JPH01312724A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH01312724A
JPH01312724A JP14371088A JP14371088A JPH01312724A JP H01312724 A JPH01312724 A JP H01312724A JP 14371088 A JP14371088 A JP 14371088A JP 14371088 A JP14371088 A JP 14371088A JP H01312724 A JPH01312724 A JP H01312724A
Authority
JP
Japan
Prior art keywords
magnetic
coercive force
flux density
magnetic flux
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14371088A
Other languages
Japanese (ja)
Inventor
Ryoichi Nakatani
亮一 中谷
Hiroyuki Suzuki
博之 鈴木
Toshio Kobayashi
俊雄 小林
Takayuki Kumasaka
登行 熊坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14371088A priority Critical patent/JPH01312724A/en
Publication of JPH01312724A publication Critical patent/JPH01312724A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve the saturation magnetic flux density and squareness ratio of the recording medium by forming a magnetic layer as a thin film of an Fe-Ru alloy and providing an intermediate layer between a nonmagnetic substrate and the magnetic layer. CONSTITUTION:The dependency of the coercive force and squareness ratio of the thin Fe-Ru alloy film is such that the coercive force is higher when Ru is added than 0% Ru concn. The coercive force attains >=400Oe and such is preferable if the Ru concn. is determined at >=3at.%. On the other hand, the dependency of the squareness ratio on the Ru concn. is such that the squareness ratio is smaller with an increase in the ratio of the Ru to be incorporated, but this decrease in the squareness ratio can be solved by providing the intermediate layer between the nonmagnetic substrate and the magnetic layer. The dependency of the saturation magnetic flux density on the Ru concn. is such that the saturation magnetic flux density decreases with an increase in the Ru concn. but >=1.8T saturation magnetic flux density is obtd. by confining the Ru concn. to <=10at.%. The high saturation magnetic flux density is provided to the medium in this way and the higher squareness ratio of the thin magnetic film is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気ディスク装置等に用いる磁気記録媒体に係
り、特に高密度磁気記録に好適で、耐食性の優れた媒体
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic recording medium used in magnetic disk drives and the like, and particularly to a medium suitable for high-density magnetic recording and excellent in corrosion resistance.

〔従来の技術〕[Conventional technology]

高密度磁気記録用の磁気記録媒体として金属磁性薄膜を
用いた媒体が提案されている。これらの中で、特開昭5
6−38812に論じられているように、Co−Ni合
金薄膜は保磁力が大きく、比較的耐食性にも優れている
A medium using a metal magnetic thin film has been proposed as a magnetic recording medium for high-density magnetic recording. Among these, JP-A-5
As discussed in No. 6-38812, the Co--Ni alloy thin film has a large coercive force and relatively excellent corrosion resistance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしCo −N i系合金薄膜は、磁気ディスクとし
て用いるには耐食性が不十分である。また、将来の高密
度磁気記録に用いるためには、より晶い飽和磁束密度を
有することが好ましく、1.5T程度のCo−Ni系合
金薄膜はこの点で十分とはdえない。
However, Co-Ni alloy thin films have insufficient corrosion resistance to be used as magnetic disks. Further, for use in future high-density magnetic recording, it is preferable to have a crystalline saturation magnetic flux density, and a Co--Ni alloy thin film of about 1.5 T is not sufficient in this respect.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等はFeを主成分とする合金薄膜について鋭意
研究を重ねた結果、Fe−Ru、Fc−Rh 、 F”
 e −Ru −Rh系合金は高保磁力、高飽和磁束密
度および高耐食性を示すことを明らかにし、本発明を完
成するに至った。
As a result of extensive research into alloy thin films containing Fe as the main component, the present inventors found that Fe-Ru, Fc-Rh, F''
It has been revealed that the e-Ru-Rh alloy exhibits high coercive force, high saturation magnetic flux density, and high corrosion resistance, and the present invention has been completed.

すなわち、非磁性基板上に磁性層を形成した磁気記録媒
体において、上記磁性層をFe−Ru。
That is, in a magnetic recording medium in which a magnetic layer is formed on a nonmagnetic substrate, the magnetic layer is made of Fe-Ru.

F’ e −Rh 、 F e −Ru −Rh系合金
の少なくとも一考からなる薄膜とすることにより、高密
度磁気記録に適した高い飽和磁束密度および高耐食性を
有する磁気記録媒体を得た。
A magnetic recording medium having a high saturation magnetic flux density and high corrosion resistance suitable for high-density magnetic recording was obtained by forming a thin film made of at least one of F' e -Rh and Fe -Ru -Rh based alloys.

また、上記合金薄膜の組成をF e −Ru系合金にお
いては、Ruを3−LQat%、F a −I<h系合
金においては、Rhを3〜7at%、Fe−Ru−Rh
系合金においてはRuを3〜10at%、RhをQ−3
at%、RuとRhの合計を3〜10bt%と制限する
ことにより、飽和磁束密度を]、8T以」二、保磁力を
3000e以上とすることができる。また上記非磁性基
板と磁性層との間に中間層を設けることにより、&i性
薄膜の角形比を大きくすることができる。
In addition, the composition of the alloy thin film is 3-LQat% Ru for Fe-Ru based alloys, 3-7 at% Rh for F a -I<h-based alloys, and 3-7 at% Rh for Fe-Ru-Rh based alloys.
In the series alloy, Ru is 3 to 10 at% and Rh is Q-3.
By limiting the sum of Ru and Rh at % to 3 to 10 bt%, the saturation magnetic flux density can be made 8T or more and the coercive force 3000e or more. Further, by providing an intermediate layer between the nonmagnetic substrate and the magnetic layer, the squareness ratio of the &i thin film can be increased.

〔実施例〕〔Example〕

以tに本発明の一実施例を挙げ、図表を参照しながらさ
らに具体的に説明する。
Hereinafter, one embodiment of the present invention will be described in more detail with reference to figures and tables.

〔実施例1〕 磁性層の作製にはイオンビーム・スパッタリング装置を
用いた。スパッタリングは以下の条件で行った。
[Example 1] An ion beam sputtering device was used to fabricate the magnetic layer. Sputtering was performed under the following conditions.

イオンガス          ・・・Ar装置内Ar
ガス圧力      −2,5X L 0−2P a蒸
着用イオンガン加速電圧   ・・1200V蒸着用イ
オンガンイオン電流  ・・・1.20mA基板照射用
イオンガン加速電圧 ・・・200V基板照射用イオン
ガンイオン電流・・・35mVターゲット電流    
    ・・・70mAターゲット・基板間距離   
 ・・・127nn本実施例では基板としてコーニンク
社製7059ガラス基板を用い、Fe−Ru系合金薄膜
を作製した。膜厚は5000人一定とした。
Ion gas...Ar in the Ar device
Gas pressure -2,5X L 0-2Pa Ion gun acceleration voltage for deposition...1200V Ion gun ion current for deposition...1.20mA Ion gun acceleration voltage for substrate irradiation...200V Ion gun ion current for substrate irradiation...35mV target current
...70mA target-to-board distance
...127nn In this example, a 7059 glass substrate manufactured by Konink Co., Ltd. was used as the substrate, and an Fe-Ru alloy thin film was produced. The film thickness was fixed at 5,000 people.

上記条件により作製したFe−Ru系合金薄膜の保磁力
、角形比のRullJll度依存性を第2図に示す。同
図の保磁力のRu4度依存性は曲線21に示すように、
Ru a度O%(純1?e)よりもRuを添加したノJ
゛が保磁力が高い。またR u ′a度を3at%以上
とすると保磁力が4000 e以上となり。
FIG. 2 shows the RullJll degree dependence of the coercive force and squareness ratio of the Fe--Ru alloy thin film produced under the above conditions. The Ru4 degree dependence of coercive force in the same figure is as shown by curve 21,
No.J with more Ru added than 0% (purity 1?e)
゛ has high coercive force. Furthermore, when the R u 'a degree is set to 3 at% or more, the coercive force becomes 4000 e or more.

より好ましい。反面、角度比の1z u e度依存性は
曲線22に示すように、Ru混人欧の増加に従がって角
形比が小さくなる。しかしこの点は後述のように非磁性
基板と磁性層との間に中間層を設けることにより解決で
きた。
More preferred. On the other hand, as shown by curve 22, the dependence of the angular ratio on 1z u e degree decreases as the Ru mixed population increases. However, this problem could be solved by providing an intermediate layer between the nonmagnetic substrate and the magnetic layer as described later.

次に飽和磁束密度のRu 4度依存性を第3図に示す。Next, FIG. 3 shows the Ru 4 degree dependence of the saturation magnetic flux density.

同図の飽和磁束密度のRufi度依存性は曲線31に示
すように、Ru ′a度の増加に従い、飽和磁束密度が
低下する。しかしRuJ濃度をH1nt%以−トとする
ことにより、1.8’「以上の飽和磁束密度が得られる
。この値は従来の実用材料であるC o −208t%
Ni合金の1.5Tより高い。
The dependence of the saturation magnetic flux density on the Rufi degree in the figure is shown by a curve 31, in which the saturation magnetic flux density decreases as the Ru'a degree increases. However, by setting the RuJ concentration to H1nt% or higher, a saturation magnetic flux density of 1.8' or higher can be obtained.This value is higher than the conventional practical material Co-208t%.
Higher than 1.5T of Ni alloy.

以上述べたように、[’ t3− Ru系合金は高飽和
磁束密度および高保磁力を有する。また保磁力を400
0 e以上、飽和磁束密度をL 、 81以上とするた
めには、Ru濃度を3〜1.0at%とすることが好ま
しい。
As described above, the ['t3-Ru-based alloy has a high saturation magnetic flux density and a high coercive force. Also, the coercive force is 400
In order to make the saturation magnetic flux density L, 81 or more, the Ru concentration is preferably 3 to 1.0 at%.

〔実施例2〕 実施例1と同様の条件でF’ e −Rh系合金薄膜を
形成した。保磁力および角形比のRklp度依浮性を第
4図に示す。同図の保磁力のRh4度依存性は曲線41
に示すように、純FeよりもRhを添加した方が保磁力
が品い。またRh8度を3〜7at%とすると保磁力を
3000 e以上とすることができる。反面、角形比の
1’< h^度依存性は曲線42に示すように、Rh添
加とともに小さくなる。しかしこの点においても非磁性
基板と磁性層との間に中間層を設けることにより解決す
ることができる。
[Example 2] A Fe-Rh based alloy thin film was formed under the same conditions as in Example 1. The Rklp degree dependence of coercive force and squareness ratio is shown in FIG. The Rh4 degree dependence of the coercive force in the same figure is curve 41.
As shown in the figure, the coercive force is better when Rh is added than when pure Fe is added. Further, when the Rh8 degree is set to 3 to 7 at%, the coercive force can be increased to 3000 e or more. On the other hand, as shown by curve 42, the dependence of the squareness ratio on degrees 1'<h^ decreases with the addition of Rh. However, this point can also be solved by providing an intermediate layer between the nonmagnetic substrate and the magnetic layer.

飽和磁束密度のRh4度依存性を第5に示す。The Rh4 degree dependence of the saturation magnetic flux density is shown fifth.

同図の飽和磁束密度のRh濃度依存性は曲線51に示す
ように、Rhを添加しても保磁力まほとんど変化しない
As shown by a curve 51 in the Rh concentration dependence of the saturation magnetic flux density in the figure, even when Rh is added, the coercive force hardly changes.

以上述べたように、?’e−Rh系合金は高飽和磁束密
度および高保磁力を有する。また保磁力を3000 e
以上とするためには、Rhfi度を3〜7at%とする
ことが好ましい。
As mentioned above? 'e-Rh alloy has high saturation magnetic flux density and high coercive force. Also, the coercive force is 3000 e
In order to achieve the above, it is preferable that the Rhfi degree is 3 to 7 at%.

〔実施例3〕 第2図から第5図に示すように、Fe−Rh系合金と比
較してF e −Ru系合金は保磁力が高い。
[Example 3] As shown in FIGS. 2 to 5, the Fe-Ru alloy has a higher coercive force than the Fe-Rh alloy.

しかし飽和磁束密度は低い。このため、Fe−Re系合
金のReの一部をRhで置換した。実施例1と同様の条
件で作製したF” e−Ru −Rh系合金薄膜の磁気
時性を第1表に示す。
However, the saturation magnetic flux density is low. For this reason, a portion of Re in the Fe--Re alloy was replaced with Rh. Table 1 shows the magnetic time characteristics of the F'' e-Ru-Rh alloy thin film produced under the same conditions as in Example 1.

第  1  表 第1表に示すように、Ruの一部をRhで置換すると若
干保磁力は低下するが、飽和磁束密度は高くなる。しか
しRhを4at%以上とすると保磁力の低ドが著しくな
る。従ってRhによる置換は3at%以下が好ましい、
また、RuとRhの合計の濃度を3at%未満あるいは
10at%より大きくした場合も保磁力が減少した。こ
れは第2図および第4図に示すように、Feに対するこ
れからの元素の添加量が約5at%の時、保磁力が最大
となり、これより少くなでも多くても保磁力が減少する
ことからも容易に理解できる。
Table 1 As shown in Table 1, when a portion of Ru is replaced with Rh, the coercive force slightly decreases, but the saturation magnetic flux density increases. However, when Rh is increased to 4 at% or more, the coercive force becomes significantly low. Therefore, the substitution with Rh is preferably 3 at% or less.
The coercive force also decreased when the total concentration of Ru and Rh was less than 3 at% or greater than 10 at%. This is because, as shown in Figures 2 and 4, when the amount of future elements added to Fe is about 5 at%, the coercive force is maximum, and if it is less or more than this, the coercive force decreases. can also be easily understood.

上述の様に、Fe−Ru系合金のRuの一部をRhで置
換することにより飽和磁束密度が高くなる。この場合、
高保磁力を得るためには、Ruの濃度をx、Rhの濃度
をyとすると、O< y≦3゜3≦x + y≦10な
る関係を満たす組成にすることが好ましい。
As described above, by replacing a portion of Ru in the Fe-Ru alloy with Rh, the saturation magnetic flux density increases. in this case,
In order to obtain a high coercive force, it is preferable to use a composition that satisfies the following relationship: O<y≦3°3≦x+y≦10, where x is the concentration of Ru and y is the concentration of Rh.

〔実施例4〕 実施例1〜3で示した各種合金と従来の材料であるC 
o −20at%Ni合金の耐食性を塩水噴霧試験によ
り比較した。試験方法を以下に述べる。
[Example 4] Various alloys shown in Examples 1 to 3 and conventional material C
The corrosion resistance of o -20 at% Ni alloys was compared by a salt spray test. The test method is described below.

まず各種合金膜の飽和磁比Mo を測定し、その後。First, the saturation magnetic ratio Mo of various alloy films was measured, and then.

膜表面に0.5%NaCQ*溶液を噴霧し、30℃で2
4時間放置した。その後、飽和磁化M1を測定した。腐
食率は、腐食率(%) =(Mo  Mu)X100/
Moで定義した。実験結果を第2表に示す。
Spray 0.5% NaCQ* solution onto the membrane surface and heat at 30℃ for 2 hours.
It was left for 4 hours. Thereafter, the saturation magnetization M1 was measured. Corrosion rate is Corrosion rate (%) = (Mo Mu) x 100/
Defined by Mo. The experimental results are shown in Table 2.

第  2  表 第2表に示すように、Co−20at%Ni合金はこの
試験により腐食し、飽和磁化が5%減少した。これに対
し、本発明のFe−Ru、Fe−Rh 、 F e −
Ru −Rh系合金は全(腐食せず、飽和磁化は変化し
なかった。
Table 2 As shown in Table 2, the Co-20at%Ni alloy was corroded by this test and its saturation magnetization decreased by 5%. On the other hand, Fe-Ru, Fe-Rh, Fe-
The Ru-Rh alloy did not corrode and the saturation magnetization did not change.

〔実施例5〕 実施例1と同様のスパッタリング条件で、7059(コ
ーニング社製)ガラス基板上に膜厚500人人のCrを
蒸着し、さらにその上に膜厚500人のF e −Ru
系合金を蒸着した。この合金薄膜の保磁力および角形比
のRu濃度依存性を第6図に示す。第6図の保磁力のR
u濃度依存性は曲線に示すように、Fe(Ru=O)薄
膜よりも保磁力が高い。またRulil度を3at%以
上とすることにより、保磁力は3000 e以上となる
。また実施例1と同様、Ru濃度を10at%以下とす
ることにより、飽和磁束密度を1.8T以上とすること
ができる。上述の様に、本実施例の膜構造においても、
Ru濃度を3〜10at%とすることが好ましし亀。
[Example 5] Under the same sputtering conditions as in Example 1, a 500-layer thick Cr film was deposited on a 7059 (Corning Inc.) glass substrate, and a 500-layer thick Fe-Ru film was further deposited thereon.
A series alloy was deposited. FIG. 6 shows the Ru concentration dependence of the coercive force and squareness ratio of this alloy thin film. Coercive force R in Figure 6
As shown in the curve, the u concentration dependence has a higher coercive force than the Fe (Ru=O) thin film. Further, by setting the Rulil degree to 3 at% or more, the coercive force becomes 3000 e or more. Further, as in Example 1, by setting the Ru concentration to 10 at % or less, the saturation magnetic flux density can be made to be 1.8 T or more. As mentioned above, in the membrane structure of this example,
It is preferable that the Ru concentration is 3 to 10 at%.

また、角形比のRu濃度依存性は同図の曲線62に示す
ように、0.7以上であった。このように本実施例では
実施例1の構造の場合よりも角形比が大きい、従って、
角形比を大きくする点から、非磁性基板と磁性層との間
に中間層を設けることが好ましい、また中間層としてM
o、Wを用いた磁性薄膜を形成したところ、Crを用い
た場合とほぼ同様の角形比の向上が見られた。
Further, the dependence of the squareness ratio on the Ru concentration was 0.7 or more, as shown by curve 62 in the figure. In this way, the squareness ratio of this example is larger than that of the structure of Example 1. Therefore,
In order to increase the squareness ratio, it is preferable to provide an intermediate layer between the non-magnetic substrate and the magnetic layer.
When a magnetic thin film was formed using O, W, the improvement in squareness ratio was found to be almost the same as when using Cr.

また、Fe−Ru系合金薄膜の代りに、ドe−Rh系合
金薄膜およびFe−Ru−Rh系合金薄膜を形成したと
ころ、Fe−Ru系合金薄膜と同様、亮保磁力、高飽和
磁束密度を有する磁性簿膜が得られた。
In addition, when we formed a de-e-Rh alloy thin film and a Fe-Ru-Rh alloy thin film instead of the Fe-Ru alloy thin film, we found that, like the Fe-Ru alloy thin film, they had a high coercive force and a high saturation magnetic flux density. A magnetic film having the following properties was obtained.

一方、磁気記録媒体は磁気ヘッドと接触する場合が多く
、耐摩耗性を向上させるという観点から、磁性薄膜上に
C,B、Si、BN、SiC,^IP等の非磁性被覆膜
を設けることが望ましい。
On the other hand, magnetic recording media often come into contact with magnetic heads, and from the viewpoint of improving wear resistance, a non-magnetic coating film such as C, B, Si, BN, SiC, IP, etc. is provided on the magnetic thin film. This is desirable.

〔実施例6〕 実施例1と同様のスパッタリング条件で、第1図の断面
図に示すような磁気記録媒体を作製した。
[Example 6] A magnetic recording medium as shown in the cross-sectional view of FIG. 1 was manufactured under the same sputtering conditions as in Example 1.

11は外径130IIIIlφ、内径40mφ、厚さ1
.9−のAl系合金からなる基板、12は膜厚3000
人のCr薄膜からなる磁性制御層、13は膜厚500人
のFe−4,7at%Ru 合金薄膜の磁性層である。
11 has an outer diameter of 130IIIlφ, an inner diameter of 40mφ, and a thickness of 1
.. 9- is a substrate made of Al-based alloy, 12 is a film thickness of 3000
The magnetic control layer 13 is made of a thin Cr film, and 13 is a magnetic layer made of a Fe-4,7 at% Ru alloy thin film with a thickness of 500.

本発明の磁気記録媒体の記録密度をギャップ長0.4μ
mのM n −Z nフェライトヘッドにより測定した
。ヘットの浮上量は0.28μmとした。
The recording density of the magnetic recording medium of the present invention is determined by a gap length of 0.4μ.
It was measured with a Mn-Zn ferrite head. The flying height of the head was 0.28 μm.

この結果、本発明の磁気記録媒体は20KPCI以上の
高い記録密度を達成できることがわかった。
As a result, it was found that the magnetic recording medium of the present invention can achieve a high recording density of 20 KPCI or more.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したごと(、El’ 6− Ru 、 
F e−Rh 、 F e −Ru −Rh系合金薄膜
は高保磁力および高飽和磁束密度を有する。特に飽和磁
束密度は1.8T以上であり、磁気記録媒体の高出力化
に有利である。また上記合金薄膜と非磁性基板との間に
他の組成の中間層を介在せしめることにより、磁性薄膜
の角形比を大きくすることができる。また上記合金簿膜
を用いて高記録密度の磁気記録媒体を作製することがで
きる。
As explained in detail above (, El' 6- Ru,
Fe-Rh, Fe-Ru-Rh based alloy thin films have high coercive force and high saturation magnetic flux density. In particular, the saturation magnetic flux density is 1.8 T or more, which is advantageous for increasing the output of magnetic recording media. Further, by interposing an intermediate layer having a different composition between the alloy thin film and the nonmagnetic substrate, the squareness ratio of the magnetic thin film can be increased. Furthermore, a magnetic recording medium with high recording density can be manufactured using the above-mentioned alloy film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の磁気記録媒体の側面図、第
2図は本発明の実施例におけるFe−Ru系合金薄膜の
保磁力および角形比のRu濃度依存性を示すグラフ、第
3図は本発明の実施例におけるF e −Ru系合金薄
膜の飽和磁束密度のRu濃度依存性を示すグラフ、第4
図は本発明の実施例におけるFe−Rh系合金N膜の保
磁力および角形比のRh濃度依存性を示すグラフ、第5
図は本発明の実施例におけるF e −Rh系合金簿膜
の飽和磁束密度のRh濃度依存性を示すグラフ、第6図
は本発明の実施例におけるCr中間層を有するPa−R
u系合金薄膜の保磁力および角形比のRu4度依存性を
示すグラフである。 11・・・基板、12・・・磁性制御層、13・・・磁
性層。 21.61・・・保磁力のRu 79度依存性、22゜
62・・・角形比のRu 11jlJ!i依存性、31
・・・飽和磁束密度のRulljl度依存性、41・・
・保磁力のRhlljll度依存性、42・・・角形比
のRh 濃度依存性、51・・・ギ 1 目 にU−濃攬 (ユf潰 にに濃度(パZ) にに1展(itt 7:少
FIG. 1 is a side view of a magnetic recording medium according to an embodiment of the present invention, and FIG. Figure 3 is a graph showing the Ru concentration dependence of the saturation magnetic flux density of the Fe-Ru alloy thin film in the example of the present invention.
The figure is a graph showing the Rh concentration dependence of the coercive force and squareness ratio of the Fe-Rh alloy N film in the example of the present invention.
The figure is a graph showing the Rh concentration dependence of the saturation magnetic flux density of the Fe-Rh alloy film in the example of the present invention.
It is a graph showing the Ru4 degree dependence of the coercive force and squareness ratio of a u-based alloy thin film. 11... Substrate, 12... Magnetic control layer, 13... Magnetic layer. 21.61...Ru 79 degree dependence of coercive force, 22°62...Ru 11jlJ of squareness ratio! i dependence, 31
...Rulljl degree dependence of saturation magnetic flux density, 41...
・Rhlljll degree dependence of coercive force, 42... Rh concentration dependence of squareness ratio, 51... Gi 7: small

Claims (1)

【特許請求の範囲】 1、非磁性基板上に磁性層を形成した磁気記録媒体にお
いて、上記磁性層がFe−Ru系合金薄膜から成り、上
記非磁性基板と磁性層との間に中間層を設けたことを特
徴とする磁気記録媒体。 2、上記Fe−Ru系合金薄膜のRu濃度が3〜10a
t%であることを特徴とする特許請求の範囲第1項に記
載の磁気記録媒体。 3、非磁性基板上に磁性層を形成した磁気記録媒体にお
いて、上記磁性層がFe−Rh系合金薄膜から成り、上
記非磁性基板と磁性層との間に中間層を設けたことを特
徴とする磁気記録媒体。 4、上記Fe−Rh系合金薄膜のRh濃度が3〜7at
%であることを特徴とする特許請求の範囲第3に記載の
磁気記録媒体。 5、非磁性基板上に磁性層を形成した磁気記録媒体にお
いて、上記磁性層がFe−Ru−Rh系合金薄膜からな
り、RuおよびRhの濃度(原子%)をそれぞれx、y
とするとき、0<y≦3、3≦x+y≦10なる関係を
満たし、上記非磁性基板と磁性層との間に中間層を設け
たことを特徴とする磁気記録媒体。
[Claims] 1. A magnetic recording medium in which a magnetic layer is formed on a non-magnetic substrate, wherein the magnetic layer is made of a Fe-Ru alloy thin film, and an intermediate layer is provided between the non-magnetic substrate and the magnetic layer. A magnetic recording medium characterized in that: 2. The Ru concentration of the Fe-Ru alloy thin film is 3 to 10a.
The magnetic recording medium according to claim 1, wherein the magnetic recording medium is t%. 3. A magnetic recording medium having a magnetic layer formed on a non-magnetic substrate, characterized in that the magnetic layer is made of a Fe-Rh alloy thin film, and an intermediate layer is provided between the non-magnetic substrate and the magnetic layer. magnetic recording media. 4. The Rh concentration of the Fe-Rh alloy thin film is 3 to 7 at.
% of the magnetic recording medium according to claim 3. 5. In a magnetic recording medium in which a magnetic layer is formed on a non-magnetic substrate, the magnetic layer is made of a Fe-Ru-Rh alloy thin film, and the concentrations (atomic %) of Ru and Rh are x and y, respectively.
A magnetic recording medium that satisfies the following relationships: 0<y≦3, 3≦x+y≦10, and further comprises an intermediate layer between the nonmagnetic substrate and the magnetic layer.
JP14371088A 1988-06-13 1988-06-13 Magnetic recording medium Pending JPH01312724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14371088A JPH01312724A (en) 1988-06-13 1988-06-13 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14371088A JPH01312724A (en) 1988-06-13 1988-06-13 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH01312724A true JPH01312724A (en) 1989-12-18

Family

ID=15345175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14371088A Pending JPH01312724A (en) 1988-06-13 1988-06-13 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH01312724A (en)

Similar Documents

Publication Publication Date Title
JPS62158306A (en) High density iron system magnetic material film and manufacture thereof
JPH0323972B2 (en)
JPH01312724A (en) Magnetic recording medium
JPS6153769B2 (en)
JPH04265511A (en) Magnetic recording medium
JPH0817032A (en) Magnetic recording medium and its production
JPS61222021A (en) Magnetic recording medium
JPS6313256B2 (en)
JPH0256724B2 (en)
JPH03132005A (en) Magnetic thin film and magnetic head using this film
JPH0628088B2 (en) Magnetic recording medium
JPH0432209A (en) Magnetic film
JPS62162223A (en) Thin film magnetic recording medium
JPH04188427A (en) Magnetic disk
JPH02175618A (en) Magnetic alloy
JP2551008B2 (en) Soft magnetic thin film
JPS5975428A (en) Vertically magnetized magnetic recording medium
JPS62154212A (en) Laminated iron/oxygen magnetic material film
JPS61255533A (en) Vertical magnetic recording medium and its production
JPS5998321A (en) Magnetic recording medium
JPH02214013A (en) Magnetic recording medium
JPH01232522A (en) Magnetic disk
JPS63146417A (en) Soft magnetic thin film
JPS6398823A (en) Magnetic recording medium and its production
JPH01102723A (en) Magnetic recording medium