JPS58200575A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS58200575A
JPS58200575A JP8300882A JP8300882A JPS58200575A JP S58200575 A JPS58200575 A JP S58200575A JP 8300882 A JP8300882 A JP 8300882A JP 8300882 A JP8300882 A JP 8300882A JP S58200575 A JPS58200575 A JP S58200575A
Authority
JP
Japan
Prior art keywords
film
emitter
silicon
etching
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8300882A
Other languages
Japanese (ja)
Inventor
Shiyoujirou Sugashiro
菅城 象二郎
Hiroyuki Itou
以頭 博之
Yoichi Tamaoki
玉置 洋一
Masahiko Kogirima
小切間 正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8300882A priority Critical patent/JPS58200575A/en
Publication of JPS58200575A publication Critical patent/JPS58200575A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To reduce the area of transistors and decrease the base resistance by a method wherein an emitter is formed in a region at a constant distance from the region of insulation film isolation wherein a U-shaped isolation by Si burial is used. CONSTITUTION:A collector buried layer 22 and an Si epitaxial layer 23 are formed on the surface of an Si semiconductor substrate 21, then a groove 26 is formed by etching, and thus an Si oxide film 27 is formed. The isolation is formed by forming a polycrystalline Si 31 after forming a base diffused layer 28, an Si nitride film 29, and an Si oxide film 30. A molybdenum film 32 is adhered, thus metals silicide 33 and 34 are formed by performing heat-treatment, and then a hole 35 for emitter formation is formed. Finally, the emitter diffused layer 37 is formed by ion implantation, after removing the Mo silicide, forming an Si oxide film 36 by thermal oxidation of the polycrystalline Si 31, and etching the Si nitride film 29.

Description

【発明の詳細な説明】 本発明は半導体装置の製造法に関し、詳しくは、U型ア
イソレーションによって素子間分離したバイポーラトラ
ンジスタのエミッタ形成にとくに有用な半導体装置の製
造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device that is particularly useful for forming the emitter of a bipolar transistor whose elements are separated by U-type isolation.

従来のバイポーラトランジスタでは、第1図に示すよう
に、エミッタ3は、ベース拡散領域2に完全に含まれる
ように、写真食刻法を用いて形成されている。これは、
エミッタ3を形成する際、ホトマスク4と半導体基板中
の素子間の絶縁分離領域lと重なると、エミッタ3は絶
縁分離領域中に形成されないことから、エミッタ30面
積がホトマスク40面積よりも減少するためである。ま
た、ホトマスク4と絶縁分離領域1との重なり方は、マ
スク合せ誤差に応じて変化するため、エミッタ面積もマ
スク合せ誤差に応じて変化し、トラ □ンジスタの特性
変化を招くことになる。
In a conventional bipolar transistor, as shown in FIG. 1, the emitter 3 is formed using photolithography so as to be completely included in the base diffusion region 2. this is,
When forming the emitter 3, if the photomask 4 overlaps the insulation isolation region l between the elements in the semiconductor substrate, the emitter 3 will not be formed in the insulation isolation region, so the area of the emitter 30 will be smaller than the area of the photomask 40. It is. Furthermore, since the way the photomask 4 and the insulation isolation region 1 overlap changes depending on the mask alignment error, the emitter area also changes depending on the mask alignment error, leading to changes in the characteristics of the transistor.

しかし、エミッタ3會ベース拡散領域2内に完全におさ
めるためには、マスク合せ誤差を考慮に入れて、ベース
拡散鎖酸を大きくする必散があり、このため、トランジ
スタ面積が増加してしまう。
However, in order to completely fit the emitter 3 into the base diffusion region 2, it is necessary to take mask alignment errors into account and increase the base diffusion chain, which increases the transistor area.

また、エミッタを写真食刻法で形成する際、第2図に示
すような矩形のホトマスク9を用いることにより、マス
ク付せ誤差にかかわらずエミッタ80面積を一定に保つ
ことができる。すなわち、矩形のホトマスク904辺の
内、相対する2辺を1 マスク合せ饋差以丘にベース拡散領域7から離れた絶縁
分離領域6中に設け、かつ、他の2辺を絶縁分離領域6
からマスク合せ誤差以上離れたベース拡散領域7中に設
ける。このようにすると、絶縁分離領域6中にはエミッ
タが形成されないため、エミッタ802辺の長さは、ベ
ース拡散領域70辺lOの長さで決まり、他の2辺の長
さは、ホトマスク9の辺11の長さで決まる。従って、
エミッタ80面積は一定に保たれることになる。またベ
ースmin域7の辺lOの長さもエミッタ80大きさま
で微細化でき、トランジスタ面積を縮少することができ
る。
Further, when forming the emitter by photolithography, by using a rectangular photomask 9 as shown in FIG. 2, the area of the emitter 80 can be kept constant regardless of masking errors. That is, among the four sides of the rectangular photomask 90, two opposing sides are provided in the insulating isolation region 6 which is located away from the base diffusion region 7 at the mask alignment gap, and the other two sides are provided in the insulating isolation region 6.
The base diffusion region 7 is provided at a distance of more than a mask alignment error from the base diffusion region 7. In this case, since no emitter is formed in the insulation isolation region 6, the length of the emitter 802 side is determined by the length of the base diffusion region 70 side IO, and the lengths of the other two sides are determined by the length of the photomask 9. It is determined by the length of side 11. Therefore,
The emitter 80 area will remain constant. Furthermore, the length of the side lO of the base min region 7 can be miniaturized to the size of the emitter 80, and the transistor area can be reduced.

しかし、第2図に示す方法では、ベース抵抗が増加し、
バイポーラトランジスタの遅延時間が増加してしiう。
However, in the method shown in Figure 2, the base resistance increases,
The delay time of the bipolar transistor increases.

これは、ベースコンタクト孔12までベース電流が流れ
るためには、エミツタ8下部の抵抗の大きいベース領域
を通過する会費があるためである。一方、第1図に示し
た場合では、ベース電流は、ベース周辺の比較的抵抗が
低い領域全経由してベースコンタクト孔5まで流れるた
め、第2図の場合よりベース抵抗が減少する。
This is because, in order for the base current to flow to the base contact hole 12, there is a need to pass through the base region of high resistance below the emitter 8. On the other hand, in the case shown in FIG. 1, the base current flows to the base contact hole 5 through the entire region around the base where the resistance is relatively low, so that the base resistance is reduced compared to the case shown in FIG.

本発明は、従来のバイポーラトランジスタのエミッタ形
成法のこれらの問題点ケ解決することを目的としたもの
で、シリコン埋め込みによるU型アイソレーションを用
いた絶縁膜分離領域からある一定距hf隔てた領域にセ
ルファラインによってエミッタを形成する方法を提供す
るものである。
The present invention aims to solve these problems in the conventional emitter formation method for bipolar transistors. The present invention provides a method of forming an emitter using a self-line.

以下バイポーラトランジスタの製造に関する実施例を用
いて、本発明の詳細な説明する。
The present invention will be described in detail below using examples relating to the manufacture of bipolar transistors.

まず、第3図に示すように、シリコン半導体基板210
表面に、周知の方法によってコレクタ埋込I@ 22 
fr設け、その上にトランジスタの能動部分となるシリ
コンエピタキシャル層23を形成した後、その表面を熱
酸化して酸化シリコン膜24を形成し、さらにその上に
、周知のCVD法によってテラ化シリコン膜25を形成
した。
First, as shown in FIG. 3, a silicon semiconductor substrate 210 is
Embed the collector on the surface by a well-known method I@22
After forming a silicon epitaxial layer 23 that will become the active part of the transistor, the surface is thermally oxidized to form a silicon oxide film 24, and then a TERRA silicon film 24 is formed on it by a well-known CVD method. 25 was formed.

次に通常のホトエツチング法を一用いて上記チツ化シリ
コン膜25會パターニングした後、露出された酸化シリ
コン膜24をエッチして除去する。
Next, the silicon oxide film 25 is patterned using a conventional photoetching method, and then the exposed silicon oxide film 24 is etched and removed.

七の後、反応性スパッタエツチングat用い、テラ化シ
リコン膜25をマスクにして、埋込み層22およびシリ
コン半導体基板211エツチングし、コレクタ埋込み層
22を突き抜けるように溝26會形成した。
After that, the buried layer 22 and the silicon semiconductor substrate 211 were etched using reactive sputter etching using the terraned silicon film 25 as a mask, and a groove 26 was formed so as to penetrate through the collector buried layer 22.

次に、チャネル発生防止の目的で埋込みrm 22と反
対の導電性を持つ不純物を、イオン打込み法によって上
記#126の底面に導入した。チッ素雰囲気中でアニニ
ルした後、チツ化シリコン膜25をマスクに選択酸化を
行ない、上記溝26内に厚い酸化シリコン膜27(0,
3〜1.0μm8度)を形成して、溝26の表面を覆っ
た。
Next, for the purpose of preventing channel generation, an impurity having conductivity opposite to that of the buried rm 22 was introduced into the bottom surface of #126 by ion implantation. After annealing in a nitrogen atmosphere, selective oxidation is performed using the silicon nitride film 25 as a mask to form a thick silicon oxide film 27 (0, 0,
3 to 1.0 μm (8°) to cover the surface of the groove 26.

マスクに用いた上記テラ化シリコン膜25を除去した後
、第4図に示すように、イオン打込み法によって、ベー
ス拡散1−28を形成した。さらに、通常のCVD法に
よってチツ化シリコン膜29および酸化シリコン膜30
?形成した後、溝26内に多結晶シリコン31Th形成
することによりアイソレーションが形成された。なお、
ここでは溝26円に多結晶シリコンを形成したが、非晶
質シリコンないしは単結晶シリコンでもよい。
After removing the Tera silicon film 25 used as a mask, a base diffusion 1-28 was formed by ion implantation, as shown in FIG. Furthermore, a silicon oxide film 29 and a silicon oxide film 30 are formed by a normal CVD method.
? After the formation, isolation was formed by forming polycrystalline silicon 31Th in the groove 26. In addition,
Here, polycrystalline silicon is formed in the groove 26, but amorphous silicon or single crystal silicon may also be used.

次に、モリブデン膜32を被着し、400〜1000t
:”の熱処理を行ない、モリブデン膜32と多結晶シリ
コン31とを反応させ、金楓シリブイド33を形成した
。この際、モリブデンシリサイド33を横方向にも成長
させ、ベース拡散層28を一部覆うようにモリブデンシ
サイドのひきし34を形成した。その後、未反応のモリ
ブデン膜32をリン酸系のエツチング液で除去した。
Next, a molybdenum film 32 is deposited and
:'' heat treatment was performed to cause the molybdenum film 32 and polycrystalline silicon 31 to react, forming a gold maple silicide 33. At this time, the molybdenum silicide 33 was also grown in the lateral direction to partially cover the base diffusion layer 28. A molybdenum oxide film 34 was formed in this manner. Thereafter, the unreacted molybdenum film 32 was removed using a phosphoric acid-based etching solution.

次に、第2図のホトマスク9■ようなもの管用い通常の
写真食刻法によシ沸酸系のエッチ液でエミッタ形成時の
孔35fr形成した。このようにすると、第5図に示す
ように、モリブデンシリ丈イド33の下部の酸化シリコ
ン膜30はエツチングされずに残る。その恢、モリブデ
ンシリ丈イド33をCF、?!−主成分ガスとしたドラ
イエツチング法により除去した。このとき、エミッタ孔
350部分のチン化シリコン膜29も若干エッチされる
が、すべてエッチされない程度にチン化シリコン膜29
の膜厚を設定した。
Next, holes 35fr for forming an emitter were formed using a fluoric acid-based etchant using a conventional photoetching method using a tube such as the photomask 9 in FIG. In this way, as shown in FIG. 5, the silicon oxide film 30 under the molybdenum silicate film 33 remains without being etched. In that case, molybdenum series Id 33 is CF? ! -Removed by dry etching method using gas as the main component. At this time, the silicon nitride film 29 in the portion of the emitter hole 350 is also slightly etched, but the silicon nitride film 29 is not completely etched.
The film thickness was set as follows.

次に、第6図に示すように、多結晶シリコン31i熱酸
化して酸化シリコ呵、岬36 t ffp成した後、C
Fnt主成分ガスとして用いたドライエツチング法によ
り、エミッタ孔35の領域のチン化シリコン膜29をエ
ツチングした。その後、イオン打込み法によりエミッタ
拡散層37倉形成した。
Next, as shown in FIG. 6, polycrystalline silicon 31i is thermally oxidized to form a silicon oxide layer, cape 36tffp, and then C
The silicon nitride film 29 in the region of the emitter hole 35 was etched by dry etching using Fnt as the main component gas. Thereafter, 37 emitter diffusion layers were formed by ion implantation.

以上のように形成したバイポーラトランジスタの平面横
這に、第7図のようになる。すなわち、絶縁分離領域1
3でかこまれたベース拡散領域14中に、第2図記号9
で示したようなホトマスク16會用いてエミッタ151
に形成するわけであるが、ホトマスク16下部において
エミッタ15と絶縁膜分離領域13の間にはベース拡散
領域17が形成される。従って、第7図に示した構造の
トランジスタでは、第1図に示したトランジスタと同様
、ベース電流がエミッタ下部のベースの周辺の比較的抵
抗が低いペース拡散領域全経由して、ベースコンタクト
孔18まで流れるため、ベース抵抗は第2図のトランジ
スタ構造より減少する。
The horizontal plane of the bipolar transistor formed as described above is as shown in FIG. That is, the insulation isolation region 1
In the base diffusion region 14 surrounded by 3, there is a symbol 9 in FIG.
Emitter 151 is formed using a photomask 16 as shown in
However, a base diffusion region 17 is formed between the emitter 15 and the insulating film isolation region 13 under the photomask 16. Therefore, in the transistor having the structure shown in FIG. 7, as in the transistor shown in FIG. 2, the base resistance is reduced compared to the transistor structure of FIG.

また、第7図に示したホトマスク16の下部にあるエミ
ッタ15と絶縁1盆離領域13との間隔は第4図の金桟
シリサイド33のひさし34の長ざで決まる。従って、
このひさし34G’)長さをホトマスク16と半導体基
板との間の合せ誤差以下にすると、ベース拡散領域14
の面積は、第1図に示したベース拡散領域よりも減少さ
せることができる。このため、第7図に示したトランジ
スタ面積は第1図に示したトランジスタ面積より減少さ
せることができる。
Further, the distance between the emitter 15 at the bottom of the photomask 16 and the insulation 1 isolation region 13 shown in FIG. 7 is determined by the length of the eaves 34 of the metal silicide 33 shown in FIG. Therefore,
When the length of this eave 34G') is made equal to or less than the alignment error between the photomask 16 and the semiconductor substrate, the base diffusion region 14
The area of the base diffusion region shown in FIG. 1 can be reduced compared to the base diffusion region shown in FIG. Therefore, the area of the transistor shown in FIG. 7 can be made smaller than the area of the transistor shown in FIG.

【図面の簡単な説明】 @1図および第2図は従来技術により作製されたバイポ
ーラトランジスタの一部の構造を示す平面図、第3図乃
至第6図は本発明の一実施例を示す工程図、第7図は本
発明の実施例を示す平面図である。 1.6.13・・・菓子間の絶縁分離領域、2,7゜1
4.17・・・ベース拡散領域、3,8.15・・・エ
ミ7り、5,12.18・・・コレクタコンタクト子り
。 4.9.16・・・エミッタ形成時のホトマスク、lO
・・・ベース拡散領域の辺、11・・・エミッタ形成時
のホトマスクの辺、21・・・基板、22・・・埋込層
、23・・・シリコンエピタキシャル層、28・・・ベ
ース拡散1−537・・・エミッタ拡散層、24,27
゜30.36・・・酸化シリコン膜、25.29・・・
テラ化シリコン[,31・・・’4 結晶シリコン、3
2・・・モlJt図 葛 3  目 5 1!J 4  図 第 5  目 !吻 % 6  因 35  24       36 / ztl
[BRIEF DESCRIPTION OF THE DRAWINGS] Figures 1 and 2 are plan views showing the structure of a part of a bipolar transistor manufactured by the conventional technique, and Figures 3 to 6 are steps showing an embodiment of the present invention. FIG. 7 is a plan view showing an embodiment of the present invention. 1.6.13...Insulating separation area between sweets, 2.7゜1
4.17...Base diffusion region, 3,8.15...Emitter 7, 5,12.18...Collector contact. 4.9.16...Photomask during emitter formation, lO
... Side of base diffusion region, 11 ... Side of photomask during emitter formation, 21 ... Substrate, 22 ... Buried layer, 23 ... Silicon epitaxial layer, 28 ... Base diffusion 1 -537... Emitter diffusion layer, 24, 27
゜30.36...Silicon oxide film, 25.29...
Tera silicon [,31...'4 Crystalline silicon, 3
2...Mol Jt Zu Kuzu 3 eyes 5 1! J 4 Figure 5! Snout% 6 factor 35 24 36 / ztl

Claims (1)

【特許請求の範囲】 1、下記工框會含む半導体装置の製造方法。 (1)  半導体基板表面上にチン化シリコン膜を被着
する工程。 (2)上記チン化シリコン膜の所望部分をエッチして除
去する工程。 (3)上記チン化シリコン膜をマスクに用いて上記半導
体基板をエッチし、溝を形成する工程。 (4)上記壽の表面ケ酸化シリコン膜によって覆う工程
。 (5)  絶縁膜を全面に形成する工程。 (句 上記無内にシリコンを充填する工程。 (7)遷移金輌膜を被着する工程。 (8)熱処理により、上記遷移金輌膜と上記溝内に充填
されているシリコンの表面を反応させ、上記溝上および
周辺部に金稿シリサイド膜を形成する工程。 (9)E記遷移金媚膜の未反応の部分を除去する工程。 (X)上記金鵬シリサイド膜倉マスクに用いて、上記絶
縁膜の露出部分をエッチし除去する工程。 (旬上記金属シリサイド膜を除去する工程。 (功上記溝内のシリコンの露出された部分を酸化する工
程。 (2)上記絶縁膜をマスクに用いて、上記チン化シリコ
ン膜の露出された部分をエッチし除去する工程。
[Claims] 1. A method for manufacturing a semiconductor device including the following process. (1) Step of depositing a silicon nitride film on the surface of a semiconductor substrate. (2) A step of etching and removing a desired portion of the silicon nitride film. (3) A step of etching the semiconductor substrate using the silicon nitride film as a mask to form a groove. (4) A step of covering the surface of the box with a silicon oxide film. (5) Step of forming an insulating film over the entire surface. (phrase) Step of filling the above groove with silicon. (7) Step of depositing a transition gold film. (8) Heat treatment causes the surface of the transition gold film and the silicon filled in the groove to react. (9) Step of removing unreacted portions of the E-type transition gold film. (X) Using the above metal silicide film mask, A step of etching and removing the exposed portion of the insulating film. and etching and removing the exposed portion of the silicon nitride film.
JP8300882A 1982-05-19 1982-05-19 Manufacture of semiconductor device Pending JPS58200575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8300882A JPS58200575A (en) 1982-05-19 1982-05-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8300882A JPS58200575A (en) 1982-05-19 1982-05-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS58200575A true JPS58200575A (en) 1983-11-22

Family

ID=13790214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8300882A Pending JPS58200575A (en) 1982-05-19 1982-05-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58200575A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983226A (en) * 1985-02-14 1991-01-08 Texas Instruments, Incorporated Defect free trench isolation devices and method of fabrication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983226A (en) * 1985-02-14 1991-01-08 Texas Instruments, Incorporated Defect free trench isolation devices and method of fabrication

Similar Documents

Publication Publication Date Title
EP0046371B1 (en) Method of manufacturing a semiconductor device
JPS63308387A (en) Manufacture of semiconductor device
JPS6234152B2 (en)
JPS58200575A (en) Manufacture of semiconductor device
JP3138841B2 (en) Method for manufacturing MIS field-effect semiconductor device
JPH0684938A (en) Manufacture of semiconductor device
JPS63275181A (en) Manufacture of semiconductor device
JP2707536B2 (en) Method for manufacturing semiconductor device
JPS6213047A (en) Manufacture of semiconductor device
JPH0122731B2 (en)
JPH0126186B2 (en)
JPS58142573A (en) Semiconductor integrated circuit and preparation thereof
JP2685448B2 (en) Method for manufacturing semiconductor device
JPH06196707A (en) Manufacture of vertical type insulated-gate transistor
JPS59181645A (en) Manufacture of semiconductor device
JPS6150343A (en) Separating process of semiconductor element
JPH0475349A (en) Manufacture of semiconductor device
JPS59105367A (en) Manufacture of metal oxide semiconductor type transistor
JPS59105366A (en) Manufacture of metal oxide semiconductor type transistor
JPS58204552A (en) Manufacture of semiconductor device by self-alignment
JPH0644569B2 (en) Method for manufacturing silicon carbide device on silicon substrate
JPS6120154B2 (en)
JPS60258965A (en) Manufacture of semiconductor device
JPS5854630A (en) Manufacture of semiconductor device
JPS61147575A (en) Manufacture of semiconductor device