavy oil and coal varies greatly depending on where it is extracted, and the higher the content of these metals, the more alkali dust resistance is required of the catalyst. However, most of these metals exist in the form of sulfates in exhaust gas, so they are soluble in water, so they can be wetted with water with dust attached to the catalyst surface, boiler evaporator pipes, etc.
Economizer - If a water supply pipe breakage causes dust-laden steam in the furnace or the catalyst to become wet, poisonous substances such as Na and Mg will rapidly increase inside the catalyst, resulting in an unexpected drop in performance. , the boiler may not be operational.

このような緊急事故により脱硝装置が所期の性能を発揮
しなくなった時は最悪の場合ボイラを停止せざるを得な
い状況になることも想定されるので短期間で性能回復さ
せる方法を提供する必要がある。
If the denitrification equipment no longer performs as expected due to such an emergency accident, in the worst case scenario, the boiler may have to be shut down, so we provide a method to restore performance in a short period of time. There is a need.

前述のようにに、 Na、 Mgなどのアルカリまたは
アルカリ土類金属を主体としたダス)/Z触媒内部に蓄
積した場合は、水溶性を利用して十分に水洗すれば良い
ことは知られているが、これは触媒を脱硝装置から取り
出して、さらに触媒を複数にまとめているバンクからは
ずした後の処理法であり、事業用ボイラのように触媒が
大量に使用されており、それらを短期間に水洗賦活させ
る方法としては全く実用性はみいといえる。即ち緊急時
に触媒性能を回復させるためにたけボイラを長期間停止
することは、前述のように排ガス処理用触媒としての使
命から許されないことであり、できるたけ短期間に安価
に活性を賦活させなければならない。
As mentioned above, it is known that if the DAS (Dus)/Z catalyst mainly consists of alkali or alkaline earth metals such as Na and Mg, it can be washed thoroughly by taking advantage of its water solubility. However, this is a treatment method after removing the catalyst from the denitrification equipment and removing it from the bank where the catalysts are grouped together. It can be said that it is completely impractical as a method of activating with water in between. In other words, stopping the bamboo boiler for a long period of time in order to recover the catalyst performance in an emergency is not allowed due to its mission as an exhaust gas treatment catalyst, as mentioned above, and it is necessary to activate the activity as quickly and inexpensively as possible. Must be.

本発明者らはこのような考えに基づいて大量の触媒を実
装置内に充填した状態でできるたけ短時間に水洗処理で
触媒性能を回復させる方法として、水洗ノズルを使用し
て竪型反応層においてはガス入口部、横置反応層におい
てはガス人口部又は出口部に前記の水洗ノズルを設けて
触媒を洗浄することで被毒成分を溶出させて触媒性能を
回復させる方法を提案しているが、本発明はこの水洗を
より経済的に行なうものである。
Based on this idea, the present inventors developed a vertical reaction bed using a water washing nozzle as a method to restore the catalyst performance by washing with water in as short a time as possible with a large amount of catalyst packed in an actual device. proposes a method in which poisoning components are eluted and the catalyst performance is restored by installing the above-mentioned water washing nozzle at the gas inlet, or in the gas inlet or outlet of a horizontal reaction bed to wash the catalyst. However, the present invention makes this water washing more economical.

すなわち、本発明は触媒の性能低下時に装置内に触媒を
充填したままで水洗により性能を回復させる方法におい
て、触媒層ガス通過面を複数に分割して順次水洗し、か
つ、最初の触媒区画の水洗直後の汚染物質濃度の高い排
水処理ピットに廃棄し、その後の汚染物質濃度の低い排
水を次の触媒区画の水洗水として使用し、その後の区画
を同様の操作をくり返して順次水洗して行く触媒の水洗
方法に関する。
That is, the present invention is a method for restoring the performance of a catalyst by washing with water while the catalyst is still packed in the device when the performance of the catalyst deteriorates. Immediately after washing, the wastewater with high pollutant concentration is disposed of in a treatment pit, and the subsequent wastewater with low pollutant concentration is used as washing water for the next catalyst section, and subsequent sections are washed in sequence by repeating the same operation. This invention relates to a method for washing a catalyst with water.

本発明はアルカリ金属による触媒への被毒作用で触媒性
能が低下した場合には、脱硝触媒たけに限定されるもの
ではなく、燃焼触媒のような酸化触媒、吸着剤を使用す
る脱硫法にも適用可能であることはいうまでもない。
The present invention is not limited to denitrification catalysts only, but can also be applied to desulfurization methods that use oxidation catalysts such as combustion catalysts and adsorbents, when catalyst performance deteriorates due to poisoning of the catalyst by alkali metals. Needless to say, it is applicable.

以下、第1図により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to FIG.

通常け゛窒素酸化物を含む燃焼排ガス1に還元剤として
アンモニアガス18を注入して触媒層4(図中4a、4
b、4cで表わす)内にて反応せしめ、窒素酸化物を無
害な窒素と水とに分解し、脱硝後の排ガス2として後流
機器に導かれる。
Normally, ammonia gas 18 is injected as a reducing agent into the combustion exhaust gas 1 containing nitrogen oxides to form a catalyst layer 4 (4a, 4 in the figure).
b, 4c), the nitrogen oxides are decomposed into harmless nitrogen and water, and the denitrified exhaust gas 2 is led to downstream equipment.

一方、脱硝装置本体3内に充填された触fI&が使用途
中に排ガス中のアルカリ金属成分などの被毒物の蓄積に
より触媒性能が低下した場合、該脱硝装置内に触媒を充
填したままでボイラ停止時に水洗により性能を回復させ
る方法において、該触媒層4のガス通過面を複数4−a
、4−b、4−cに分割し、ガス通過面に対面して水洗
用ノズル5°を区画毎に設置すると共に、触媒層下部に
は水洗液受皿6を区画毎に設ける。
On the other hand, if the catalytic performance of the catalytic converter filled in the denitration equipment main body 3 decreases during use due to the accumulation of poisonous substances such as alkali metal components in the exhaust gas, the boiler will stop with the catalyst still being filled in the denitrification equipment. Sometimes, in a method of restoring performance by washing with water, a plurality of gas passage surfaces of the catalyst layer 4 are
, 4-b, and 4-c, and a washing nozzle 5° is installed in each section facing the gas passage surface, and a washing liquid receiving tray 6 is provided in each section under the catalyst layer.

新しい水洗水(例えば王水)14け切替えバルブ+5−
aを通り水洗ノズル5−aに供給され、区画された触媒
層4−a上部から噴霧される。
New washing water (e.g. aqua regia) 14 switching valves + 5-
It is supplied to the water washing nozzle 5-a through the catalyst layer 4-a, and is sprayed from above the partitioned catalyst layer 4-a.

触媒内部に含まれるアルカリ金属成分を水洗溶出させた
後、該水洗受皿6−aに一時的に受けられ、水洗移液と
して装置外へ排水される。
After the alkali metal components contained within the catalyst are washed and eluted, they are temporarily received in the washing tray 6-a and drained out of the apparatus as a washing liquid.

ここで水洗直後の水洗移液は汚染物質の濃度が高い排水
であり、切替えバルブ17−aを&て高濃度排水7とし
て第1排水檜8に集合させ排水処理ピット11に廃棄す
る。
Here, the washing liquid immediately after washing is waste water with a high concentration of pollutants, and is collected in the first waste water cypress 8 as high concentration waste water 7 by turning the switching valve 17-a and disposed of in the waste water treatment pit 11.

一方、一定時間水洗後の排水は汚染物質の濃度が低いか
ら、この水洗移液をそのまま排水処理ピットに廃棄する
ことは、水洗水量の増加になるばかりでなく、排水処理
ピットの能力オーバーにもなりかねない。したがっであ
る一定時間経過後、汚染物質濃度が低くなった水洗移液
は、切替えバルブ17−dを経て低濃度排水9として第
2排水槽10に排出する。ここに集められた低濃度排水
はポンプ12を使用し、次の区画の水洗水15として切
替えバルブ16−bを通し水洗ノズル5−bに供給され
触媒4−bを水洗する。ここでも初期の水洗移液は廃棄
し、汚染物質が低濃度になってきた水洗移液は次の区画
にまわし、そ−の後の区画は同様に順次水洗する。
On the other hand, since the concentration of pollutants in wastewater after washing for a certain period of time is low, disposing of this washing liquid directly into the wastewater treatment pit will not only increase the amount of washing water but also cause the capacity of the wastewater treatment pit to be exceeded. It could happen. Therefore, after a certain period of time has elapsed, the washed liquid whose pollutant concentration has become low is discharged to the second drainage tank 10 as low concentration wastewater 9 via the switching valve 17-d. The low-concentration wastewater collected here is supplied to the washing nozzle 5-b as washing water 15 for the next section through the switching valve 16-b using the pump 12 to wash the catalyst 4-b. Here, too, the initial washing liquid is discarded, and the washing liquid, which has a low concentration of contaminants, is passed to the next compartment, and subsequent compartments are similarly washed sequentially.

なお切替えバルブを操作することによりパン千成、連続
式いずれにても水洗することができる。
In addition, by operating the switching valve, it is possible to wash with water in either the pan sensei or continuous type.

また第2排水槽への排水の切替え時期は、触媒上への被
毒物の蓄積状況および水洗状態により異なるので一義的
には決定することけできないが、排水を経時的にサンプ
リングし汚染物質の濃度を分析する、あるいll1pH
値で判断する等の方法で汚染濃度の低下を認識し、切替
えるものとする。
Furthermore, the timing of switching the wastewater to the second drainage tank cannot be determined unambiguously because it depends on the accumulation of poisonous substances on the catalyst and the water washing conditions, but the concentration of pollutants can be determined by sampling the wastewater over time. to analyze, or ll1pH
Decrease in contamination concentration shall be recognized and switched by a method such as judgment based on the value.

また水洗前に予め、触媒層に付着しているダストを空気
ブローなどによって除去しておくことは水洗水量を減少
させる効果があり、更に最後に新しい水洗水により仕上
げの水洗を行うことにより、水洗効果をより高めること
ができる。
In addition, removing dust adhering to the catalyst layer by air blowing etc. before washing has the effect of reducing the amount of washing water, and by performing a final washing with fresh washing water, the washing The effect can be further enhanced.

水洗後の触媒はボイラ燃焼前に水切り乾燥を行なう。乾
燥の方法としては、通気ブロワ−を駆動し、空気をボイ
ラを経由して触媒層に供給する等の常法が採られる。
After washing, the catalyst is drained and dried before combustion in the boiler. As a drying method, a conventional method such as driving a ventilation blower and supplying air to the catalyst layer via a boiler is used.

したがって本発明は、従来実施されてきた触媒を県外に
抜き出して水洗する方法に比べ実装置内で水洗が可能で
あり、短時間に水洗賦活させる方法として有効であり、
更に水洗水量を大巾に低減することができ、実用上、大
−に貢献するものである。
Therefore, compared to the conventional method of taking the catalyst out of the prefecture and washing it with water, the present invention allows washing with water within the actual equipment, and is effective as a method of activating the catalyst with water in a short time.
Furthermore, the amount of water used for washing can be greatly reduced, making a significant contribution to practical use.

実施例1 第1図において、停止中の重油焚きボイラ排ガス用脱硝
装置5の触媒層4のガス通過面の一部を仕切り板19で
仕切り、その上部にフルコーン型スプレーノズル5を設
置し水洗水を触媒上に噴霧して触媒の水洗を実施した。
Example 1 In FIG. 1, part of the gas passage surface of the catalyst layer 4 of the denitrification device 5 for exhaust gas from a stopped heavy oil-fired boiler is partitioned off with a partition plate 19, and a full-cone spray nozzle 5 is installed above the partition plate 19, and a full-cone spray nozzle 5 is installed on the top of the partition plate 19. was sprayed onto the catalyst to wash the catalyst with water.

その水洗条件を第1表に示す。The washing conditions are shown in Table 1.

第1表 水洗条件 をスプレーノズル5a必ら噴霧して触媒を水洗□ し、
最初の10分間の水洗水を第1排水槽8に流し、その後
、50分間を第2排水411oに流出サセタ。その各々
の排水槽に流入する排水ヲ経時的にサンプリングし汚染
物質(K、 Na )の濃度を分析したところ、第2図
、実線に示す通りであった。
Table 1 Washing conditions: Wash the catalyst with water by spraying with the spray nozzle 5a,
The first 10 minutes of washing water flows into the first drainage tank 8, and then the 50 minutes wash water flows into the second drainage tank 411o. The wastewater flowing into each drainage tank was sampled over time and the concentration of pollutants (K, Na) was analyzed, as shown by the solid line in Figure 2.

次いで4−b区画の触媒層には、上記の第2排水槽10
に流入した汚染物質濃度の低い排水をポンプ1゛2を使
用し、スプレーノズル5−bから噴霧する。4−a区画
の場合と同様に最初の10分間の水洗水は第1排水槽に
、その後50分間の水洗水は第2排水槽に流出させた。
Next, the above-mentioned second drainage tank 10 is placed in the catalyst layer of section 4-b.
The waste water having a low concentration of pollutants flowing into the tank is sprayed from the spray nozzle 5-b using the pump 1-2. As in the case of section 4-a, the first 10 minutes of washing water was drained into the first drainage tank, and the subsequent 50 minutes of washing water was drained into the second drainage tank.

その汚染物質の濃度分析値を第2図の破線で示す。The concentration analysis value of the contaminant is shown by the broken line in FIG.

同様にして4−b区画触媒を水洗した後の第2排水槽へ
の流出水で、4−C区画触媒を水洗し、順次、上記工程
をくり返す。
Similarly, after washing the 4-b section catalyst with water, the 4-C section catalyst is washed with water flowing out to the second drainage tank, and the above steps are repeated in sequence.

このようにして水洗を終えた触媒を乾燥させ、第2表に
示す条件下で脱硝性能を計測した結果第5表 脱硝性能
測定結果 この結果すらも明らかなように水洗直後の汚染物質濃度
の高い排水は排水処理ピットに廃棄し、その後の汚染物
質濃度の低い排水を次の区画の水洗水として使用するこ
とにより、脱硝性能の賦活炭はあまり変らず水洗水を減
少させることができる。例えば5区画の触媒を水洗する
に必要な水洗水量は、第4表に示す通り、1区画毎の水
洗水を廃棄する方法に比べ半分以下の水洗水量でよく、
水洗水の節減になるばかりでなく、排水処理も容易にな
る。
After drying the catalyst that had been washed with water in this manner, the denitrification performance was measured under the conditions shown in Table 2. Table 5: Denitrification Performance Measurement Results As is clear even from this result, the concentration of pollutants was high immediately after washing with water. By disposing of wastewater in a wastewater treatment pit and using the subsequent wastewater with a low concentration of pollutants as flushing water for the next section, the amount of flushing water can be reduced without significantly changing the denitrification performance of activated carbon. For example, as shown in Table 4, the amount of washing water required to wash the catalyst in five sections is less than half that of the method of discarding the washing water for each section.
This not only saves washing water, but also facilitates wastewater treatment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はボイラ燃焼排ガス脱硝装置に本発明方法を適用
した場合の一実施態様を示すフローシートであり、第2
図は第1図の方式で触媒を水洗したときの水洗液中の汚
染物質の経時的な変化を示すグラフである。 復代理人  内 1)  明 復代理人  萩 原 亮 −
FIG. 1 is a flow sheet showing one embodiment of the method of the present invention applied to a boiler flue gas denitrification device;
The figure is a graph showing the change over time of contaminants in the washing liquid when the catalyst is washed with water using the method shown in Fig. 1. Sub-agents 1) Meifuku agent Ryo Hagiwara -

Claims (1)

【特許請求の範囲】[Claims] 触媒の性能低下時に装置内に触媒を充填したままで水洗
により性能を回復させる方法において、触媒層ガス通過
面を複数に分割して順次水洗し、かつ、その際、第1の
触媒区画の水洗直後の汚染物質濃度の高い排水は廃棄し
、その後の汚染物質濃度の低い排水を第2の触媒区画の
水洗水として使用し、以下、同様に順次水洗して行くこ
とを特徴とする触媒の水洗方法。
In a method of restoring the performance of a catalyst by washing with water while the catalyst remains in the device when its performance deteriorates, the catalyst bed gas passage surface is divided into a plurality of parts and washed with water in sequence, and at that time, the first catalyst section is washed with water. Catalyst washing with water, characterized in that immediately after, wastewater with a high pollutant concentration is discarded, and subsequent wastewater with a low pollutant concentration is used as washing water for the second catalyst section, and subsequent washings are carried out sequentially in the same manner. Method.
JP56117843A 1981-07-29 1981-07-29 Method for washing catalyst Pending JPS5820234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56117843A JPS5820234A (en) 1981-07-29 1981-07-29 Method for washing catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56117843A JPS5820234A (en) 1981-07-29 1981-07-29 Method for washing catalyst

Publications (1)

Publication Number Publication Date
JPS5820234A true JPS5820234A (en) 1983-02-05

Family

ID=14721637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56117843A Pending JPS5820234A (en) 1981-07-29 1981-07-29 Method for washing catalyst

Country Status (1)

Country Link
JP (1) JPS5820234A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6631727B2 (en) * 1996-07-12 2003-10-14 Energie-Versorgung Schwaben Ag Method of cleaning and/or regenerating wholly or partially de-activated catalysts of stack-gas nitrogen scrubbing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6631727B2 (en) * 1996-07-12 2003-10-14 Energie-Versorgung Schwaben Ag Method of cleaning and/or regenerating wholly or partially de-activated catalysts of stack-gas nitrogen scrubbing

Similar Documents

Publication Publication Date Title
US4572903A (en) Method for reactivating catalysts used for removing nitrogen oxides with steam
JP6770176B2 (en) Smoke exhaust denitration method
KR101608720B1 (en) Exhaust gas purification system
CN108211791A (en) A kind of dual chamber modularization alternating denitrating system and method for denitration
CN108771967A (en) A kind of technique of the ultra-clean processing flue gas of the dust removal integrated wet method of desulphurization denitration
KR100941399B1 (en) Apparatus and method for processing exhaust gas
CN110420548B (en) Device and method for ultralow emission of flue gas through ammonia method in cooperation with denitration, desulfurization and demercuration
JP2006307802A (en) Exhaust emission control device
JPS5830345A (en) Catalyst activation method
JPS5820234A (en) Method for washing catalyst
CN210251824U (en) Flue gas low temperature SOx/NOx control sprays scrubbing tower
RU2604816C2 (en) Method of air basin complex cleaning of production wastes/emissions from pipes
CN106268313A (en) A kind of flue gases of cock oven SCR denitration guard method and device
CN209771798U (en) Urban sludge incineration flue gas purification system
JP3779889B2 (en) Catalyst regeneration method
RU2536749C2 (en) Integrated device to clean exhaust gases of marine engine
JPS5817843A (en) Activating method for catalyst
CN203355550U (en) Multiple pollutants combined control device
CN105056683A (en) Flue gas dust removal, desulfurization and denitration integrated system and method
JPH05317646A (en) Waste gas treating method
JPS58189041A (en) Regeneration of catalyst
KR102594138B1 (en) Regenerative oxidation apparatus with scr and sncr function
CN109966850A (en) A kind of catalytic regeneration smoke adsorption purification device
CN220495835U (en) Ash blocking device for desulfurization and denitrification regenerated gas pipeline
CN218688085U (en) Foul smell treatment device for sewage pool