JPS58200213A - Laser irradiating device of multiple optical path - Google Patents

Laser irradiating device of multiple optical path

Info

Publication number
JPS58200213A
JPS58200213A JP8316382A JP8316382A JPS58200213A JP S58200213 A JPS58200213 A JP S58200213A JP 8316382 A JP8316382 A JP 8316382A JP 8316382 A JP8316382 A JP 8316382A JP S58200213 A JPS58200213 A JP S58200213A
Authority
JP
Japan
Prior art keywords
laser
cell
lights
gass
high energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8316382A
Other languages
Japanese (ja)
Inventor
Atsushi Obara
敦 小原
Kusuo Ashibe
芦部 楠夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP8316382A priority Critical patent/JPS58200213A/en
Publication of JPS58200213A publication Critical patent/JPS58200213A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To resolve the lowness of the yield of reaction and the efficiency of energy use, by dividing a laser light into two or more and allowing respective laser lights to cross on an object to be irradiated after they pass the same optical path length. CONSTITUTION:A laser light 208 oscillated from a laser oscillator 201 is divided into two by a semitransparent mirror 202, and respective laser lights have optical paths changed by total-reflective mirrors 203 and 204 so that they cross on a gass cell 207. Laser lights are condensed in optical systems 203 and 204 if required and are made into parallel lights, and a sample in the gass cell is irradiated with these lights from window plates 305 and 306. Laser lights cross in the center of the gas cell to form a high energy area 306 and are totally reflected on specular walls of the gass cell and cross again in the center of the gas cell to form a high energy window area 307. Laser lights form several high energy areas in this manner and are discharged to the outside of the gass cell from a window plate 304.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明はレーザー光を使った反応を起こす際の、レーザ
ー光を照射するための多光路レーザー照射装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a multi-optical laser irradiation device for irradiating laser light when causing a reaction using laser light.

〔従来技術とその問題点〕[Prior art and its problems]

従来、レーザー発振器から発振されたレーザー光はレン
ズ、鏡等を用いてその光束の径や集光率を調整され、照
射用セル内に入れられた゛試料に対して、照射される。
Conventionally, a laser beam emitted from a laser oscillator is adjusted in diameter and condensing rate using lenses, mirrors, etc., and is irradiated onto a sample placed in an irradiation cell.

今、レーザーの出力をL (J)とするとレーザー光束
の径をレンズや鏡によりS(。i)にしぼるとレーザー
光のエネルギー密度はL/19(J/d)となる。この
時、レンズあるいハ窓板材を損傷させないレーデ−光の
エネルギー密度の上限をP(J/d)とすると、常にレ
ンズや窓板においてP>L/Sとなるように考慮せねば
ならず、この関係、かくずれると、レンズや窓板を損傷
させてしまう結果となる。このため、高エネルギー密度
のレーザー光が必、要とされる場合、図面にもとづいて
説明すると、@1図においてレンズ101および窓板1
02.103において許容エネルギー密度以下と々るよ
うに考慮しつつレンズ101でレーザー光105をしぼ
妙込み、照射用セル104内において所望のエネルギー
密度を得るようにする。しかし、′ながら、試料が液体
や気体の場合、レーデ−光によって有効に照射される試
料は、照射セル内の斜線をほどこした高エネルギー密度
領域106内に存在するものだけとなり、反応の効率が
、極めて悪く、かつ領域106内においても、かなりの
密度分布が生ずることとなり、均一なエネルギー密度の
下での照射が行なえないという不利がある。また、手元
に高出力のレーザー発振機が存在するにもかかわらず、
レンズや窓板の保護のためレーザー出力をいったん落と
した後、照射するという効率の悪い運転を行なう場合も
生じよう。
Now, if the laser output is L (J), and the diameter of the laser beam is reduced to S (.i) using a lens or mirror, the energy density of the laser beam becomes L/19 (J/d). At this time, if the upper limit of the energy density of radar light that does not damage the lens or window plate material is P (J/d), it must be considered that P > L/S at all times for the lens or window plate. If this relationship is violated, the lens or window plate will be damaged. Therefore, when a high energy density laser beam is required, the lens 101 and the window plate 1 in Figure @1 are explained based on the drawings.
At 02.103, the laser beam 105 is injected into the irradiation cell 104 to obtain a desired energy density by using the lens 101 while taking into consideration that the energy density does not exceed the allowable energy density. However, when the sample is a liquid or gas, the only sample that is effectively irradiated by the radar light is the one that exists within the diagonally shaded high energy density region 106 in the irradiation cell, which reduces the efficiency of the reaction. , which is extremely poor, and also causes a considerable density distribution within the region 106, which has the disadvantage that irradiation cannot be performed under uniform energy density. Also, despite the presence of high-power laser oscillators at hand,
There may also be cases where the laser output is temporarily lowered to protect the lens or window plate, and then irradiation is performed, which is an inefficient operation.

〔発明の目的〕[Purpose of the invention]

本発明の目的はレンズや窓板等の光学部品をそこなうこ
とな〈従来装置の反応の収率の悪さや、エネルギー利用
効率の悪さを解消するレーザー照射装置を提供すること
にある。
An object of the present invention is to provide a laser irradiation device that eliminates the poor reaction yield and energy utilization efficiency of conventional devices without damaging optical components such as lenses and window plates.

〔発明の概要〕[Summary of the invention]

本発明はレーザー発振器よシ発振されたレーザー光を、
2つ以上に分割し、それぞれのレーザー光を同じ光路長
通過後、ふたたび被照射物体において交わらせて構成し
た多光路レーザー照射装置であり、さらに分割後のレー
ザー光の光束をしぼ 。
The present invention uses laser light oscillated by a laser oscillator,
This is a multi-path laser irradiation device that divides the laser beam into two or more beams, passes the same optical path length, and then crosses each other again at the irradiated object.

リエネルギー密度を高めて構成した多光路レーザー照射
装置である。
This is a multi-path laser irradiation device configured with high re-energy density.

〔発明の実施例〕[Embodiments of the invention]

本発明を気体セル中の試料を照射する場合について、図
面にもとづいて説明すると、第2図においては、201
はレーザー発1辰機で極めて分解能の高いレーザー光を
発振する。202は、半透ミラーでレーザー発振d20
1で発振されたレーザー光208を分割する。203お
よび204は全反射ミラー、205および206は、レ
ンズや鏡等の組み合わせを表わしレーザーの光束をしぼ
ったり平行化したりする。207は照射用気体セルであ
る。光路長は全反射ミラー204あるいは205を通る
場合とで厳密に同一である。
The present invention will be explained based on the drawings regarding the case where a sample in a gas cell is irradiated. In Fig. 2, 201
is a single laser generator that emits extremely high-resolution laser light. 202 is a semi-transparent mirror for laser oscillation d20
The laser beam 208 oscillated in step 1 is divided. 203 and 204 are total reflection mirrors, and 205 and 206 are combinations of lenses, mirrors, etc., which narrow down or collimate the laser beam. 207 is an irradiation gas cell. The optical path length is exactly the same when passing through the total reflection mirror 204 or 205.

照射用気体セル207をさらに詳しく説明すると、第3
図において、301は照射用気体セル胴体で内面は、鏡
面状に加工されレーザー光を全反射する。
To explain the irradiation gas cell 207 in more detail, the third
In the figure, 301 is an irradiation gas cell body whose inner surface is mirror-finished and totally reflects the laser beam.

302.303および304は窓板でレーザーの種類に
より、レーザー波長における吸収の少ない材質のものを
使用する。305および306は、第2図の205およ
び206において集光されたレーリ”−光である。  
 1まだ、第2および第3図は、はん雑さを☆けるため
レーザー光の分割数を2つ場合としているが、実際の分
割数は気体セル内での必要とされるエネルギー密度およ
びレンズや窓板等での許容エネルギー密度を考慮して決
定される。
302, 303 and 304 are window plates, and depending on the type of laser, materials with low absorption at the laser wavelength are used. 305 and 306 are Rayleigh'-lights collected at 205 and 206 in FIG.
1. In Figures 2 and 3, the number of divisions of the laser beam is two to avoid complexity, but the actual number of divisions depends on the energy density required within the gas cell and the lens. It is determined by taking into account the allowable energy density of the window panels, etc.

上記のように構成さ五たレーザー照射装置において、レ
ーザー発振器201より発振されたレーザー光208は
、半透ミラー202 Kより2分割され、それぞれ全反
射ミラー203および204において、再び気体セル2
07において交わるよう釦光路を変更される。205お
よび206の光学系において必要ならばレーデ−光は集
光され、さらに平行光−とされて、窓板305および3
06から気体セル中の試着に照射される。レーザー光は
まず気体セル中心で交わり、高エネルギー密度の領域3
06を形成し、次に鏡状の気体セル壁において全反射さ
れ再び気体セル中心に訃いて、交わり高エネルギー密度
領域307を形成する。レーザー光はこれを数回くり返
した後、窓板304より気体セル外へ出る。
In the laser irradiation device configured as described above, the laser beam 208 emitted from the laser oscillator 201 is split into two parts by the semi-transparent mirror 202K, and then sent to the gas cell 2 again by the total reflection mirrors 203 and 204, respectively.
The button light paths are changed so that they intersect at 07. If necessary, the radar light is condensed in the optical systems 205 and 206, and further converted into parallel light, which is then applied to the window plates 305 and 3.
From 06 onwards, the fitting in the gas cell is irradiated. The laser beams first intersect at the center of the gas cell and form a region 3 with high energy density.
06, and then is totally reflected on the mirror-like gas cell wall and returns to the center of the gas cell, intersecting to form a high energy density region 307. After repeating this several times, the laser beam exits the gas cell through the window plate 304.

さらに、高エネルギー密度領域の気体セルに対する割合
は、気体セル内でのV−ブー光の反射回数の増加に伴な
い増加する。レーザー光の反射回数は、レーデ−光の気
体セルへの入射角θで決定されるため、全反射ミラー2
03および204の光軸に対する角度を調整することに
より、あるいは205および206の光学系において、
入射角θを設定することにより、高エネルギー密度領域
の気体セルに対する割合を調整できる。
Furthermore, the ratio of the high energy density region to the gas cell increases as the number of reflections of the V-boo light within the gas cell increases. The number of reflections of the laser beam is determined by the incident angle θ of the laser beam on the gas cell, so the total reflection mirror 2
By adjusting the angle with respect to the optical axis of 03 and 204, or in the optical system of 205 and 206,
By setting the incident angle θ, the ratio of the high energy density region to the gas cell can be adjusted.

また窓板304において、許容エネルギー密度を超える
部分ができる恐れのある場合には、第4図のごとく、“
窓板404および405をもうけレーザー光を気体セル
外へと導くことにより、その恐れを回硅する。
In addition, if there is a possibility that a portion of the window plate 304 that exceeds the allowable energy density may be formed, as shown in FIG.
This fear can be avoided by providing window plates 404 and 405 to guide the laser beam to the outside of the gas cell.

〔発明の効果〕〔Effect of the invention〕

このようにして構成されたレーザー照射装置は、レンズ
および窓板等の光学部品をそこなのことなく、照射用気
体セル内での高エネルギー密度領域の割合を大きくとれ
、さらに均一なレーザー光の重ね合わせとなるため均一
な高エネルギー密度分布を得られるため、従来と比べ試
料気体が多量のかつ一様な過程の反応を起こすという効
果がある。
The laser irradiation device configured in this way can increase the proportion of the high energy density region within the irradiation gas cell without disturbing optical parts such as lenses and window plates, and can evenly overlap the laser beams. Because of the combination, it is possible to obtain a uniform high energy density distribution, which has the effect of causing a large amount of sample gas to react in a uniform process compared to the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のレーデ−照射の例を示す説明図、第2
図は本発明によるレーデ−照射装置の略図、第3図は、
第2図で示した照射用気体セルの詳細図、44図は第2
南で示した照射用気体セルの能の実施料の詳細図である
。 101・・・レンズ、102・・・窓板、103・・・
窓板、104・・・照射用セル、105・・・レーダー
光、106・・・高エネルギー密度領域、 201・・・レーザー発振器、202・・・半透ミラー
、203・・・全反射ミラー、204・・・全反射ミラ
ー、205.206・・・レンズおよび鏡等の組み合わ
せ、207・・・照射用気体セlし、301・・・照射
用気体セル胴体、302,303,304・・・窓板、
305 、306・・・レージ1−光、307.308
,309・・・・・n・・・高エネルギー密度領域、4
01・・・照射用気体セル胴体、 402.403,404,405・・・窓板、406,
407・・・レーザー光、408 、409・・・n’
−1,n’・・・高エネルギー密度領域。 第  IWJ 第2図
Figure 1 is an explanatory diagram showing an example of conventional radar irradiation;
The figure is a schematic diagram of a radar irradiation device according to the present invention, and FIG.
Detailed view of the irradiation gas cell shown in Figure 2, Figure 44
It is a detailed diagram of the performance of the irradiation gas cell shown in the south. 101... Lens, 102... Window plate, 103...
Window plate, 104... Irradiation cell, 105... Radar light, 106... High energy density region, 201... Laser oscillator, 202... Semi-transparent mirror, 203... Total reflection mirror, 204... Total reflection mirror, 205. 206... Combination of lens and mirror, etc., 207... Gas cell for irradiation, 301... Gas cell body for irradiation, 302, 303, 304... window board,
305, 306...Rage 1-light, 307.308
,309...n...high energy density region, 4
01...Irradiation gas cell body, 402.403,404,405...Window plate, 406,
407...Laser light, 408, 409...n'
-1, n'...High energy density region. IWJ Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)レーザー発振器より発振されたレーザー光を2つ
以上に分割し、それぞれのレーザー光を同じ光路長の通
過後ふたたび被照射物体において交わらせることを特徴
とする多光路レーザー照射装置。
(1) A multi-optical laser irradiation device characterized in that a laser beam emitted from a laser oscillator is divided into two or more beams, and each laser beam is made to intersect at an irradiated object again after passing through the same optical path length.
(2)分割後・リレーブー光の光束をしぼりエネルギー
密度を高めることを特徴とする特許請求の範囲第1項記
載の多光路レーザー照射装置。
(2) The multi-optical laser irradiation device according to claim 1, characterized in that the luminous flux of the divided relay beam is narrowed down to increase the energy density.
JP8316382A 1982-05-19 1982-05-19 Laser irradiating device of multiple optical path Pending JPS58200213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8316382A JPS58200213A (en) 1982-05-19 1982-05-19 Laser irradiating device of multiple optical path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8316382A JPS58200213A (en) 1982-05-19 1982-05-19 Laser irradiating device of multiple optical path

Publications (1)

Publication Number Publication Date
JPS58200213A true JPS58200213A (en) 1983-11-21

Family

ID=13794584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8316382A Pending JPS58200213A (en) 1982-05-19 1982-05-19 Laser irradiating device of multiple optical path

Country Status (1)

Country Link
JP (1) JPS58200213A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105548048A (en) * 2015-12-29 2016-05-04 山东罗纳德分析仪器有限公司 Designing method and device of spectrum sampling gas chamber of multi-optical-path single gas chamber
CN109975298A (en) * 2019-04-29 2019-07-05 深圳开立生物医疗科技股份有限公司 A kind of Systems for optical inspection, specific protein analyzer and blood analyser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105548048A (en) * 2015-12-29 2016-05-04 山东罗纳德分析仪器有限公司 Designing method and device of spectrum sampling gas chamber of multi-optical-path single gas chamber
CN109975298A (en) * 2019-04-29 2019-07-05 深圳开立生物医疗科技股份有限公司 A kind of Systems for optical inspection, specific protein analyzer and blood analyser
CN109975298B (en) * 2019-04-29 2024-03-15 深圳开立生物医疗科技股份有限公司 Optical detection system, specific protein analyzer and blood analyzer

Similar Documents

Publication Publication Date Title
JPH06181153A (en) Optical drawing apparatus
JPS58200213A (en) Laser irradiating device of multiple optical path
JP2604395B2 (en) Laser processing method
JPH03138991A (en) Plural wavelength generating solid state laser
JPH02126242A (en) Light wavelength converting device
JPH04335514A (en) X-ray aligner
JP2751119B2 (en) Parallel light creation device
JPH01274487A (en) Optical wavelength converter
US3366892A (en) Solid state laser mode selection means
JPH0259192A (en) Laser beam equipment with large power
JPH0929467A (en) Laser beam machine
JPH04302186A (en) Solid-state laser oscillator, solid-state laser medium, laser resonator, and laser exposure device
JPS6358827A (en) Exposure device
US11914269B2 (en) Laser processing system
JPS5710284A (en) Laser device
JPH05341334A (en) Wavelength conversion device
JPH0318833A (en) Higher harmonic wave generating element and higher harmonic wave generator
JPH05323404A (en) Optical wavelength conversion element
JPS60153023A (en) Beam splitter device for high output laser
JPS58204580A (en) Pulse laser light emitting device
JPS54139749A (en) Isolator for semiconductor laser
JPH06350176A (en) Device for generating laser beam harmonics
JPH0394989A (en) Optical processing device
KR100219580B1 (en) Light source having the single wavelength
JPH0547637A (en) Light source device