JPS58201360A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS58201360A
JPS58201360A JP8433482A JP8433482A JPS58201360A JP S58201360 A JPS58201360 A JP S58201360A JP 8433482 A JP8433482 A JP 8433482A JP 8433482 A JP8433482 A JP 8433482A JP S58201360 A JPS58201360 A JP S58201360A
Authority
JP
Japan
Prior art keywords
semiconductor device
substrate
poly
gate electrode
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8433482A
Other languages
Japanese (ja)
Inventor
Takeshi Okazawa
武 岡澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP8433482A priority Critical patent/JPS58201360A/en
Publication of JPS58201360A publication Critical patent/JPS58201360A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To make the semiconductor device smaller in size by a method wherein the apertures of a gate electrode and the lead-out electrode of an Si substrate are formed simultaneously using a mask, thereby enabling to almost unnecessitate the allowance in the design. CONSTITUTION:A poly Si 24 is superposed on the region which is insulation-isolated 22 from a P type substrate 21 and covered by an SiO2 thin film, an etching is performed using an Si3N4 mask 28, poly Si layers 24a-24c are formed, and P-layers 24a-24d are formed by performing an ion implantation. The SiO2 film is covered on the side face of the poly Si, the films 28a, 28c and layers 24a, 24c and the SiO2 thin film are removed using a resist mask 25d on the poly Si layer 24b alone, and N-diffusion layers 21e and 21f are formed. An SiO2 film 29 is covered and the semiconductor device is completed. As the Si3N4 mask 28 can be formed using a photomask once, the allowance is made almost unnecessary when the aperture parts for gate electrode and a lead-out electrode are designed, thereby enabling to make the titled semiconductor device smaller in size.

Description

【発明の詳細な説明】 本発明は1.lIl!l#ゲート電界効果型(以下、 
M(JS型)の半導体装置の製造方法に係り、特に装置
が小型化して、製造上のバラツキに対して、必要とされ
る装置設計上の余裕度が、相対的に大きくなり、装置の
小型化を防ける支配的な因子となりつる場合に、そのよ
うな設計上の余裕度を従来よシも小さくとることを可能
とする製造方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention consists of 1. lIl! l# gate field effect type (hereinafter referred to as
Regarding the manufacturing method of M (JS type) semiconductor devices, in particular, as the devices become smaller, the margin required in the device design against manufacturing variations becomes relatively large. The purpose of the present invention is to provide a manufacturing method that makes it possible to make such a design margin smaller than in the past, when this becomes a dominant factor in preventing the occurrence of problems.

半導体装置、特にMO8型半導体装置における技術進歩
の大きな指針のひとつは、装置をより一層小型化するこ
とである。しかし、装置の小型化は、製造上の新たな問
題点を与えることがある。
One of the major guidelines for technological progress in semiconductor devices, particularly MO8 type semiconductor devices, is to further miniaturize the devices. However, device miniaturization can present new manufacturing challenges.

それは1例えば装置が十分な大きさを保っている場合に
は無視しうるが、小型化が進行していくにつれてしだい
に表面化してくるような性質のものである。
For example, it can be ignored if the device is kept sufficiently large, but it gradually becomes more apparent as miniaturization progresses.

従来、半導体装置を製造する場合、製造された装置は必
ず、製造上のパンツキを伴っているものである。それは
たとえば、装置の性能面に関していえば、その設計され
た値に対して、実際の性能は設計値を中心として前後に
分布していることである。
Conventionally, when semiconductor devices are manufactured, the manufactured devices always have manufacturing defects. For example, in terms of device performance, the actual performance is distributed around the designed value.

そのような、製造上のバラツキは、不可避のものである
から、装置を効率良く製造するためにFi、装置の設計
の段階で、予想される製造上のバラツキを考慮した設計
上の余裕度を設計に含めておく必要がある。
Such manufacturing variations are unavoidable, so in order to efficiently manufacture equipment, it is necessary to create a design margin that takes into account expected manufacturing variations at the equipment design stage. Must be included in the design.

製造上のバラツキは、製造技術が一定の水準を保でてい
る場合には、一定のものであるから、上述の設計上の余
裕度も、一定の範囲内でよい。しかし、前述したように
、半導体装置の設計上の進歩が装置のより一層の小型化
を要求してきたときに、上述の設計上の余裕度が相対的
に大きな要素となり、装置の小型化を制約する支配的な
因子となってくるのである。
Since manufacturing variations are constant if the manufacturing technology is maintained at a certain level, the above-mentioned design margin may also be within a certain range. However, as mentioned above, when advances in the design of semiconductor devices require further miniaturization of the devices, the above-mentioned design margin becomes a relatively large factor, which limits the miniaturization of the devices. It becomes the dominant factor.

仁のような例1−.第1図(1)乃至(g)に示すMO
8型半導体装置の従来からの製造方法に従って述べるO まず、第1図(a)に示すように、−導電型単結晶シリ
コン基板11の一主表面上に素子形成領域13及び素子
間分離領域となる例えば酸化シリコンより成る絶縁膜1
2tl−形成した後1例えば多結晶シリコンのような、
導電性を有する物質14を全面に被着する。その後第1
図(b)K示すようにフォトマスク161 f用いて所
定の場所にフォトマスク151を選択的に残し、#紀フ
ォトレジスト151¥rマスクにして、公知の7オトエ
ツテ/グ法によシ多結晶シリコン被膜14を選択的にエ
ッチフグ除去し、ゲート電極14a t−形成する〇引
き続き第1図(e)のように#記ゲート電極14aをマ
スクにして、公知の不純物熱拡散法もしくは不純物イオ
ノ注入法により、前記−導電型単結晶シリコ/基板内1
1の所定の場所に、ソース及びドレインとなる不純物拡
散層11a及びllbを形成する。
Example 1-. MO shown in FIG. 1 (1) to (g)
First, as shown in FIG. 1(a), an element formation region 13 and an element isolation region are formed on one main surface of a -conductivity type single crystal silicon substrate 11. For example, an insulating film 1 made of silicon oxide
2tl- after forming 1, such as polycrystalline silicon,
A conductive substance 14 is deposited on the entire surface. then the first
As shown in Fig. (b), the photomask 151 is selectively left at a predetermined location using a photomask 161f, and a photoresist 151\r mask is used to form a polycrystalline film using a well-known method. The silicon film 14 is selectively etched away and a gate electrode 14a is formed.Subsequently, as shown in FIG. 1(e), using the gate electrode 14a marked # as a mask, a known impurity thermal diffusion method or impurity ion implantation method is performed. According to the above-mentioned conductivity type single crystal silicon/substrate 1
Impurity diffusion layers 11a and llb, which will become a source and a drain, are formed at predetermined locations of 1.

その後、第1図1d)に示すように層間絶縁[117を
形成する。次に第1図(e)K示すように引き続いてI
t!2のフォトマスク16b乃至16eを用いて層間絶
縁[117の上の所定の場所に7オトレジスト15b乃
至1Set−形成する。この7オトレジス)15b乃至
15eは、紡記−導電型単結晶7リコン基板ll内に形
成した。ソース・ドレイン不純物拡散層111及びll
bからと、@紀ゲート電極ト1からの引き出し電極を形
成すべき開孔Sを層間絶縁膜17に設けるためのもので
ある。
Thereafter, as shown in FIG. 1 d), interlayer insulation [117] is formed. Next, as shown in FIG. 1(e)K, I
T! Using photomasks 16b to 16e, seven photoresists 15b to 1Set are formed at predetermined locations on the interlayer insulation layer 117. These 7-layer resistors) 15b to 15e were formed in a spinning-conductivity type single crystal 7-recon substrate 11. Source/drain impurity diffusion layer 111 and ll
This is to provide an opening S in the interlayer insulating film 17 in which an extraction electrode is to be formed from the gate electrode T1.

511図(f)に、そのような引き出し電極形成のため
の開孔部17a、17b、17c を設けた後の様子を
示す。
FIG. 511(f) shows the state after openings 17a, 17b, and 17c for forming such extraction electrodes are provided.

引き続き第1図(g)に示すように、3度目のフォトニ
ップフグ法により、例えば、アルミから成る引自出し電
極18m、18b、18c を形成する。
Subsequently, as shown in FIG. 1(g), the third photonip puffer method is used to form pull-out electrodes 18m, 18b, and 18c made of, for example, aluminum.

ここで、前述した設計上の余裕!fK関して述べると、
第1図(blで示す、第1のフォトマスク16mに対し
、第1図(e)に示す第2の7オトマスク16b乃至1
6eは、設計上の余裕&−を含めて作製することが必要
とされる。
Here, the design margin mentioned above! Regarding fK,
For the first photomask 16m shown in FIG. 1 (bl), the second 7 photomasks 16b to 1 shown in FIG.
6e is required to be manufactured with a design margin &-.

すなわち、第1図(flで示した前記引き出し電極形成
用開孔部17a、17b、17cは、設計上の余裕度σ
を考慮して1例えば、開孔部17mと、ゲート電極14
0関隔りとすれば、フォトマスク16b乃至t6e(M
1図(8)参照)は。
That is, the extraction electrode forming openings 17a, 17b, and 17c shown in FIG. 1 (fl) have a design margin σ.
1. For example, the opening 17m and the gate electrode 14
If the distance is 0, the photomasks 16b to t6e (M
(See Figure 1 (8)).

L十〇  ・ で作製されていなければならない。L10 ・ It must be made with.

σが例えは1μm程度とすると、Lが5μm程度の場合
For example, if σ is about 1 μm, then L is about 5 μm.

L〉σ で、σの1度#′iあまり問題にならないが。L〉σ So, 1 degree #'i of σ doesn't really matter.

L−1乃至2μmになると、σと同じ大きさになり、さ
らKsL<1.amになると、装置Fi、設計の余裕l
[σによって制限されそれ以上の小型化は。
When it becomes L-1 to 2 μm, it becomes the same size as σ, and KsL<1. When it comes to am, equipment Fi, design margin l
[Further miniaturization is limited by σ.

無意味になってくる。It becomes meaningless.

本発明の目的Fi、そのような設計上の余裕1ft−従
来よりも、はるかに少なくすることが可能な半導体装置
の製造方法を提供することKある。
An object of the present invention is to provide a method of manufacturing a semiconductor device that allows the design margin of 1 ft to be much smaller than that of the conventional method.

本発明の特徴は、−導電型単結晶シリコ/基板上に、素
子形成領域及び素子間分離領域を形成する工程と、引!
!tゲート電極を所定の領域に形成する際に同時に一導
電型単結晶シリコ/基板からの引き出し電#Aを形成す
る領域九も、このゲート電極と同じ物質を形成する工程
と、このゲート電極領域及び−導電型単結晶シリコン基
板からの引き出し電極領域を除く領域に、絶縁膜を形成
する工程と、前記引き出し電極形成部分の前記ゲート電
極と同じ物質を選択的に除去する工程とを含む半導体装
置の製造方法にある。
The present invention is characterized by - a step of forming an element formation region and an element isolation region on a conductivity type single crystal silicon/substrate;
! When the t-gate electrode is formed in a predetermined region, region 9, where the lead-out current #A from the single conductivity type single crystal silicon/substrate is formed at the same time, is also formed by the process of forming the same material as this gate electrode, and this gate electrode region. and - a semiconductor device comprising the steps of: forming an insulating film in a region other than an extraction electrode region from a conductive single crystal silicon substrate; and selectively removing the same material as the gate electrode in the extraction electrode forming portion. It is in the manufacturing method.

本発明によれば1例えば第1図(b)及び(e)で示し
たフォトマスク16a、16b乃至161のような。
According to the invention, photomasks 16a, 16b to 161, for example, shown in FIGS. 1(b) and 1(e).

設計上の余裕度を必要とする部分を一つのフォトマスク
上に形成するので、それによって、半導体装置をより一
層小型化して製造することが出来る。
Since portions that require design margins are formed on one photomask, it is possible to manufacture semiconductor devices with further miniaturization.

以下1本発明の一実施例について図面を用いて説明すん
第2図(1)乃至0+に本発明の実施例に基づいた半導
体装置の製造方法をその工糧順に示す。
An embodiment of the present invention will be described below with reference to the drawings. Figs. 2 (1) to 0+ show a method for manufacturing a semiconductor device based on the embodiment of the present invention in order of process.

まず、第2図(alに示すように1−導電型単結晶シリ
コ/基板21の一主表面上に素子形成領域23及び素子
間分離用の例えに酸化7リコ/より成る絶縁膜22を形
成した後1例えば多結晶シリコ/より成る導電性を有す
る物質24を全面に被着する。そのL第2図(blに示
すように1例えば、窒化シリコ/のようなりリコ/の熱
酸化に際して難酸化性を有する被膜(以下、難酸化性膜
と略す)28を前記多結晶シリコ/被膜24の上に形成
する。
First, as shown in FIG. 2 (al), on one main surface of a 1-conductivity type single crystal silicon/substrate 21, an element formation region 23 and an insulating film 22 made of 7-lico oxide for isolation between elements are formed. After that, a conductive material 24 made of, for example, polycrystalline silicon is deposited on the entire surface.As shown in FIG. An oxidizing film (hereinafter abbreviated as oxidation-resistant film) 28 is formed on the polycrystalline silicon/film 24.

その後第2図(C)に示すように、フォトマスク26a
Thereafter, as shown in FIG. 2(C), the photomask 26a
.

26b、26cを用いて難酸化性膜28の上の、所定の
場所にフォトレジスト25m、25b、25c 1に形
成する。友だし、この場合所定の場所とは、従来からの
方法によるゲート電極形成領域25bと。
Photoresists 25m, 25b, and 25c 1 are formed at predetermined locations on the oxidation-resistant film 28 using photoresists 26b and 26c. In this case, the predetermined location is the gate electrode formation region 25b formed using a conventional method.

前記−導電型単結晶シリコ/基板21からの引き出し電
極を形成する領域のことを意味している。
This refers to a region where an extraction electrode from the - conductivity type single crystal silicon/substrate 21 is formed.

その後、第2図(dlOように@紀7オトマスク25m
After that, Figure 2 (dlO @ Ki 7 Otomask 25m
.

25b、25c をマスクとして難酸化性膜28.多結
晶シリコ/被膜24を相つぃで、エツチ7グして、−導
電型単結晶シリコン基板21からの引き出し電極形成部
分24m、 24C,28a、 28C及び、ゲート電
極24b、28b を除く領域を除去する。
25b and 25c as masks, the oxidation-resistant film 28. The polycrystalline silicon/coating 24 is combined and etched to remove the area excluding the extraction electrode forming portions 24m, 24C, 28a, 28C and the gate electrodes 24b, 28b from the conductivity type single crystal silicon substrate 21. Remove.

その後第2図(e)に示すように前記引き出し電極形成
部分24a、 24c、 28m、 28c 及ヒ’l
 −)を極24b、28biマスクにして、公知0不純
物熱拡散法かあるいは不純物イオン注入法によって、−
導1型単結晶ンリコ/基板内に、不純物拡散層21鳳’
、21b、21C,21d  t−形成する。
After that, as shown in FIG. 2(e), the extraction electrode forming portions 24a, 24c, 28m, 28c and
-) using poles 24b and 28bi masks, - by a known zero impurity thermal diffusion method or an impurity ion implantation method.
Impurity diffusion layer 21' in the conductive type 1 single crystal substrate/substrate
, 21b, 21C, 21d t-form.

次いで、第2図げ)に示すように公知の熱酸化法によっ
て、IItl記ゲー上ゲート電極24b側面及び、前記
引き出し電極形成部分241.24Cの多結晶シリコ/
の側面領域を酸化7リコンで被う。
Next, as shown in FIG.
Cover the side areas of the 7-licon oxide.

その後第2図(g)に示すように、フォトマスク26d
を用いて、ゲート電極24bの領域にのみ被うように、
あるいは逆に、前記引き出し電極形成領域をのみ被わな
いように、フォトレジスト25d ’j−形成する。
After that, as shown in FIG. 2(g), the photomask 26d
to cover only the region of the gate electrode 24b.
Or, conversely, the photoresist 25d'j- is formed so as not to cover only the extraction electrode formation region.

この場合のフォトマスク26dは、ゲート電極24bを
大雑把に被っていればよく、#述した設計上の余裕度は
あまり考慮しなくてもよい。
In this case, the photomask 26d only needs to roughly cover the gate electrode 24b, and there is no need to take the above-mentioned design margin into consideration.

次いで、第2図(hlOように、7*トレジスト25d
で被われていない、すなわち、引き出し電極形成部分の
難酸化性膜及び、多結晶シリコン膜を選択的に除去して
、−導電型単結晶シリコン基板21からの引き出し電極
形成用の開孔部27a、27bを形成する。次いで1紀
開孔部27m、27bからシリコ/基板21内へ、公知
の不純物熱拡散法などにより、不純物拡散を行ない、不
純物拡散層2 s e 及U 21 f t−形成L7
’E* (第2図(す)全面を被って眉間絶縁@29f
;形成する。
Then, as shown in FIG.
By selectively removing the oxidation-resistant film and the polycrystalline silicon film that are not covered with the lead-out electrode formation portion, the opening 27a for the lead-out electrode formation is formed from the conductivity type single crystal silicon substrate 21. , 27b. Next, impurities are diffused into the silico/substrate 21 from the primary openings 27m and 27b by a known impurity thermal diffusion method to form impurity diffusion layers 2s and 21f t-L7.
'E* (Fig. 2 (S) Covers the entire surface and insulates between the eyebrows @29f
;Form.

最vktc h公知のフォトエッチフグ技術を用いて。Using the most well-known photo-etch blowfish technique.

第2図(最)で形成した層関絶11JII29の所定の
場所に、引き出し電極形成用の開孔部を設け、その後、
例えば、アル1=ウムなどから成る引き出し電極30m
、30b、30Cを形成する。
An opening for forming an extraction electrode is provided at a predetermined location of the layer separation 11JII29 formed in FIG. 2 (most), and then,
For example, 30 m of extraction electrodes made of Al1=Um, etc.
, 30b, and 30C.

このように1本実施例では従来の方法の第1図(b)で
示したゲート電極形成用のフォトマスク16鳳と、第1
図(・)で示した繭記−導電型単結晶シリコ/基板11
からの引き出し電極形成用のフォトマスク16bt−一
度のフォトマスク26m 、 26b。
In this way, in this embodiment, a photomask 16 for forming a gate electrode as shown in FIG.
Cocoon story shown in figure (・) - conductivity type single crystal silicon/substrate 11
Photomask 16bt for forming extraction electrodes from - one-time photomask 26m, 26b.

26Cで形成しようとするもので、そのため第1図(−
のフォトマスク161と第1図(elの7オトマスク1
6bのあいだで必要とされる設計上の余裕度が全く必要
とされない。
26C, and therefore Fig. 1 (-
photomask 161 and photomask 1 of FIG.
6b is not required at all.

本発明に基づいて、MOa型半導体装置を製造する場合
、第2図(C)で示したように、ゲート電極と、シリコ
ン基板からの引齢出し電極形成用の開孔部を、一度のフ
ォトマスクを使って同時に形成することが出来るので、
従来必要とされた、そこでの設計の余裕度はほとんど必
要がなく、装置の小型化に最適の設計をおこなうことが
可能となる。
When manufacturing an MOa type semiconductor device based on the present invention, as shown in FIG. Since it can be formed simultaneously using a mask,
There is almost no need for the design margin that was conventionally required, and it becomes possible to perform an optimal design for downsizing the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(1)乃至(g)は、MO8JIJ半導体装置の
従来の製造方法を%また。第2図+11乃至U>は1本
発明に基づ〈実施例を、各々製造工程順に示したもので
ある。 なお図において、11.21・・・・・・−導電型単結
晶シリコ/基板、12.22・・・・・・素子間分離用
絶縁膜、13.23・・・・・・素子形成領域、14.
24・・・・・・多結晶シリコン被膜、15m、15b
、15C,15d、15e、25a、25b、25c、
25d ・−・−・フォトレジスト、  16a、16
b、16C,16d、166.261 。 26b、26c、26d・・・・・・フォトマスク、1
7.29・・・・・・層間絶縁膜、27a、27b、1
71,17b、17C・・−・・・引き出し電極用開孔
部% 181s18b、18c 。 301.30b、30c・・・・・−’51@出し電極
、である。
FIGS. 1(1) to 1(g) show a conventional manufacturing method for MO8JIJ semiconductor devices. FIG. 2+11 to U> show examples based on the present invention in the order of manufacturing steps. In the figure, 11.21...- conductive single crystal silicon/substrate, 12.22... insulating film for isolation between elements, 13.23... element formation region , 14.
24... Polycrystalline silicon film, 15m, 15b
, 15C, 15d, 15e, 25a, 25b, 25c,
25d --- Photoresist, 16a, 16
b, 16C, 16d, 166.261. 26b, 26c, 26d...Photomask, 1
7.29...Interlayer insulating film, 27a, 27b, 1
71, 17b, 17C...Opening portion for extraction electrode % 181s18b, 18c. 301.30b, 30c...-'51@output electrode.

Claims (1)

【特許請求の範囲】[Claims] 半導体装置の製造方法において、基板上のゲート電極形
成領域および該基板からの引き出し電極形成領域に同一
構造の被膜を同時に設ける工程と、該引き出し電極形成
領域の被膜を選択的に除去する工程とを含むことを特徴
とする半導体装置の製造方法。
A method for manufacturing a semiconductor device includes a step of simultaneously providing a film having the same structure in a gate electrode formation region on a substrate and an extraction electrode formation region from the substrate, and a step of selectively removing the film in the extraction electrode formation region. A method of manufacturing a semiconductor device, comprising:
JP8433482A 1982-05-19 1982-05-19 Manufacture of semiconductor device Pending JPS58201360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8433482A JPS58201360A (en) 1982-05-19 1982-05-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8433482A JPS58201360A (en) 1982-05-19 1982-05-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS58201360A true JPS58201360A (en) 1983-11-24

Family

ID=13827604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8433482A Pending JPS58201360A (en) 1982-05-19 1982-05-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58201360A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198379A (en) * 1990-04-27 1993-03-30 Sharp Kabushiki Kaisha Method of making a MOS thin film transistor with self-aligned asymmetrical structure
US9592052B2 (en) 2005-08-31 2017-03-14 Ethicon Endo-Surgery, Llc Stapling assembly for forming different formed staple heights
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198379A (en) * 1990-04-27 1993-03-30 Sharp Kabushiki Kaisha Method of making a MOS thin film transistor with self-aligned asymmetrical structure
US9592052B2 (en) 2005-08-31 2017-03-14 Ethicon Endo-Surgery, Llc Stapling assembly for forming different formed staple heights
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems

Similar Documents

Publication Publication Date Title
JPS58201360A (en) Manufacture of semiconductor device
US20060202273A1 (en) Method of manufacturing semiconductor device
JPS61214446A (en) Manufacture of semiconductor device
JP2006294919A (en) Semiconductor device and manufacturing method thereof
JP2007220766A (en) Semiconductor device and its manufacturing method
JPH04260364A (en) Manufacture of gate insulating film of semiconductor device
JPH10284479A (en) Manufacture of semiconductor integrated circuit
JPH04137730A (en) Manufacture of semiconductor device
JPH05343670A (en) Offset structured mos transistor and manufacturing method thereof
KR20010093668A (en) Method of forming shallow trench isolation
JPH0917779A (en) Formation method of oxide film for element isolation of semiconductor device
TWI302724B (en)
TWI283884B (en) Manufacturing method of the source/drain components
JPH065562A (en) Formation of semiconductor thin film
JPS583244A (en) Manufacture of semiconductor device
TW483114B (en) Local formation method of metal silicide
JP2007027406A (en) Manufacturing method of semiconductor device
JP2001196463A (en) Method for manufacturing semiconductor device
JPS58165370A (en) Manufacture of semiconductor device
JPS5861671A (en) Preparation of semiconductor device
JPH05259446A (en) Manufacture of semiconductor device
JPS594121A (en) Semiconductor device
JPH04107819A (en) Manufacture of semiconductor device
JPS6269665A (en) Manufacture of complementary field-effect transistor
JPH06181310A (en) Manufacture of semiconductor device