JPS58201088A - Bimetal - Google Patents

Bimetal

Info

Publication number
JPS58201088A
JPS58201088A JP8537582A JP8537582A JPS58201088A JP S58201088 A JPS58201088 A JP S58201088A JP 8537582 A JP8537582 A JP 8537582A JP 8537582 A JP8537582 A JP 8537582A JP S58201088 A JPS58201088 A JP S58201088A
Authority
JP
Japan
Prior art keywords
alloy
bimetal
less
expansion
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8537582A
Other languages
Japanese (ja)
Other versions
JPH0419517B2 (en
Inventor
港野 久衛
杉浦 重道
彰夫 橋本
小池 正夫
泰裕 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Proterial Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Sumitomo Special Metals Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8537582A priority Critical patent/JPS58201088A/en
Publication of JPS58201088A publication Critical patent/JPS58201088A/en
Publication of JPH0419517B2 publication Critical patent/JPH0419517B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H2037/526Materials for bimetals

Landscapes

  • Details Of Measuring And Other Instruments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は冷間加工による加工誘起マルテンサイト変態に
よる熱膨張係数の低下を防止した高膨張側合金を有する
低温用バイメタルに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a low-temperature bimetal having a high-expansion alloy that prevents a decrease in the coefficient of thermal expansion due to deformation-induced martensitic transformation caused by cold working.

一般にバイメタ/L’は熱膨張係数の異なる少くとも2
種以上の金属或いは合金を適当な方法で接着貼合せて、
板または条に圧延し、それらの熱膨張係数の差に応じて
温度変化によりわん曲する性質を有するもので、熱エネ
ルギーを機械的運動に変換することができる簡単且つ信
頼度の高い材料として広く用いられ、前記バイメタルを
構成する高膨張側合金としては高熱膨張係数を有するこ
とが要求される。
Generally, bimetal/L' has at least two different coefficients of thermal expansion.
By bonding more than one metal or alloy using an appropriate method,
It is a material that is rolled into a plate or strip and has the property of bending due to temperature changes according to the difference in their thermal expansion coefficients, and is widely used as a simple and reliable material that can convert thermal energy into mechanical motion. The high expansion alloy used to form the bimetal is required to have a high coefficient of thermal expansion.

バイメタルは電気部品として用いられる場合が多いため
、バイメタルとしての所要の体積抵抗率は、低膨張側合
金および中間に挿入てれる中間層金属、合金とのかねあ
いで、高膨張側合金の体積抵抗率も調整され、複合てれ
たものとして得られる。一方バイメタ/I/は、機構部
品材料としても種々の形状に打抜き加工、曲げ加工、か
しめ加工等されるため、加工性と共に強度や、ばね性が
必要とされ、また部品として組込まれて、種々の環境中
で使用されるため、耐食性も要求される。
Since bimetals are often used as electrical components, the required volume resistivity of the bimetal is determined by the volume resistivity of the high expansion alloy due to the balance between the low expansion alloy and the intermediate layer metal or alloy inserted in between. It is also adjusted and obtained as a composite. On the other hand, bimetal /I/ can be punched, bent, caulked, etc. into various shapes as a material for mechanical parts, so it requires strength and springiness as well as workability. Corrosion resistance is also required since it is used in such environments.

バイメタルにおいては一般に所要の機械的性質は冷間圧
延時における加工硬化によって得られるが、従来のバイ
メタル用高膨張側合金として使用されるFe−Nj−1
5−80wt%−Crt−15wt%系合金は冷間加工
により加工誘起マルテンサイト変態をおこし、そのため
熱膨張係数は焼鈍状態で得られる、すなわち冷間圧延率
θ%で得られる熱膨張係数よりも低下する。そのため、
従来の高膨張側合金を使用したバイメタルは、バイメタ
ルの主たるl特性である温度変化に対する変位量即ちわ
ん曲常数の低下を招来する欠点があった。
In bimetals, the required mechanical properties are generally obtained by work hardening during cold rolling, but Fe-Nj-1, which is conventionally used as a high expansion alloy for bimetals,
The 5-80wt%-Crt-15wt% alloy undergoes deformation-induced martensitic transformation during cold working, so the thermal expansion coefficient is higher than that obtained in the annealed state, that is, the thermal expansion coefficient obtained at a cold rolling reduction of θ%. descend. Therefore,
Conventional bimetals using high-expansion alloys have had the drawback of causing a decrease in the amount of displacement with respect to temperature changes, that is, the bending constant, which is the main characteristic of bimetals.

発明者は従来の欠点を除くため、高膨張側合金のFe−
15〜80wt%N:l−1−15wt%Cr系合金に
ついて、その合金成分と冷間圧延後の加工誘起マルテン
サイト量及び熱膨張係数の関係について種々研究した結
果、従来の高膨張側合金のFe −15〜B□wt%N
i−1−15wt%cr系合金は合金成分間の関係式の
値が特定の値以下の場合、冷間圧延による加工誘起マル
テンサイト変態が防止でき、熱膨張係数の低下及びわん
曲常数の低下を防止できることを知見した。
In order to eliminate the drawbacks of the conventional method, the inventors developed Fe-
As a result of various studies on the relationship between the alloy components, the amount of deformation-induced martensite after cold rolling, and the coefficient of thermal expansion for 15-80wt%N:l-1-15wt%Cr alloys, we found that the conventional high-expansion side alloys Fe -15~B□wt%N
i-1-15 wt% Cr alloy can prevent deformation-induced martensitic transformation due to cold rolling when the value of the relational expression between alloy components is below a certain value, resulting in a decrease in the thermal expansion coefficient and curvature constant. We found that this can be prevented.

すなわち本発明は、C0,2wt%以下、 Sj−1,
5wt%以下、 Mn 2.Owt%以下、 Nj−1
5−80wt%。
That is, in the present invention, C0.2wt% or less, Sj-1,
5wt% or less, Mn 2. Owt% or less, Nj-1
5-80wt%.

crt−i5wt%、NO,06wt%以下を含有し、
或いは更にMO10wt%以下含有し、残部は笑質的に
Feからなる高膨張側合金において、下記(1)または
(2)式のX値が25以下を満足する如く、C9Si 
、 Mn、 Or、 Nj−、N hるいはMo量を調
整した高膨張側合金と例えば85〜B7wt%Ni含有
のアン/<、−r合金等の低膨張側合金を直接接合する
か、或いは中間層合金を介在でせて接合してなるバイメ
タルでメク、冷間圧延による加工誘起マルテンサイト変
態を防止し、熱膨張係数の低下と共にわん曲常数の低下
を防止することを特徴とするものである。
Contains 5 wt% of crt-i, 06 wt% or less of NO,
Alternatively, in a high-expansion alloy containing 10 wt% or less of MO, and the balance essentially consisting of Fe, C9Si may be
, Mn, Or, Nj-, Nh, or a high-expansion alloy in which the amount of Mo is adjusted and a low-expansion alloy such as an/<, -r alloy containing 85 to 7 wt% Ni are directly joined, or It is a bimetal formed by joining with an intermediate layer alloy interposed between the metal and the metal, and is characterized by preventing deformation-induced martensitic transformation caused by cold rolling, and preventing a decrease in the coefficient of thermal expansion and a decrease in the curvature constant. be.

Q)  Moを含有しない場合 X−887,9−(619゜1×C%)−(12,8X
Sj−%)−(10,9XMn%)−(12,7XNi
%)−(18,4xCr%)−(619,IXN%)・
・・・・(1)(2J  Moを含有する場合 X−887,9−(619,IXC%)−(12,8X
Si%)−(10,9x罹%)−(12,7XN:1−
%)−(18,4xCr%)−(24,8XMO%)−
(619,IXN%)・・・・・(2) 本発明において、低膨張側合金は例えば公知の35〜B
7wt%Nl−Fe系のアンバー合金でもよいが、前記
アンバー合金のMn量を下げ、T1を0,3wt%以下
含有させることにより、バイメタルの冷間仕上圧延後の
時効処理による低膨張側合金の熱膨張係数の増大を防止
する効果がアク、好ましい。
Q) When Mo is not contained
Sj-%)-(10,9XMn%)-(12,7XNi
%)-(18,4xCr%)-(619,IXN%)・
...(1) (2J When containing Mo
Si%) - (10,9x morbidity) - (12,7XN:1-
%)-(18,4xCr%)-(24,8xMO%)-
(619, IXN%) (2) In the present invention, the low expansion alloy is, for example, the known 35-B
A 7 wt% Nl-Fe based amber alloy may be used, but by lowering the Mn content of the amber alloy and containing T1 at 0.3 wt% or less, it is possible to improve the low expansion side alloy by aging treatment after cold finish rolling of the bimetal. The effect of preventing an increase in the coefficient of thermal expansion is desirable.

また本発明において中間層合金を用いる場合はバイメタ
ルの体積抵抗率を下げるためで6 D 、CulCu合
金、N1及びN1合金等が使用される。
Further, when an intermediate layer alloy is used in the present invention, 6 D , CulCu alloy, N1, N1 alloy, etc. are used in order to lower the volume resistivity of the bimetal.

本発明における高膨張側合金の成分を限定した理由を説
明する。
The reason why the components of the high expansion alloy in the present invention are limited will be explained.

Ni15−80wt%、Crl−15wt%U/<イメ
タルの高膨張側合金としての高熱膨張係数と共に、耐食
性及び体積抵抗率を調節するために必要でめり、前記範
囲外では高い熱膨張係数と共に必要な体積抵抗率を得る
ことが困難となる。特にN1が30wt%をCrが11
5wt%を越えると、体積抵抗率は90μΩ−1以上に
なると共に、熱膨張係数は焼鈍のま−の冷間圧延する′
以前の状態で、16.5刈〇−外以下となり、バイメタ
ルとしての汎用性がなくなる。
Ni15-80wt%, Crl-15wt%U/<Imetal is necessary with a high coefficient of thermal expansion as an alloy on the high expansion side, and is necessary to adjust corrosion resistance and volume resistivity, and outside the above range, a high coefficient of thermal expansion is necessary. It becomes difficult to obtain a suitable volume resistivity. In particular, N1 is 30 wt% and Cr is 11
When it exceeds 5 wt%, the volume resistivity becomes 90 μΩ-1 or more, and the thermal expansion coefficient becomes higher than that of the cold rolled annealed steel.
In the previous state, the value was less than 16.5, and the versatility as a bimetal was lost.

Crは1 wt%より低いと耐食性が劣下し、またNi
、15wt%より下では耐食性が劣下すると共に前記の
如く、高熱膨張係数及び必要な体積抵抗率との組合せを
得ることが困難となる。なお、本発明における高膨張側
合金はOr 1〜5wt%、N115〜30 WtX 
K L テ2 X Ni”%+3 X Cr ”X≦6
7を満足するとき、合金成分の調整効果が極めて大とな
る。
If Cr is less than 1 wt%, corrosion resistance deteriorates, and Ni
, below 15 wt%, corrosion resistance deteriorates and, as mentioned above, it becomes difficult to obtain the combination of high thermal expansion coefficient and required volume resistivity. In addition, the high expansion side alloy in the present invention is Or 1 to 5 wt%, N115 to 30 WtX
K L Te2 X Ni”%+3 X Cr”X≦6
When condition 7 is satisfied, the effect of adjusting the alloy components becomes extremely large.

Cは加工誘起マルテンサイト変態の阻止に有効であるが
、0.2wt%を越えると、冷間圧延後の硬度がHMV
で400以上となり、部品への加工が困難になると共に
、炭化物を形成して、腐食孔の発生原因となり、耐食性
が劣下する。
C is effective in preventing deformation-induced martensitic transformation, but when it exceeds 0.2 wt%, the hardness after cold rolling decreases to HMV.
400 or more, which makes processing into parts difficult, and also forms carbides, which cause corrosion holes to occur and deteriorate corrosion resistance.

NもCと同様、加工誘起マルテンサイト変態の発生阻止
には有効であるが、0.06wt%より多いと窒化物の
形成量が多くなり、腐食孔の発生原因となり、耐食性が
悪くなる。
Like C, N is also effective in preventing the occurrence of deformation-induced martensitic transformation, but if it is more than 0.06 wt%, the amount of nitrides formed increases, causing corrosion holes to occur, and corrosion resistance worsens.

Slも加工誘起マルテンサイト変態かおこり難くなるが
、1.5 WtXを越えると急激に伸びが減少し、種々
の形状への曲げ加工等が困難になる。
Sl also becomes difficult to undergo deformation-induced martensitic transformation, but if it exceeds 1.5 WtX, the elongation decreases rapidly, making it difficult to bend into various shapes.

MnもC,N、 Siと同様に加工誘起マルテンサイF
変態が発生し難くなるが、2.□ WtXより多くなる
と体積抵抗率が高くなり、所要の体積抵抗率が得られな
い。
Like C, N, and Si, Mn also undergoes deformation-induced martensi F.
Metamorphosis is less likely to occur, but 2. □ If the amount exceeds WtX, the volume resistivity becomes high and the required volume resistivity cannot be obtained.

また、本発明の高膨張側合金において、更にMOを含有
すると、Mo U Sl−、Mn、 Ni、 Orより
加工誘起マルテンサイト変態防止の効果が大きく、且つ
耐食性改善に有効であるが、10wt%を越えると体積
抵抗率が高くなり、所要の体積抵抗率か得られない。
Furthermore, when the high expansion alloy of the present invention further contains MO, it has a greater effect of preventing deformation-induced martensitic transformation than MoU Sl-, Mn, Ni, and Or, and is effective in improving corrosion resistance, but at 10 wt% If it exceeds this, the volume resistivity becomes high and the required volume resistivity cannot be obtained.

また関係式(1)または(2)のXの値を25以下とし
たのは、第1図に明かなようにXの値が25を越えると
冷間圧延による熱膨張係数の低下率Yが20%を越えて
急激に悪化し、またマルテンサイト量が急激に増加し不
安定な状態となるからでるる。
In addition, the reason why the value of This is caused by a sudden deterioration when exceeding 20%, and a sudden increase in the amount of martensite, resulting in an unstable state.

以下本発明を突施例により、説明する。The present invention will be explained below by way of specific examples.

(笑施例1) 第1表に高膨張側合金として、合金番号1〜20で示す
合金を高周波溶解炉にて溶製後、得られたインゴットを
鍛造、熱延を経て、7.5ff厚とした後、冷間圧延に
て板厚1.6flの板とし、これを市雰囲気中で750
℃×IHrの焼なまし焼鈍を施した材料より素材を採取
し、該素材を板厚0.724で55%の冷間圧延を行っ
た。
(Example 1) The alloys shown in Table 1 with alloy numbers 1 to 20 as high-expansion alloys were melted in a high-frequency melting furnace, and the resulting ingots were forged and hot-rolled to a thickness of 7.5 ff. After that, it was cold rolled into a plate with a thickness of 1.6 fl, and this was rolled at 750 ml in a city atmosphere.
A material was sampled from a material that had been annealed at °C x IHr, and cold rolled at 55% to a plate thickness of 0.724.

焼鈍の侭の素材と冷間圧延した板より夫々板厚×巾1.
6m11 X長さ50111の2種の角棒と、板厚X角
IQn+の2種の板を採取し、前記角棒試料にて30℃
〜300℃の温度範囲で熱膨張係数を測定し、また前記
板試料にてX線回析を行ってマルテンサイト変態量を調
査した。その結果を第1表に表す。
The plate thickness x width 1.
Two types of square rods of 6m11 x length of 50111 and two types of plates of plate thickness x angle IQn+ were collected, and the square rod samples were heated at 30°C.
The coefficient of thermal expansion was measured in a temperature range of ~300°C, and the amount of martensitic transformation was investigated by performing X-ray diffraction on the plate sample. The results are shown in Table 1.

第1表において、合金番号1〜17は本発明における合
金、合金18.19.20 は比較合金、Xは(1)ま
たは(2)式から求めたX値を表し、Yは熱膨を表す。
In Table 1, alloy numbers 1 to 17 are alloys according to the present invention, alloys 18, 19, and 20 are comparative alloys, X represents the X value obtained from equation (1) or (2), and Y represents thermal expansion. .

第1図は第1表に表した合金番号2〜20の試料の前記
(1)マたは(2)式から求められたXと冷間圧延によ
る熱膨張係数の低下率(イ)との関係を表したものでお
る。
Figure 1 shows the relationship between X obtained from equation (1) or (2) above and the rate of decrease in thermal expansion coefficient (a) due to cold rolling for the samples of alloy numbers 2 to 20 shown in Table 1. It expresses the relationship.

第1図より、本発明における高膨張側合金は冷間圧延に
よる熱膨張係数の低下率(Y)は少なく、従つてバイメ
タルに使用した場合、わ・ん曲常数の低下を防止できる
ことが明らかである。また、X線回折結果より前記低下
率(1)の値が20%以上になると、マルテンサイト量
が急激に増加し、不安定な状態になることを確認した。
From FIG. 1, it is clear that the high expansion alloy of the present invention has a small reduction rate (Y) in the coefficient of thermal expansion due to cold rolling, and therefore, when used in bimetals, it is possible to prevent a reduction in the curvature constant. be. Moreover, it was confirmed from the X-ray diffraction results that when the value of the reduction rate (1) exceeds 20%, the amount of martensite increases rapidly, resulting in an unstable state.

(実施例2) 室温での体積抵抗率が78μΩ−αの近傍の低温用バイ
メタルを製造するために、実施例1の第1表の合金番号
7.15.20を夫々高膨張側合金とし、低膨張側合金
としてアンバー合金(36wt%N1−Fe)を用い、
前記高膨張側合金の素材は実施例1と同じ条件の板厚1
.6flの焼なまし焼鈍材とし、低膨張側合金について
も実施例1と同じ工程にて板厚1.6龍の焼なまし材を
用いて冷間圧延機にて冷間圧延後、Hj雰囲気中で75
0℃xIHrの焼なまし焼鈍を行い、その後25%、3
5%。
(Example 2) In order to manufacture a low-temperature bimetal with a volume resistivity in the vicinity of 78 μΩ-α at room temperature, alloy numbers 7, 15, and 20 in Table 1 of Example 1 were used as high expansion alloys, respectively. Using an amber alloy (36wt%N1-Fe) as a low expansion alloy,
The material of the high-expansion side alloy has a plate thickness of 1 under the same conditions as Example 1.
.. The annealed material of 6fl was used, and the low expansion alloy was also cold-rolled in a cold rolling mill using the same process as in Example 1, using the annealed material with a plate thickness of 1.6 mm, and then subjected to Hj atmosphere. 75 inside
Annealing was performed at 0°C x IHr, and then 25%, 3
5%.

45%、65%の冷間圧延を行い、各素材より板厚×板
1]10+ntX長で140nの試料を採取して、わん
曲常数の測定を行った。その結果を第2表、第2図に表
す。
Cold rolling was performed at 45% and 65%, and a 140n sample (plate thickness×plate 1]10+nt×length was taken from each material and the curvature constant was measured. The results are shown in Table 2 and Figure 2.

なお、第2表、第2図に表したわん曲常数の測定法は作
動長りが1000になるよう、試料の一端を固定して、
低粘度のシリコン油を収容した油槽内で、油槽内の温度
差が1℃以内になるよう攪拌しながら、15″Cより1
00’lEまで2時間を費やして昇温し、バイメタルの
他端である自由端の変位量を測定すると共に油温を測定
し、前記変位量と油温を方眼紙にプロットし、下記(3
)式にょ9わん曲常数(イ)を求めた。
The method for measuring the tortuosity constant shown in Table 2 and Figure 2 is to fix one end of the sample so that the working length is 1000,
In an oil tank containing low viscosity silicone oil, heat from 15"C to 1C while stirring so that the temperature difference in the oil tank is within 1C.
The temperature was raised to 00'lE over 2 hours, the displacement of the free end (the other end of the bimetal) was measured, and the oil temperature was also measured.The displacement and oil temperature were plotted on graph paper, and the following (3)
) The curvature constant (a) was calculated using the formula.

但し K:わん曲常数 Dλ:前記方法により方眼紙にプロワ1−シた直線上の
温度Tコ(、u)における変位]ノ/ 量(剪り D/=前記方法により方眼紙に)゛ロットした直線上の
温度T/(℃)における変位量(−) t:試験片の板厚(闘) L:作動長(龍) 第   2   表 第   3   表 なお、第2表、第2図において、合金番号7.15のバ
イメタ)vTf′i本発明バイメタル、合金番号20の
バイメタルは比較例のバイメタルである。
However, K: Curvature constant Dλ: Displacement at temperature T (, u) on the straight line applied to graph paper by the above method] / amount (pruning D / = graph paper by the above method)゛lot Displacement amount (-) at temperature T/(℃) on the straight line t: Thickness of test piece (T) L: Working length (Dragon) Table 2 Table 3 In addition, in Table 2 and Figure 2, Bimetal of alloy number 7.15)vTf'i Bimetal of the present invention and bimetal of alloy number 20 are bimetals of comparative examples.

(実施例3) 室温での体積抵抗率が80μΩ−α近傍の主として室温
付近で用いられる低温用バイメタルを得るために、実施
例1の第1表の合金番号2.18.19を夫々高膨張側
合金とし、低膨張側合金としてアンバー合金(36wt
%N1−Fe)を用い、前記高膨張側合金の素材は実施
例1と同じ条件の板厚1.6nの焼なまし焼鈍材とし、
低膨張側合金についても実施例1と同じ工程にて板厚1
.6=の焼なまし材を用いて、冷間圧延機にて冷間圧接
後、Ha雰囲気中で75(lXIHrの焼なまし焼鈍を
行い、その後圧延率の異なる0、4fiの同一板厚の試
験片を得るために、第3表の如き、中間圧延、焼なまし
焼鈍及び仕上冷間圧延を行った。
(Example 3) In order to obtain a low-temperature bimetal whose volume resistivity at room temperature is around 80 μΩ-α and which is mainly used near room temperature, alloy numbers 2, 18, and 19 in Table 1 of Example 1 were highly expanded. Amber alloy (36 wt.
%N1-Fe), the material of the high expansion side alloy was an annealed material with a plate thickness of 1.6n under the same conditions as in Example 1,
For the low expansion alloy, the plate thickness was reduced to 1 in the same process as in Example 1.
.. Using annealed material of 6=, after cold welding in a cold rolling mill, annealing of 75 (1 In order to obtain test pieces, intermediate rolling, annealing and final cold rolling were performed as shown in Table 3.

第8表の如く仕上冷間圧延を行ったQ、 4 前肩板厚
の板よ)板厚0.4flX板巾5fl×長さ9Qigの
試験片を採取し、わん曲常数の測定を実施例2と同第 
  4   表 に) 第  1 一方法で行った。但し試験片の作動長(ト)は75訂と
なるように調節した。
As shown in Table 8, a test piece with a thickness of 0.4 fl x a width of 5 fl x a length of 9 Qig was taken, and the curvature constant was measured. Same as 2
(Table 4) 1st One method was used. However, the working length (g) of the test piece was adjusted to 75th edition.

そのわん曲常数の結果を第4表、第8図に表す。The results of the curve constant are shown in Table 4 and Figure 8.

第4表、第3図において、合金番号2.13のバイメタ
ルは本発明バイメタル、合金番号19のバイメタ)vは
比較例のバイメタlvアある。
In Table 4 and FIG. 3, the bimetal with alloy number 2.13 is the bimetal of the present invention, and the bimetal with alloy number 19)v is the bimetal of the comparative example.

実施例2.3より明らかな如く、本発明は特定成分の高
膨張側合金を使用することにより、冷間加工による加工
誘起マルテンサイト変態による熱膨張係数の低下を防止
でき、わん曲常数のすぐれたバイメタルを安定して提供
することができ、またマルテンサイト変態がおこりにく
く調整てれているため、バイメタルとして使用される場
合低温(−70℃)まで変態をおこしに<<、安定して
いる。
As is clear from Example 2.3, by using a high-expansion alloy with specific components, the present invention can prevent a decrease in the coefficient of thermal expansion due to deformation-induced martensitic transformation due to cold working, and has an excellent curvature constant. It can stably provide bimetallic materials, and it has been adjusted to prevent martensitic transformation from occurring, so when used as bimetallic material, it is stable even at low temperatures (-70℃). .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高膨張側合金の成分の関係式のX値と熱膨張係
数の低下率の関係図。 第2.3図はバイメタルの冷間圧延率とわん曲常数との
関係図。 αQ 図
FIG. 1 is a diagram showing the relationship between the X value of the relational expression of the components of the high-expansion side alloy and the rate of decrease in the coefficient of thermal expansion. Figure 2.3 is a diagram showing the relationship between cold rolling rate and warp constant of bimetal. αQ diagram

Claims (1)

【特許請求の範囲】[Claims] (1)  CO,2wt%以下、 Si、 1.5wt
%以下、Mn2.0載%以下、 Ni、 15−30w
t%、 Or 1〜15 wt%。 NO,06wt%以下を含有し、且つ下記式のXが25
以下を満足し、 X=887.9−(619,IXCX)−(12,3X
Si−%)−(10,9XMn%)−(12,7XNi
%) −(18,4XCr%)−(619,IXN%) 残部は実質的にFeからなる高膨張側合金と低膨張側合
金を中間層金属又は合金を介在でせ、或いは介在させな
いで接合してなることを特徴とするバイメタル C2)  C0,2wt%以下、 Si 1.5wt%
以下、 Mn 2.OW″llS%以下、 Ni−15
−10wt%、cri 〜15wt%。 M○10wt%以下、NO,06wt%以下を含有し、
且つ下記式のXが25以下を満足し、 X==387.9− (619,1X0%)−(12,
’8XSi、%)−(10,9,XMn%)−(12,
7XNi、%)−(18,4XCr%)−(24,8x
Mo%)−(619,IXN%)残部は実質的にFeか
らなる高膨張側合金と低膨張側合金を中間層金属又は合
金を介在てせ、或いは介在させないで接合してなること
を特徴とするバイメタル
(1) CO, 2wt% or less, Si, 1.5wt
% or less, Mn2.0 loading % or less, Ni, 15-30w
t%, Or 1-15 wt%. Contains NO, 06 wt% or less, and X in the following formula is 25
Satisfies the following, X=887.9-(619,IXCX)-(12,3X
Si-%)-(10,9XMn%)-(12,7XNi
%) −(18,4 Bimetal C2) C0.2wt% or less, Si 1.5wt%
Below, Mn 2. OW″llS% or less, Ni-15
−10 wt%, cr ~15 wt%. M○ Contains 10 wt% or less, NO, 06 wt% or less,
And X in the following formula satisfies 25 or less, X==387.9-(619,1X0%)-(12,
'8XSi,%)-(10,9,XMn%)-(12,
7XNi,%) - (18,4XCr%) - (24,8x
Mo%) - (619, IXN%) The balance is substantially composed of Fe, and is characterized by being formed by joining a high expansion side alloy and a low expansion side alloy with or without intervening an intermediate layer metal or alloy. Bimetal
JP8537582A 1982-05-19 1982-05-19 Bimetal Granted JPS58201088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8537582A JPS58201088A (en) 1982-05-19 1982-05-19 Bimetal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8537582A JPS58201088A (en) 1982-05-19 1982-05-19 Bimetal

Publications (2)

Publication Number Publication Date
JPS58201088A true JPS58201088A (en) 1983-11-22
JPH0419517B2 JPH0419517B2 (en) 1992-03-30

Family

ID=13856968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8537582A Granted JPS58201088A (en) 1982-05-19 1982-05-19 Bimetal

Country Status (1)

Country Link
JP (1) JPS58201088A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0803584A3 (en) * 1990-06-29 1997-12-29 Kabushiki Kaisha Toshiba Fe-ni based alloy
CN111778455A (en) * 2020-07-16 2020-10-16 河北五维航电科技股份有限公司 Bimetallic strip for drain valve and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113291A (en) * 1974-07-22 1976-02-02 Daido Steel Co Ltd KOONHETARIGACHIISAIBAIMETARU

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113291A (en) * 1974-07-22 1976-02-02 Daido Steel Co Ltd KOONHETARIGACHIISAIBAIMETARU

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0803584A3 (en) * 1990-06-29 1997-12-29 Kabushiki Kaisha Toshiba Fe-ni based alloy
CN111778455A (en) * 2020-07-16 2020-10-16 河北五维航电科技股份有限公司 Bimetallic strip for drain valve and preparation method thereof

Also Published As

Publication number Publication date
JPH0419517B2 (en) 1992-03-30

Similar Documents

Publication Publication Date Title
KR920001633B1 (en) Iron-based shape-memory alloy excellent in shape memory property and corrosion resistance
EP0132055B1 (en) Precipitation-hardening nickel-base alloy and method of producing same
EP0176272B1 (en) Shape memory alloy and method for producing the same
US6406566B1 (en) Copper-based alloy having shape memory properties and superelasticity, members made thereof and method for producing same
JP2011006792A (en) Fabrication of bake hardened steel strip, and steel strip and component obtainable therefrom
EP2194154A1 (en) Two-way shape-recovery alloy
EP0336175B1 (en) Iron-based shape-memory alloy excellent in shape-memory property, corosion resistance and high-temperature oxidation resistance
EP0314649B1 (en) Ferritic-martensitic stainless steel alloy with deformation-induced martensitic phase
JP4207137B2 (en) High hardness and high corrosion resistance stainless steel
JPS58201088A (en) Bimetal
US2018520A (en) High strength alloy
JP3501573B2 (en) Ferritic stainless steel pipe excellent in secondary work crack resistance and method for producing the same
JPS62112720A (en) Improvement of characteristic fe-mn-si shape memory alloy
JPH0148345B2 (en)
JPH11140598A (en) High strength stainless steel strip with high spring limit value, and its production
JP2803550B2 (en) Ni-Fe-based magnetic alloy excellent in magnetic properties and manufacturability and method for producing the same
JP2003138330A (en) Copper-base alloy and its manufacturing method
JPH044391B2 (en)
JPS59211552A (en) Martensitic high cr steel with high toughness
JPH1180906A (en) High strength stainless steel strip increased in yield stress, and its production
JP2528358B2 (en) Method for producing iron-based shape memory alloy with excellent shape recovery characteristics
JP3387235B2 (en) Precipitation hardening stainless steel
JP3453501B2 (en) Cold-rolled spring steel with low residual stress after spring-rolling
KR920001632B1 (en) Iron-based shape-memory alloy excellent in shape-memory property corrosion resistance and high-temperature oxidation resistance
JPH06256911A (en) Austenitic stainless steel excellent in nitric acid corrosion resistance after cold working or deformation