JPS58200140A - Detector for ruggedness of tire side wall - Google Patents

Detector for ruggedness of tire side wall

Info

Publication number
JPS58200140A
JPS58200140A JP57083875A JP8387582A JPS58200140A JP S58200140 A JPS58200140 A JP S58200140A JP 57083875 A JP57083875 A JP 57083875A JP 8387582 A JP8387582 A JP 8387582A JP S58200140 A JPS58200140 A JP S58200140A
Authority
JP
Japan
Prior art keywords
tire
detector
circuit
signal
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57083875A
Other languages
Japanese (ja)
Other versions
JPH0151122B2 (en
Inventor
Tsutomu Kitamura
北村 務
Hiroaki Hattanda
八反田 博昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP57083875A priority Critical patent/JPS58200140A/en
Publication of JPS58200140A publication Critical patent/JPS58200140A/en
Publication of JPH0151122B2 publication Critical patent/JPH0151122B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/30Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring roughness or irregularity of surfaces

Abstract

PURPOSE:To accurately detect the ruggedness in the form of an electric signal by a method which is intended to obtain the difference between original signals resulted from sampling displacements of the tire side wall, which are detected by a detector, at predetermined time intervals and signals generated to be delayed by the predetermined number of samplings. CONSTITUTION:Displacements on the side wall surface of a rotating tire is detected by a detector 1 to generate signal voltage in proportion to the detected displacement amounts and signal voltages having the same values and delayed by the predetermined number of samplings. The difference between both signals is calculated in an arithmetic unit C to take out those displacements only which result from fine ruggedness present on the tire surface. By so doing, even with a simple circuit configuration, measure accuracy can be increased and fine ruggedness can be surely detected in the form of an electric signal.

Description

【発明の詳細な説明】 本発明は空気入りタイヤの側壁に生じている微小な口実
を正確に検出することが可能な口実検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an excuse detection device that can accurately detect minute excuses occurring on the sidewall of a pneumatic tire.

自動車タイヤの品質に関する需要者の関心は頓に高まっ
てきて、耐久性のほかにタイヤのバランスとユニフォー
ミティの良好なことが強く望まれており、そのためにタ
イヤ製造側においては、タイヤのバランス、ユニフォー
ミティの測定、修正ならびに合否判定を生産工程の重要
な一部として組み入れている。
Consumers' interest in the quality of automobile tires is rapidly increasing, and in addition to durability, tires are strongly desired to have good balance and uniformity. Uniformity measurement, correction, and pass/fail determination are incorporated as an important part of the production process.

さらにタイヤ製造過程にあって、タイ上カーカスを構成
するタイヤコードの接合部の重なりが過不足を生じたり
、側壁ゴム、インナーライチの接合部における重なりが
過不足することによって、往々にして発生するタイヤ側
壁表面の微小な口実に対しても需要者は敏感に反応して
、これ等口実がタイヤの耐久性、バランス、ユニフォー
ミティなど安全性や乗り心地には凡そ関係がないにも拘
らず品質の劣悪な製品として不信感を招く結果となり、
購入を避ける傾向が強いので、製造側においては内圧充
填状態で一定値を超える口実を側壁部に有するタイヤは
不良品として排除するようにしている。
Furthermore, during the tire manufacturing process, tire cords that make up the tie carcass often overlap at the joints, or when the sidewall rubber and inner lychee overlap at the joints. Customers react sensitively to minute excuses on the tire sidewall surface, and even though these excuses have nothing to do with tire durability, balance, uniformity, or other safety or ride comfort, they tend to be sensitive to quality issues. This resulted in a sense of distrust as the product was considered inferior.
Since there is a strong tendency to avoid purchasing tires, manufacturers reject tires that have an excuse for the internal pressure filling state to exceed a certain value on the side wall as defective products.

この場合、口実の存否の検査は通常検査員の視覚、触感
により行われているが、判定が不正確になり易くかつ多
くの工数を要するので機械化が強く望まれている。
In this case, the presence or absence of a pretext is normally tested by the inspector's sight and touch, but this tends to result in inaccurate judgments and requires a large number of man-hours, so mechanization is strongly desired.

その対策として例えば特開昭52−69659号にも示
される如き検出装置があるが、これは連結板上に該連結
板と被測定タイヤの表面との距離を一定に保つための回
転ローラと微小な口実の検出ローラとを設けた構成であ
るが、前記両ローラとの取付は距離や被測定タイヤの回
転速度に限界があって能率的でなく、実用装置としては
満足のゆくものではなかった。
As a countermeasure against this, there is a detection device as shown in Japanese Patent Application Laid-Open No. 52-69659, but this is equipped with a rotating roller and a minute roller on a connecting plate to keep the distance between the connecting plate and the surface of the tire to be measured constant. However, the installation of both rollers was not efficient due to limitations in distance and rotational speed of the tire to be measured, and was not satisfactory as a practical device. .

本発明はか\る従来の問題点に着目して、検出精度が高
く、かつ能率的=こ夕・:、イヤ側壁の微小口実を検出
し得る装置を提供するべく成されたものであって、特に
検出器によって検出したタイヤ側壁の変位を、一定時間
々隔毎にサンプリングした原信号と、予め決定されてな
るサンプリング数だけ極く短時間遅らせ発生せしめた前
記原信号と同値の信号との差を求めることによって口実
を電気信号として確実に検出し得る如くした構成を特徴
とする。
The present invention has been made to address these conventional problems and provide a highly accurate and efficient device capable of detecting minute pretexts on the ear side wall. In particular, the displacement of the tire side wall detected by a detector is sampled at regular time intervals, and an original signal is generated, and a signal with the same value as the original signal is generated after a very short delay by a predetermined number of samplings. It is characterized by a configuration in which the pretext can be reliably detected as an electrical signal by determining the difference.

以下、添付図面を参照しつつ本発明の1例について詳述
する。
Hereinafter, one example of the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明装置の1例の概要示構造図であって、被
測定タイヤ(T)は図示しない測定用リムに装着されて
、所定圧力の圧縮空気の充填下で通常は水平に保持し回
転装置によって所定速度で回転させるが、勿論水゛平以
外の姿勢でもよく、要はタイヤ中心軸まわりに所定速度
で回転せしめる。゛(1)は検出器で検出ヘラ菖2)例
えば光学式非接触変位検出器と、処理器(3)とからな
っており、その投射光線が被測定タイヤ(T)の測定局
面に直角になる方向に所定距離を隔てて取付けられてお
り、前記投射光線の反射光線を受光し、その光量を電流
   1に変換して処理器(3)に送るようになってい
る。
FIG. 1 is a schematic structural diagram of one example of the device of the present invention, in which a tire to be measured (T) is mounted on a measuring rim (not shown) and is normally held horizontally while being filled with compressed air at a predetermined pressure. The tire is rotated at a predetermined speed by a rotation device, but of course it may be in a position other than horizontal, and the key is to rotate the tire at a predetermined speed around the center axis of the tire. 2) For example, it consists of an optical non-contact displacement detector and a processor (3), whose projected light beam is perpendicular to the measurement plane of the tire to be measured (T). They are installed at a predetermined distance in each direction, receive the reflected light beam of the projected light beam, convert the amount of light into electric current 1, and send it to the processor (3).

上記処理器(3)は検出ヘッド(2)の出力電流を電圧
に変換し増巾して演算器(C)に送るための増巾器であ
る。
The processor (3) is an amplifier that converts the output current of the detection head (2) into a voltage, amplifies it, and sends it to the arithmetic unit (C).

(4)は前記タイヤ(T)との同期回転可能に設けたロ
ータで、固定した近接スイッチ(5)と組合わされて該
スイッチ(5)を開閉してタイヤ(’I’)の1回転ご
とに1回のパルスを発生させ演算器(C)に送るように
なっている。
(4) is a rotor provided to be able to rotate synchronously with the tire (T), and is combined with a fixed proximity switch (5) to open and close the switch (5) every rotation of the tire ('I'). It is designed to generate one pulse each time and send it to the arithmetic unit (C).

(6)ハパルスエンコーダで、タイヤ(T)と同期回転
して、タイヤtT)の1回転毎に所定数のパルスを発生
し演算器(3)に送らせる。
(6) The Hapulus encoder rotates synchronously with the tire (T) to generate a predetermined number of pulses for each rotation of the tire (tT) and send them to the computing unit (3).

前記演算器(C)は第2図にブロック示オる構成であっ
て、サンプリング回路(7)、遅延回路(8)、差動増
巾回路(9)Bよび比較回路t10)からなっている。
The arithmetic unit (C) has the configuration shown in the block diagram in FIG. 2, and consists of a sampling circuit (7), a delay circuit (8), a differential amplification circuit (9)B, and a comparison circuit t10). .

サンプリング回路(7)は前記処理器(2)の出力電圧
信号を一定時間々隔毎にサンプリングする周知の回路で
あって、パルス臣ンコーダ(6)からの同期信号に応じ
て作動し、差動増巾回路(9)および遅延回路(8)に
出力を発する。
The sampling circuit (7) is a well-known circuit that samples the output voltage signal of the processor (2) at fixed time intervals, and operates in response to a synchronizing signal from the pulse encoder (6). Output is provided to the amplification circuit (9) and the delay circuit (8).

遅延回路(8)はパルスエンコーダ(6)の同期信号に
応じて作動し、検出目標とする微小な口実に対応オる範
囲の波長域を前記サンプリング間隔に換算   □した
予め決定されてなるサンプリング数に見合って極く短い
時間だけ遅延して出力するようになっている。
The delay circuit (8) operates in response to the synchronization signal of the pulse encoder (6), and converts the wavelength range that corresponds to the minute pretext that is the detection target into the sampling interval. The output is delayed for a very short time to compensate for the delay.

差動増巾回路(9)はパルスエンコーダ(6)の同期信
号を受けると、サンプリング回路(7)の出力から遅延
回路(81の出力を減じる差算を行って比例増巾した出
力を発する。
When the differential amplification circuit (9) receives the synchronization signal from the pulse encoder (6), it performs a subtraction to subtract the output of the delay circuit (81) from the output of the sampling circuit (7), and generates a proportionally amplified output.

比較回路1(1)は差動増巾回路(9)の出力と予め決
められた許容値(基準値)との比較を行い、出力が許容
値より大きいか小さいかの違いSこよる信号を合否信号
として発する。
Comparison circuit 1 (1) compares the output of differential amplification circuit (9) with a predetermined tolerance value (reference value), and generates a signal based on the difference S whether the output is larger or smaller than the tolerance value. Issued as a pass/fail signal.

以上述べた構成番こなる検出装置による口実部検出の態
様を以下説明すると、被測定タイヤ(T)を内圧充填の
状態で前記回転装置により回転せしめ、検出ヘッド(2
)とタイヤ側壁面との間に所定関係位置を保持せしめる
The mode of pretext detection by the detection device having the above-mentioned configuration will be explained below. The tire to be measured (T) is rotated by the rotation device in a state filled with internal pressure, and the detection head (2
) and the tire side wall surface to maintain a predetermined relative position.

検出器(1)は予めその投射光線がタイヤ(T)の測定
局表面と直角になるよう調整を行っておく。検出ヘッド
(2)はタイヤ(T)の測定周表面からの反射光線受光
するが、その際、反射光線量は検出ヘッド(21とタイ
ヤ+T+の測定面との距離に応じ変化するので、受光部
はタイヤ(T+の測定表面の変位に比例する反射光線を
受光してこれを電流に変換し処理器(3)に送る。
The detector (1) is adjusted in advance so that its projected light beam is perpendicular to the measurement station surface of the tire (T). The detection head (2) receives reflected light from the measurement surface of the tire (T), but at this time, the amount of reflected light changes depending on the distance between the detection head (21) and the measurement surface of the tire +T+. receives the reflected light beam proportional to the displacement of the measurement surface of the tire (T+), converts it into an electric current, and sends it to the processor (3).

上記処理器(3)はこの出力電流を電圧に変換しかつ増
巾して演算器(C)!こ送る。
The processor (3) converts this output current into voltage and amplifies it to the arithmetic unit (C)! Send this.

ところで処理器(3)が発する出力電圧信号は、第3図
(イ)において例示しているが、タイヤ(T)の表面の
変位を表わす波形のうち、周期の長い波形はタイヤ表面
の周期の長い同突やタイヤ中の不同による変位であり、
一方、周期の短い波形はタイヤ表面の微小な同突にもと
づく変位である。
By the way, the output voltage signal emitted by the processor (3) is illustrated in FIG. Displacement due to a long collision or unevenness in the tire.
On the other hand, a waveform with a short period is a displacement based on a minute collision on the tire surface.

従って周期の短い変化率の大なる波形と、周期の長い変
化のゆるやかな波形とを区別することによって口実祁の
検出が可能となるのは当然である。
Therefore, it is natural that pretexts can be detected by distinguishing between a waveform with a large rate of change with a short period and a waveform with a slow change with a long period.

演算器(C)はエンコーダ(6)か(のパルスを受ける
度毎に、その時点での処理器(′3)より受は入れた信
号から第3図(イ)の原信号と第3図(ロ)の遅延信号
との2種の信号を取り出して、両信号の差を算出し、周
期の長い同突やタイヤ中の不同に起因する信号の部分は
、第3図(ハ)から明らかなように差が少くて略々、用
膜されることとなり、一方、微小な同突に起因する信号
の部分は変化率が大きいために信号の差も大きくなって
、第3図(ハ)に示す如くタイヤ側壁表面に形成された
微小な同突に起因する信号要素だけが顕著に現出してな
る波形の信号が差動増巾回路(9)から出力される。
Every time the arithmetic unit (C) receives a pulse from the encoder (6), it converts the signal received from the processor ('3) at that time into the original signal shown in Figure 3 (A) and the original signal shown in Figure 3 (A). The two types of signals (B) and the delayed signal are extracted, and the difference between the two signals is calculated. The signal portions caused by long-cycle collisions or discrepancies in the tires are clearly identified in Figure 3 (C). As shown in Fig. 3 (c), the difference in the signal is small and the signal is almost completely removed. As shown in FIG. 2, a waveform signal in which only signal elements caused by minute collisions formed on the tire side wall surface appear conspicuously is output from the differential amplification circuit (9).

従って比較回路10)において基準値となる設定値との
比較を行って合否の判定を自動的に行わせるととができ
安定した検査結果と、検査工数の節減が得られる。
Therefore, if the comparator circuit 10) makes a comparison with a set value serving as a reference value and automatically makes a pass/fail determination, stable test results and a reduction in test man-hours can be obtained.

上述例における演算器(C)はアナログ回路で構成した
ものを示しているが、これをディジタルコンピュータに
代替することは容易であって、この場合には前記サンプ
リング数を測定タイヤのサイズ毎に複数個設定す、るこ
とか可能であり、また必要ならば、実際にはある巾を持
つ微小な同突の波長域Sこ対し、同一測定において遅延
パルス数を複数個設けることで測定誤差を小さくするこ
とも容易である。
Although the arithmetic unit (C) in the above example is constructed from an analog circuit, it is easy to replace it with a digital computer. If necessary, it is possible to set multiple delay pulses in the same measurement, and if necessary, it is possible to reduce the measurement error by setting multiple delayed pulses in the same measurement. It is also easy to do.

本発明は以上述べたように、回転するタイヤの側壁表面
の変位を検出器(1)により検出し、その検出した変位
量に比例関係を有する信号電圧と、これに等値でかつ所
定サンプリング数遅逗した信号づく変位だけを収り出す
ようにしたので、簡単な回路構成でありながら測定両度
を高くすることができる。
As described above, the present invention detects the displacement of the side wall surface of a rotating tire with a detector (1), and generates a signal voltage having a proportional relationship to the detected displacement amount and a predetermined sampling number equal to this and a signal voltage having a proportional relationship to the detected displacement amount. Since only the displacement caused by the delayed signal is collected, it is possible to increase the accuracy of measurement with a simple circuit configuration.

さらに、高速下での測定に際しても正伽に応答すること
が可能であって検査の合理化に寄与するところ大なるも
のがある。
Furthermore, it is possible to respond accurately even during measurements at high speeds, which greatly contributes to streamlining inspections.

また、検出器を被測定タイヤの両側に設けることによっ
て同時に両側壁の検査も可能であり、必要に応じて片側
に複数個設は数個所の測定両面1こ対し同時測定が可能
であるなど本発明の適用範囲は頗る広汎であって、実用
価値の大なる口実検出装置である。
In addition, by installing detectors on both sides of the tire to be measured, it is possible to inspect both walls at the same time, and if necessary, multiple detectors can be installed on one side, making it possible to simultaneously measure both sides of several locations. The scope of application of the invention is extremely wide, and it is a pretext detection device with great practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置列に係る概要示構造図、第2図は第
1図における演算器のブロック示回路図、第3図(イ)
〜i/→は本発明装置例に係る各出力部の出力信号線図
で、(イ)はサンプリング回路の出力磁圧、(ロ)は遅
延回路の出力電圧、(ハ)は差動増巾回路の出力電圧を
夫々示す。 (T)・・・・・・・・・・・・被測定タイヤ。 (1)・・・・・・・・・・・検出器。 (7)・・・・・・・・・・サンプリング回路。 (8)・・・・・・・・・・・・連通回路。 (9)・・・・・・・・・・・差動増幅回路。 (10)・・・・・・・・・・・比較回路。 1112図 C 第3図 (イ) 社力       (0) (l\)
Fig. 1 is a schematic structural diagram of the device array of the present invention, Fig. 2 is a block diagram of the arithmetic unit in Fig. 1, and Fig. 3 (A).
~i/→ is an output signal diagram of each output section according to the example of the device of the present invention, (a) is the output magnetic pressure of the sampling circuit, (b) is the output voltage of the delay circuit, and (c) is the differential amplification. The output voltages of the circuits are shown respectively. (T)・・・・・・・・・Tire to be measured. (1)・・・・・・・・・Detector. (7) Sampling circuit. (8)・・・・・・・・・Communication circuit. (9)・・・・・・・・・Differential amplifier circuit. (10)・・・・・・・・・Comparison circuit. 1112 Figure C Figure 3 (a) Corporate power (0) (l\)

Claims (1)

【特許請求の範囲】[Claims] 1、被測定タイヤ(T)を所定圧力の圧縮空気の充填下
でタイヤ中心軸まわりに所定速度で回転させる回転装置
、前記被測定タイヤ(T)の側壁表面におけるタイヤ巾
方向の物理的変位を検出して電圧信号に変換する検出器
(1)、該検出器(1)の電圧信号を一定時間々隔毎に
サンプリングするサンプリング回路(7)、前記検出器
(1)からの電圧信号のうち検出目標である微小な口実
に対応する範囲の波長域を前記サンプリング間隔に換算
した予め決定されてなるサンプリング数に見合って極く
短時間遅鳳させて出力する遅延回路(8)、前記サンプ
リング回路(7)からの原信号と前記遅延回路(8)か
らの遅延信号との差を求める差動増幅回路(9)、該差
動増幅回路(9)の出力を予め設定された許容値と比較
して合否を決定する比較回路帥からなることを特徴とす
るタイヤ側壁の口実検出装置。
1. A rotating device that rotates the tire to be measured (T) at a predetermined speed around the tire center axis while being filled with compressed air at a predetermined pressure; A detector (1) that detects and converts it into a voltage signal, a sampling circuit (7) that samples the voltage signal of the detector (1) at fixed time intervals, and a voltage signal from the detector (1). a delay circuit (8) for delaying and outputting a wavelength range corresponding to a minute pretext that is a detection target for an extremely short period of time commensurate with a predetermined sampling number converted into the sampling interval, and the sampling circuit; A differential amplifier circuit (9) for determining the difference between the original signal from (7) and the delayed signal from the delay circuit (8), and compares the output of the differential amplifier circuit (9) with a preset tolerance value. A device for detecting a pretext on a tire sidewall, comprising a comparison circuit for determining pass/fail.
JP57083875A 1982-05-17 1982-05-17 Detector for ruggedness of tire side wall Granted JPS58200140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57083875A JPS58200140A (en) 1982-05-17 1982-05-17 Detector for ruggedness of tire side wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57083875A JPS58200140A (en) 1982-05-17 1982-05-17 Detector for ruggedness of tire side wall

Publications (2)

Publication Number Publication Date
JPS58200140A true JPS58200140A (en) 1983-11-21
JPH0151122B2 JPH0151122B2 (en) 1989-11-01

Family

ID=13814825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57083875A Granted JPS58200140A (en) 1982-05-17 1982-05-17 Detector for ruggedness of tire side wall

Country Status (1)

Country Link
JP (1) JPS58200140A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0242306A (en) * 1988-02-12 1990-02-13 Sumitomo Rubber Ind Ltd Inspecting device for side wall of tire
JP2012513029A (en) * 2008-12-19 2012-06-07 ミシュラン ルシェルシュ エ テクニーク ソシエテ アノニム Filtering method for improving data quality of geometric tire measurements
US8712720B2 (en) 2008-12-19 2014-04-29 Michelin Recherche at Technigue S.A. Filtering method for improving the data quality of geometric tire measurements
US9569563B2 (en) 2010-06-14 2017-02-14 Michelin Recherche Et Technique S.A. Method for prediction and control of harmonic components of tire uniformity parameters

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4866886A (en) * 1971-12-17 1973-09-13
JPS5269659A (en) * 1975-12-09 1977-06-09 Yokohama Rubber Co Ltd Apparatus for detecting bumpiness of tire
JPS55136943A (en) * 1979-04-12 1980-10-25 Hitachi Cable Ltd Inspection apparatus for surface condition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4866886A (en) * 1971-12-17 1973-09-13
JPS5269659A (en) * 1975-12-09 1977-06-09 Yokohama Rubber Co Ltd Apparatus for detecting bumpiness of tire
JPS55136943A (en) * 1979-04-12 1980-10-25 Hitachi Cable Ltd Inspection apparatus for surface condition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0242306A (en) * 1988-02-12 1990-02-13 Sumitomo Rubber Ind Ltd Inspecting device for side wall of tire
JP2012513029A (en) * 2008-12-19 2012-06-07 ミシュラン ルシェルシュ エ テクニーク ソシエテ アノニム Filtering method for improving data quality of geometric tire measurements
US8712720B2 (en) 2008-12-19 2014-04-29 Michelin Recherche at Technigue S.A. Filtering method for improving the data quality of geometric tire measurements
US9569563B2 (en) 2010-06-14 2017-02-14 Michelin Recherche Et Technique S.A. Method for prediction and control of harmonic components of tire uniformity parameters

Also Published As

Publication number Publication date
JPH0151122B2 (en) 1989-11-01

Similar Documents

Publication Publication Date Title
US9146136B2 (en) Axis run-out measuring method and angle detecting device with self-calibration function having axis run-out measuring function
CA1319992C (en) Method of detecting defects in pneumatic tire in non-destructive manner
JPH02296127A (en) Method for inspecting defect of pneumatic tire
JPS6230361B2 (en)
JPH02110845U (en)
EP3163282B1 (en) Method for characterizing tire uniformity machines
JPS57173701A (en) Eddy current type device and method for measuring rail displacement
JPH0713564B2 (en) Tire sidewall inspection equipment
JPS58200140A (en) Detector for ruggedness of tire side wall
US6834559B1 (en) Vibration compensation system for tire testing systems
US4545239A (en) Method and apparatus for controlling the quality of tires
KR20180032459A (en) Method for measuring Suspended Particle in air
JPS5940133A (en) Fourier transform spectrophotometer
JPH0634360A (en) Steel plate shape measuring method
JPH01176911A (en) Method and device for measuring external tire diameter in uniformity machine
JPH0151925B2 (en)
JPH0765894B2 (en) Tire shape inspection method
JP4741126B2 (en) Vibration correction system for tire test system
JPH02115739A (en) Correcting method for measured value of rolling resistance of tire
JPS6298210A (en) Dimension measuring instrument for mobile object
SU1642289A1 (en) Method and device for determining coefficient of longitudinal non-uniformity in pressure distribution over tyre contact area
SU1572867A1 (en) Method of detecting in train units of rolling stock having faulty under-carriages
JPS61217713A (en) Apparatus for measuring radial deflection of disc wheel for vehicle
EP1203213A1 (en) Vibration compensation system for tire testing systems
JPH04120411A (en) Detecting apparatus for groove of component such as cam shaft