JPS58200513A - Magnetic memory medium - Google Patents

Magnetic memory medium

Info

Publication number
JPS58200513A
JPS58200513A JP57083483A JP8348382A JPS58200513A JP S58200513 A JPS58200513 A JP S58200513A JP 57083483 A JP57083483 A JP 57083483A JP 8348382 A JP8348382 A JP 8348382A JP S58200513 A JPS58200513 A JP S58200513A
Authority
JP
Japan
Prior art keywords
platinum
thin film
flux density
magnetic flux
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57083483A
Other languages
Japanese (ja)
Inventor
Masahiro Yanagisawa
雅広 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57083483A priority Critical patent/JPS58200513A/en
Publication of JPS58200513A publication Critical patent/JPS58200513A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/656Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing Co

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a metal thin film medium having a high residual magnetic flux density and excellent corrosion proof characteristic by forming a metal thin film medium with cobalt alloy containing platinum of a particular atom percent. CONSTITUTION:A metal thin film medium shows an excellent hysteresis characteristic as a magnetic recording medium with degaussing force (Hc) of 300-2,000 Oe, saturated magnetic flux density (Bs) of 8,500-1,400 G, squareness ratio (Br/ Bs) of 0.7-0.9, squareness of coersive force (S*) of 0.7-0.9. This characteristic depends largely on amount of platinum in cobalt and film thickness. When change of anti-magnetic force due to atom percent of platinum is considered, it can be used as a magnetic recording medium which assures high recording density can be used within the 7-40 atom percent of platinum.

Description

【発明の詳細な説明】 本発明は磁気記憶媒体に関し、東に詳しくは金属薄膜か
らなる磁性合金に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic storage medium, and more particularly to a magnetic alloy comprising a thin metal film.

現在実用化されている磁気記憶媒体は不連続媒体のもの
が主流である。この不連続媒体の磁気記憶媒体は、a−
Fe、03. Cry、、 Fe、Fe−Co等の磁性
体粒子を有機樹脂からなる結合剤中に混合分散して、基
体上に塗布・乾燥・焼成して製造するため、磁気記憶媒
体は磁性体粒子の大きさのレベルで不連続である。
The mainstream of magnetic storage media currently in practical use is discontinuous media. This discontinuous medium magnetic storage medium is a-
Fe, 03. Magnetic storage media are manufactured by mixing and dispersing magnetic particles such as Cry, Fe, and Fe-Co in a binder made of organic resin, coating the mixture on a substrate, drying it, and baking it. It is discontinuous in the level of strength.

しかし、近年磁気記憶媒体の高記録密度化の要rIIK
よ如、連続薄膜媒体からなる磁気記憶媒体の研究開発が
盛んに行なわれている。この連続薄膜媒体は主にメッキ
、真空蒸着、スパッタ、イオンブレーティング等の手法
により作られる金鵬薄嘆からなるものと、真空蒸着、ス
パッタ、イオンブレーティング等の手法により作られる
Fe、0.又はα−Fe、O,等の金属酸化物薄膜から
なるものが知られている。金属酸化物薄膜は残留磁束密
度が小さい丸め大きな再生出力が得られず高記録密度の
面で制約を受ける。他方金属薄膜からなる磁気記憶媒体
(以下金属薄膜媒体と称する>t−X残留磁束密度が大
きく有望であるが、高温、高湿下の様な劣悪な雰囲気で
は腐食し易く、十分耐食性のある金属薄膜媒体はまだ知
られていない。
However, in recent years, the key to increasing the recording density of magnetic storage media is
Recently, research and development of magnetic storage media made of continuous thin film media has been actively conducted. This continuous thin film medium is mainly composed of gold film made by methods such as plating, vacuum evaporation, sputtering, and ion blating, and Fe, O. Alternatively, those made of metal oxide thin films such as α-Fe, O, etc. are known. The metal oxide thin film has a small residual magnetic flux density, so it is difficult to obtain a large playback output and is limited in terms of high recording density. On the other hand, magnetic storage media made of metal thin films (hereinafter referred to as metal thin film media) have a large t-X residual magnetic flux density and are promising, but they tend to corrode in poor atmospheres such as high temperature and high humidity, and metals with sufficient corrosion resistance are Thin film media are not yet known.

本発明の目的は上述の現況に鑑み、大きな残留磁束密度
を有しかつ耐食性がきわめて優れた金属薄膜媒体を提供
するものである。
In view of the above-mentioned current situation, an object of the present invention is to provide a metal thin film medium having a large residual magnetic flux density and extremely excellent corrosion resistance.

すなわち本発明の金属薄膜媒体は白金を7〜40原子パ
ーセント含むコバルトの合金からなっている。
That is, the metal thin film medium of the present invention is comprised of a cobalt alloy containing 7 to 40 atomic percent platinum.

本発明の金属薄膜媒体は抗磁力(He)300〜200
0 ce (工pyテッド)、飽和磁束密度(Bs )
8.500〜14,000 G (ガウス)、角形比(
Br/Bs)0.7〜0.9.保磁力角形比(S”)0
.7〜0.9の範囲の磁気記録媒体として優れたとステ
リシス特性を示す。
The metal thin film medium of the present invention has a coercive force (He) of 300 to 200.
0 ce (engineered), saturation magnetic flux density (Bs)
8.500-14,000 G (Gauss), squareness ratio (
Br/Bs)0.7-0.9. Coercive force squareness ratio (S”) 0
.. It exhibits excellent steresis properties as a magnetic recording medium in the range of 7 to 0.9.

上記特性はコバルト中の白金の量及び膜厚に大きく依存
する。
The above characteristics largely depend on the amount of platinum in cobalt and the film thickness.

第1図は抗磁力のコバルト中の白金の原子パーセントに
よる変化を示した毛ので白金7〜40原子パーセントの
範囲で高記録密度可能な磁気記憶媒体として使用出来る
FIG. 1 shows the change in coercive force depending on the atomic percent of platinum in cobalt, so it can be used as a magnetic storage medium capable of high recording density in the range of 7 to 40 atomic percent of platinum.

第2図は飽和磁束密度のコバルト中の白金の原子パーセ
ントによる変化を示したもので白金7〜40原子パーセ
ントの範囲で9800〜14000 G(ガウス)と大
きな値が得られている。
FIG. 2 shows the change in saturation magnetic flux density depending on the atomic percent of platinum in cobalt, and a large value of 9,800 to 14,000 G (Gauss) is obtained in the range of 7 to 40 atomic percent of platinum.

第3図は抗磁力の膜厚による変化を示した奄ので膜厚が
薄い程Hcが高くなっており、より高配録密fK適した
特性が得られる。
FIG. 3 shows the change in coercive force depending on the film thickness, and the thinner the film thickness, the higher Hc becomes, and characteristics suitable for a higher density fK can be obtained.

以上の様に本発明の白金7〜40原子パ一セント含有コ
バルト合金からなる金属薄膜が磁気記録媒体として優れ
ていることが分った。
As described above, it has been found that the metal thin film of the present invention made of a cobalt alloy containing 7 to 40 atomic percent of platinum is excellent as a magnetic recording medium.

一般に永久磁石に使われている白金コバルト磁石の組成
がコバルト中の白金が42〜73原子パーセント(一般
には50原子囁)であることから、白金7〜40原子パ
ーセントの領域で優れた金属薄膜媒体が得られ九ことは
罵〈べきことである。
Platinum-cobalt magnets, which are generally used as permanent magnets, have a composition of 42 to 73 atomic percent platinum in cobalt (generally 50 atomic percent), so they are excellent metal thin film media in the range of 7 to 40 atomic percent platinum. It is a shame that this is achieved.

次にいくつかの例をあげて本発明を説明する。Next, the present invention will be explained by giving some examples.

実施例1 直径100u厚さ1■のCoターゲット上に5mx4s
m厚さ0.1 wx−f) Pt素片を面積比Co/P
i=4.5となる様に配置し、スパッタ装置内に設置さ
れる。次cd基板をターゲットから4.51隔離して設
置した後、2×10−torrのアルゴン雰囲気中で陽
極電圧2.2KV%町電圧300Wにてスパッタ時間各
10秒、1分、3分、6分、10分の間室温にてスパッ
タを行ない白金を20原子パーセント含むコバルト合金
薄膜−vtJ基板上に付着させてサンプルを作っ九。そ
れぞれのサンプルの膜厚はsou、’aooλ、tao
oA、tsoou、aooo大でありヒステリシス特性
は抗磁率それぞれ2000ae、1700ae、 11
10oe、 850ae、 700 aeであシ、角形
比(Br/ Bs )は0.9から0.7、飽和磁束密
fは11400Gaussであッft、。
Example 1 5m x 4s on a Co target with a diameter of 100u and a thickness of 1cm
m thickness 0.1 wx-f) Pt piece with area ratio Co/P
It is arranged so that i=4.5 and is installed in a sputtering apparatus. Next, after setting up the CD substrate at a distance of 4.5 mm from the target, sputtering was performed in an argon atmosphere of 2 x 10-torr at an anode voltage of 2.2 KV% and a town voltage of 300 W for 10 seconds, 1 minute, 3 minutes, and 6 minutes, respectively. A sample was prepared by depositing a cobalt alloy thin film containing 20 atomic percent platinum on a vtJ substrate by sputtering at room temperature for 10 minutes. The film thickness of each sample is sou, 'aooλ, tao
The oA, tsoou, and aooo are large, and the hysteresis characteristics are coercivity of 2000ae, 1700ae, and 11, respectively.
The sizes are 10oe, 850ae, and 700ae, the squareness ratio (Br/Bs) is 0.9 to 0.7, and the saturation magnetic flux density f is 11400 Gauss.

実施例2 実施例1と同様にして但しCoとPtの面積比Co/P
i = 2.68として白金を30s含むコバルト合金
薄膜を50^、300A、90GA、1800A、30
00Aの膜厚でそれぞれ付着させてサンプルを作り九。
Example 2 Same as Example 1 except that the area ratio of Co and Pt is Co/P.
With i = 2.68, cobalt alloy thin films containing platinum for 30s are 50^, 300A, 90GA, 1800A, 30
Make a sample by depositing each with a film thickness of 00A.9.

各サンプルのヒステリシス特性は抗磁率1400G!。The hysteresis characteristic of each sample is a coercivity of 1400G! .

1100ae、 700ce、 550@、 550o
eであり角形比(Br/ Bs ) 110.9から0
.7飽和磁束密fは9900Gaussであった・ 実施例3 実施例1と同様圧して但しCoとPiの面積比αゾPI
 −1,72として白金を40饅含むコバルト合金薄膜
を50^、300大、900λ、 1soof、 3o
ooAの膜厚でそれぞれ付着させてサンプルを作った。
1100ae, 700ce, 550@, 550o
e and the squareness ratio (Br/Bs) is 110.9 to 0
.. 7 The saturation magnetic flux density f was 9900 Gauss. Example 3 The same pressure as in Example 1 was applied, except that the area ratio of Co and Pi was αzoPI
-1,72 is a cobalt alloy thin film containing 40 pieces of platinum, 50^, 300 large, 900λ, 1soof, 3o
Samples were prepared by depositing each film with a film thickness of ooA.

各サンプルのヒステリシス特性は抗磁率550Q!。The hysteresis characteristic of each sample has a coercivity of 550Q! .

45G@、450oe、340ae、300oe、28
0oeであり角形比(Br/ Bs )は0.8から0
.6飽和磁束密度は$500Gauasであり九。
45G@, 450oe, 340ae, 300oe, 28
0oe, and the squareness ratio (Br/Bs) is 0.8 to 0.
.. 6 The saturation magnetic flux density is $500 Gauas.

実施例4 実施例1と同様にして但しCOとPtの面積比Co/P
i −IQ、33として白金を1〇−含むコバルト合金
薄膜をsou、300ム、900^、1800λ、30
00Aの膜厚でそれぞれ付着させてサンプルを作った。
Example 4 Same as Example 1 except that the area ratio of CO and Pt is Co/P.
i-IQ, 33, a cobalt alloy thin film containing 10- platinum is sou, 300μ, 900^, 1800λ, 30
Samples were prepared by depositing each film with a film thickness of 00A.

各サンプルのヒステリシス特性は抗磁率1000oe。The hysteresis characteristic of each sample has a coercivity of 1000 oe.

850@、(iQQoe、550c*、520oeであ
り角形比(Br/ as )は0.9から0.7であっ
た。飽和磁束密度は13500Gaussであツタ。
850@, (iQQoe, 550c*, 520oe, and the squareness ratio (Br/as) was 0.9 to 0.7. The saturation magnetic flux density was 13500 Gauss.

実施例5 実施fi11と同様にして但しCOとPtの面積比Co
/Pt=15.24として白金を7%含むコバルト合金
薄膜を5oL3oo大、900大、1800又、300
0Aの膜厚でそれぞれ付着させてサンプルを作った。各
サンプルのヒステリシス特性は抗磁車500oe。
Example 5 Same as Example fi11 except that the area ratio Co of CO and Pt
/Pt=15.24, the cobalt alloy thin film containing 7% platinum was
Samples were prepared by depositing each film with a film thickness of 0A. The hysteresis characteristic of each sample is an anti-magnetic wheel of 500 oe.

400w、320ae、300oe、300oeであ)
角形化(Br/ Bs )は0.8から0.6であった
。飽和磁束密[は14000 Gaussであった。
400w, 320ae, 300oe, 300oe)
Squareization (Br/Bs) was between 0.8 and 0.6. The saturation magnetic flux density was 14,000 Gauss.

比較例1 実施例1と同様にして但しCoとPtの面積比CO/P
i−21,79として白金を591含むコバルト合金薄
膜を501.300に、5ooi、xsooA、300
0大の膜厚でそれぞれ付着させてサンプルを作った。各
サンプルのヒステリシス特性は尻出率200ae。
Comparative Example 1 Same as Example 1 except that the area ratio of Co and Pt was changed to CO/P.
Cobalt alloy thin film containing platinum 591 as i-21,79, 501.300, 5ooi, xsooA, 300
Samples were prepared by depositing each film with a film thickness of 0. The hysteresis characteristic of each sample has an exit rate of 200 ae.

150■、120ω、120毫、120■であり角形比
(Br/ Bs )は0.6から0.゛5飽和磁束密度
は14200 Gauss テ4ツタ。
150cm, 120ω, 120mm, 120cm, and the squareness ratio (Br/Bs) is 0.6 to 0.゛5 The saturation magnetic flux density is 14200 Gauss.

比較例2 実施例1と同様にして但しCOとPtの面積比Co/P
t=1.15として白金を50憾含むコバルト合金薄膜
を50!、300大、900X、tsoo大、3000
にのの膜厚でそれぞれ付着させてサンプルを作った。
Comparative Example 2 Same as Example 1 except that the area ratio of CO and Pt was changed to Co/P.
With t=1.15, 50% of cobalt alloy thin film containing 50% of platinum! , 300 large, 900X, tsoo large, 3000
Samples were made by depositing each film with a film thickness of 100%.

各サンプルのヒステリシス、:特性は尻出車200艶。Hysteresis of each sample: Characteristics are 200 gloss.

150 ae 、 120 oe、 120 ce、 
120 aeであり飽和磁束密度は7500 Gaus
sであった。
150 ae, 120 oe, 120 ce,
120 ae and saturation magnetic flux density is 7500 Gauss
It was s.

比較例3 実施例1と同様にして但しCOとptの面積比Co/P
t=0.76として白金を60チ含むコバルト合金薄膜
を50に、300に、900!、1800大、3000
^の膜厚でそれぞれ付着させてサンプルを作った。各サ
ンプルのヒステリシス特性は尻出″*200oe。
Comparative Example 3 Same as Example 1 except that the area ratio of CO and pt was changed to Co/P.
Assuming t=0.76, the cobalt alloy thin film containing 60 platinum is 50, 300, 900! , 1800 large, 3000
Samples were made by depositing each with a film thickness of ^. The hysteresis characteristic of each sample was 200 oe.

150偲、120軸、120■、120第であり飽和磁
束密度は6300 Gaussであった。
150th, 120th, 120th, and 120th, and the saturation magnetic flux density was 6300 Gauss.

以上の結果から磁気記憶媒体として使用出来るのは白金
が7から40原子パーセントを含むコバルト合金薄膜で
あることが分った。又、実施例1から5及び比較例1か
ら3のサンプルを23℃のイオン交換水に侵潰し腐食状
態を調べた。第4図に飽和磁束密度の浸漬時間による変
化率を示した。
From the above results, it was found that a cobalt alloy thin film containing 7 to 40 atomic percent of platinum can be used as a magnetic storage medium. In addition, the samples of Examples 1 to 5 and Comparative Examples 1 to 3 were crushed in 23° C. ion-exchanged water to examine the state of corrosion. Figure 4 shows the rate of change in saturation magnetic flux density with immersion time.

白金含有率7原子パ一セント以上のサンプルで耐食性の
向上が見られ始め、10原子パーセントから20原子パ
ーセントでかなりの耐食性の向上が見られる。25原子
パ一セント以上では全く鵜食が生じないことが分った。
Samples with a platinum content of 7 atomic percent or more begin to show improvement in corrosion resistance, and from 10 atomic percent to 20 atomic percent, a considerable improvement in corrosion resistance is observed. It was found that cormorant erosion does not occur at all when the concentration is 25 atomic percent or more.

以上の様に白金を7から40)jjL子パーセント含む
コバルト合金薄膜は、磁気記憶媒体として優れた磁気特
性と耐食性を有していることが分った。
As described above, it has been found that a cobalt alloy thin film containing 7 to 40% platinum has excellent magnetic properties and corrosion resistance as a magnetic storage medium.

なお前記のサンプルXMAにて組成分析した結果、ター
ゲットの面積比から計算し九組成と全く一致し、組成の
均一性も十分に有ることが分った。
As a result of the composition analysis of the above-mentioned sample XMA, it was found that the composition was completely consistent with the 9 composition calculated from the target area ratio, and that the composition was sufficiently uniform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は磁気記憶媒体におけるコバルト中の白金の原子
パーセントによる抗磁力の変化を示した説明図である。 第2図は磁気記憶媒体におけるコバルト中の白金の原子
パーセントによる飽和磁束密度の変化を示した説明図で
ある。 第3図は磁気配憶媒体におけるコバルト−白金合金の膜
厚による抗磁力の変化を示した説明図である。 第4図はコバルト−白金合金からなる磁気記憶媒体の水
浸漬時間による飽和磁束密度の変化率を示した説明図で
ある。 垢 l 口 Pt  鉦tr %) 誓 yg褪照り一ン幕
FIG. 1 is an explanatory diagram showing the change in coercive force depending on the atomic percentage of platinum in cobalt in a magnetic storage medium. FIG. 2 is an explanatory diagram showing the change in saturation magnetic flux density depending on the atomic percentage of platinum in cobalt in a magnetic storage medium. FIG. 3 is an explanatory diagram showing a change in coercive force depending on the film thickness of a cobalt-platinum alloy in a magnetic storage medium. FIG. 4 is an explanatory diagram showing the rate of change in saturation magnetic flux density of a magnetic storage medium made of a cobalt-platinum alloy depending on the immersion time in water. Dirt l mouth Pt gong tr %) oath yg faded one act

Claims (1)

【特許請求の範囲】[Claims] 1、  金属薄膜からなる磁気記憶媒体において、上記
金属薄膜が白金を7原子パーセントから40原子パーセ
ント含み残りがコバルトからなることを特徴とする磁気
記憶媒体。
1. A magnetic storage medium comprising a metal thin film, characterized in that the metal thin film contains 7 to 40 atomic percent of platinum, with the remainder being cobalt.
JP57083483A 1982-05-18 1982-05-18 Magnetic memory medium Pending JPS58200513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57083483A JPS58200513A (en) 1982-05-18 1982-05-18 Magnetic memory medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57083483A JPS58200513A (en) 1982-05-18 1982-05-18 Magnetic memory medium

Publications (1)

Publication Number Publication Date
JPS58200513A true JPS58200513A (en) 1983-11-22

Family

ID=13803712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57083483A Pending JPS58200513A (en) 1982-05-18 1982-05-18 Magnetic memory medium

Country Status (1)

Country Link
JP (1) JPS58200513A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137720A (en) * 1985-12-10 1987-06-20 Denki Kagaku Kogyo Kk Magnetic recording medium
US5180640A (en) * 1990-10-01 1993-01-19 Komag, Inc. Magnetic recording medium comprising a magnetic alloy layer of cobalt nickel, platinum and chromium formed directly on a nickel alloy amorphous underlayer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50140899A (en) * 1974-05-01 1975-11-12
JPS58147540A (en) * 1982-02-26 1983-09-02 Hitachi Ltd Thin film permanent magnet and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50140899A (en) * 1974-05-01 1975-11-12
JPS58147540A (en) * 1982-02-26 1983-09-02 Hitachi Ltd Thin film permanent magnet and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137720A (en) * 1985-12-10 1987-06-20 Denki Kagaku Kogyo Kk Magnetic recording medium
US5180640A (en) * 1990-10-01 1993-01-19 Komag, Inc. Magnetic recording medium comprising a magnetic alloy layer of cobalt nickel, platinum and chromium formed directly on a nickel alloy amorphous underlayer

Similar Documents

Publication Publication Date Title
JPS6033289B2 (en) Metal thin film magnetic recording media
JP3042878B2 (en) Method for sputtering multilayer body for magneto-optical recording
US4232071A (en) Method of producing magnetic thin film
US4663193A (en) Process for manufacturing magnetic recording medium
JPS58200513A (en) Magnetic memory medium
US5434014A (en) Magnetic recording medium and method of manufacturing same
KR970011188B1 (en) Magnetic thin film & its using magnetic head
JP2844604B2 (en) Magneto-optical recording medium
US4588636A (en) Magnetic recording medium
JPH037125B2 (en)
JPS6153769B2 (en)
JPH04265511A (en) Magnetic recording medium
JPS5961107A (en) Magnetic memory body
JPS61276150A (en) Photomagnetic recording medium
Suzuki et al. Magnetic properties and corrosion-resistance of sputtered Co-Ni and Co-Ni-M films for longitudinal recording
JPH0256724B2 (en)
JPH07111773B2 (en) Magnetic recording medium
JP3279591B2 (en) Ferromagnetic thin film and manufacturing method thereof
JPS6398823A (en) Magnetic recording medium and its production
JPH05315133A (en) Corrosion-proof magnetic film and magnetic head using same
JPH0612713A (en) Magnetic recording film, magnetic recording medium and magneto-optical recording medium
JPS5816512A (en) Magnetic recording medium
JPS60125933A (en) Production of magnetic medium
JPH01312724A (en) Magnetic recording medium
JPH0130218B2 (en)