JPS58200125A - Method for measuring amount of eccentricity of lens system - Google Patents

Method for measuring amount of eccentricity of lens system

Info

Publication number
JPS58200125A
JPS58200125A JP8448182A JP8448182A JPS58200125A JP S58200125 A JPS58200125 A JP S58200125A JP 8448182 A JP8448182 A JP 8448182A JP 8448182 A JP8448182 A JP 8448182A JP S58200125 A JPS58200125 A JP S58200125A
Authority
JP
Japan
Prior art keywords
lens
eccentricity
amount
measured
reference axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8448182A
Other languages
Japanese (ja)
Inventor
Masayuki Usui
臼井 正幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8448182A priority Critical patent/JPS58200125A/en
Publication of JPS58200125A publication Critical patent/JPS58200125A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To obtain the amount of eccentricity of a lens system to be measured readily, by combining the lens system, whose amount of eccentricity is to be measured, and an optical system, whose amount of eccentricity with respect to a reference axis displaying the amount of eccentricity is known, and measuring the amount of deflection. CONSTITUTION:In the inside of a lens mounting mechanism 10, e.g. a single lens 20 is built in advance. An amount of eccentricity epsilon with respect to a reference axis B' of said single lens 20 is already known. Under the state a photograph lens LX is attached to the lens mounting mechanism 10, each surface in the photograph lens LX are measured, and each surface of the single lens 20 in the lens mounting mechanism 10 is measured at the same time. By this measurement, the amount of deflection DELTA of a reflected image I2 by each lens surface of the photograph lens LX and the surfaces of the single lens 20 is measured. In this way, the amount of eccentricity of each surface with respect to a measuring reference axis B and the eccentricity epsilon of the two surfaces of the single lens 20 can be readily obtained.

Description

【発明の詳細な説明】 本発明は、偏心量を表示すべき特定の基準軸に対するレ
ンズ系の偏心量測定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the amount of eccentricity of a lens system with respect to a specific reference axis for which the amount of eccentricity is to be displayed.

組1″fてられたレンズ系内の個々のレンズ面の偏心量
を、定量的に測定する方法として従来から行われている
方法は、1−トコリメーション反射方式が一般的である
。このオートコリメーシプン反射方式とは、第1図に示
すようにレンズ系を構成する各レンズ面S1、S2. 
S3、S4、φ番1のうち、測定をしようとする面であ
る例えば面Slの見かけの曲率中心、即ち被測定面と観
察系と・の間に存在する別の面によって生ずる被測定面
の虚像の曲率中心の位置Aに、オートコリメーションに
よって指標Iによる指標像■1を投影し、面S1による
等倍の反射像I2をAと同じ位置に生じさせる方式であ
る。このとき、測定の基準軸Bに関して全ての面に偏心
がなければ、この基準軸B上に指標像11の反射像I2
が形成されるが、若し何れかの面に偏心が存在すれば、
基準軸Bと直交し紙面に平行なY方向にΔy、或いは紙
面と直交するZ方向にΔ2だけふれた位置に反射像I2
が形成される。このふれ量Δy及びΔ2(以下略してΔ
とする)は個々の面の偏心量εに比例するので、各面に
ついてその見かけの曲率中心位置に投影した指標像■1
のこのようなふれ量Δの測定値を得れば、計算によって
この測定基準軸Bに対する各面の偏心量εを求めること
ができる。
The conventional method for quantitatively measuring the amount of eccentricity of each lens surface in a lens system with a set of 1"f is the 1-tocollimation reflection method. The collimated reflection method means that each lens surface S1, S2, .
Among S3, S4, and φ No. 1, the apparent center of curvature of the surface to be measured, for example, the surface Sl, that is, the surface to be measured caused by another surface existing between the surface to be measured and the observation system. This is a method in which an index image (1) by the index I is projected at the position A of the center of curvature of the virtual image by autocollimation, and a reflected image I2 of the same size by the surface S1 is generated at the same position as A. At this time, if there is no eccentricity on all surfaces with respect to the measurement reference axis B, the reflected image I2 of the index image 11 will be on this reference axis B.
is formed, but if there is eccentricity on either side,
The reflected image I2 is at a position shifted by Δy in the Y direction perpendicular to the reference axis B and parallel to the paper surface, or by Δ2 in the Z direction perpendicular to the paper surface.
is formed. These deflection amounts Δy and Δ2 (hereinafter abbreviated as Δ
) is proportional to the eccentricity ε of each surface, so the index image ■1 projected onto the apparent center of curvature of each surface
If such a measured value of the amount of deviation Δ is obtained, the amount of eccentricity ε of each surface with respect to this measurement reference axis B can be determined by calculation.

このオートコリメーション方式には、例えば光学工業技
術研究組合技術資料第5巻第14号第14頁以降に記載
されている第2図(a)に示すような所謂レンズ回転方
式、或いは特公昭51−9620号公報に記載されてい
る第2図(b)に示すようなイメージローテータを応用
したレンズ静止方式等が挙げられる。前者は基準軸Bに
沿って光源l、レンズ2により、指標工を被測定レンズ
系りの各レンズ面St、 S2、S3、O・・・の予め
定められた曲率中心位置に順次投影する。この指標工を
ハーフミラ−3、結像レンズ4を介して被測定レンズ系
りの該当レンズ面で反射させ等倍の反射像I、を形成す
る。そして、被測定レンズ系りを基準軸Bを中心に回転
させながら、反射像工2をハーフミラ−3により側方に
反射し結像面5に反射像I2を結像させ、接眼レンズ6
を通じてふれ量Δを観察する方法である。また、後者は
被測定レンズ系りを回転させることなく、基準指標投影
光学系7、イメージローテータ8により発生させた力線
を基準線Bとしてハーフミラ−9により測定光学系に供
与し、同様の測定を実施するものである。
This autocollimation method includes, for example, the so-called lens rotation method as shown in FIG. 2(a) described in Optical Industry Technology Research Association Technical Data Vol. Examples include a lens stationary system using an image rotator as shown in FIG. 2(b) described in Japanese Patent No. 9620. The former uses a light source 1 and a lens 2 along a reference axis B to sequentially project an index onto a predetermined center of curvature position of each lens surface St, S2, S3, O, . . . of the lens system to be measured. This indexing element is reflected by the corresponding lens surface of the lens system to be measured via the half mirror 3 and the imaging lens 4 to form a reflected image I of equal magnification. Then, while rotating the lens system to be measured around the reference axis B, the reflective imager 2 is reflected laterally by the half mirror 3 to form a reflected image I2 on the imaging surface 5, and the eyepiece 6
This is a method of observing the amount of deflection Δ through. In the latter case, the line of force generated by the reference target projection optical system 7 and the image rotator 8 is applied to the measuring optical system by the half mirror 9 as the reference line B, without rotating the lens system to be measured, and similar measurements can be made. The purpose is to implement the following.

このときの偏心量εとは、何か成る基準の直線に対する
被測定レンズ系り内の個々の球面の曲率中心のずれ量を
意味する。このための基準直線として、前記レンズ回転
方式の場合には被測定レンズ系りを回転する回転軸Bが
、そして前記レンズ静止方式の場合にはイメージローテ
ータ8によって発生された直線が使われている。しかし
、この基準直線は一般に被測定レンズ系りと無関係に設
定されたものであって、その設定の仕方によっては被測
定レンズ系りの偏心が少ないにも拘らず、−見大きな偏
心量(を有するように見えることもある。例えば、前記
のレンズ回転方式において、偏心が少ないレンズであっ
ても回転軸に対する取付は方が悪いと全体として回転軸
に対して大きな片寄りが生じ、そのまま測定したのでは
大きな偏心量εを持つことになることがある0例えば、
第3図に示すように本来B′であるべき筈の基準軸を取
付は方によってBとすると、正しくは各レンズ面S1、
S2、S3、S4.  φ・・の偏心量がEl、E2、
E3、seeであるのに、偏心量がel、 e2. e
3、・・・のように測定されてしまうことになる。この
ような問題に対する従来の対策としては、一旦得られた
偏心量εに対して、例えば最小自乗法を用いて偏心量ε
が平均的に最も小さくなるような直線を新たに計算して
求める方法や、例えば玉押しによって造られたレンズの
場合には、玉押しに使用した雇いねじを利用して、回転
軸にレンズを取付けるといった方法が採られている。し
かし、前者のように計算で新たな直線を求める方法は、
レンズの実際の使用状態での偏心とは関係がないので、
例えばレンズ系内の偏心は少ないがレンズ系全体がマウ
ントに対して偏心している場合はそれに関する情報が得
られない、また、後者は玉押し以外の製作方法で造られ
、基準とするに足る雇いねじ等を有しないレンズ、例え
ば大量生産方式で作られる写真レンズ等には適用できな
い。
The eccentricity ε in this case means the amount of deviation of the center of curvature of each spherical surface in the lens system to be measured with respect to some reference straight line. As a reference straight line for this purpose, in the case of the lens rotation method, the rotation axis B around which the measured lens system is rotated is used, and in the case of the lens stationary method, the straight line generated by the image rotator 8 is used. . However, this reference straight line is generally set independently of the lens system to be measured, and depending on how it is set, it may result in an apparently large amount of eccentricity (even though the eccentricity of the lens system to be measured is small). For example, in the above-mentioned lens rotation method, even if the lens has little eccentricity, if it is improperly mounted to the rotation axis, there will be a large deviation from the rotation axis as a whole. For example, it may have a large eccentricity ε.
As shown in Fig. 3, if the reference axis that should originally be B' is B depending on the installation method, then each lens surface S1,
S2, S3, S4. The eccentricity of φ... is El, E2,
E3, see, but the eccentricity is el, e2. e
3. It will be measured as follows. As a conventional solution to such problems, the eccentricity ε is calculated using the least squares method, for example, for the eccentricity ε once obtained.
For example, in the case of a lens made by cone pressing, you can use a hired screw used for cone pressing to attach the lens to the axis of rotation. A method of mounting is used. However, the method of finding a new straight line by calculation, as in the former method,
It has nothing to do with the eccentricity of the lens in actual use.
For example, if there is little eccentricity within the lens system, but the entire lens system is eccentric with respect to the mount, no information about this can be obtained; This method cannot be applied to lenses that do not have screws or the like, such as photographic lenses made in mass production.

本発明の目的は、上述の問題点を解決し、実用的に有用
な基準軸に対する偏心が測定可能なレンズ系の偏心量測
定方法を提供することにあり、その要旨は、レンズ系の
予め計算された位置に指標像を投影し、被測定レンズ系
内の被測定面による反射像の基準軸からのふれ量を観察
光学系を用いて測定し、計算により各レンズ面の偏心量
を求める光反射方式の偏心量測定方法において、偏心量
を測定すべき被測定レンズ系を、偏心量を表示する基準
軸に対する偏心量が既知の光学系と組合せてふれ量を測
定することにより、前記基準軸に対する被測定レンズ系
の各面の偏心量を求めることを特徴とする方法である。
An object of the present invention is to solve the above-mentioned problems and provide a method for measuring the amount of eccentricity of a lens system, which is capable of measuring a practically useful eccentricity with respect to a reference axis. A light beam that projects an index image onto the specified position, measures the amount of deflection from the reference axis of the image reflected by the surface to be measured in the lens system to be measured using an observation optical system, and calculates the amount of eccentricity of each lens surface. In the reflection method for measuring eccentricity, the lens system to be measured for eccentricity is measured by combining the lens system whose eccentricity is to be measured with an optical system whose eccentricity is known relative to the reference axis that displays the eccentricity to measure the amount of deflection. This method is characterized by determining the amount of eccentricity of each surface of the lens system to be measured relative to the measured lens system.

以下に第4図以下に図示の実施例に基づいて本発明の方
法を詳細に説明する。
The method of the present invention will be explained in detail below based on the embodiments shown in FIG. 4 and below.

第4図において、Lxは被測定レンズ系である例えば写
真レンズであって1個々に偏心量を測定すべき複数個の
レンズを有し、この写真レンズLxはカメラのレンズマ
ウント部と同じ構造を持つレンズマウント機構10に装
着する。この写真レンズLllの偏心状態を表すための
実用的な基準は、基準軸B′であり、この基準軸B′は
レンズマウント機構lOの中心軸、即ちレンズマウント
機構lOに写真レンズLxが突き当るフランジ面11に
垂直で、かつこの2レンズ面llに直交する平面内で写
真レンズLxの位置を規制すする円筒面12の中心を通
る線である。このレンズマウント機構10の内部には、
予め例えば単レンズ20が組込まれていて、この単レン
ズ20の基準軸B′に対する偏心量εは既に判っている
ものとする。単レンズ20の基準軸B′に対する偏心量
εは、このレンズマウント機構10を製作する際に同時
に測定することによって容易に知ることができる。望ま
しくは、単レンズ20の偏心量(は、玉押し等により0
にしておくほうが単レンズ20の光軸と基準軸B′が一
致するので都合がよい。
In FIG. 4, Lx is a lens system to be measured, such as a photographic lens, which has a plurality of lenses whose eccentricity is to be measured individually, and this photographic lens Lx has the same structure as the lens mount of a camera. It is attached to the lens mount mechanism 10 held by the user. A practical reference for expressing the eccentric state of the photographic lens Lll is the reference axis B', and this reference axis B' is the central axis of the lens mount mechanism IO, that is, the photographic lens Lx hits the lens mount mechanism IO. This is a line that passes through the center of the cylindrical surface 12 that regulates the position of the photographic lens Lx within a plane that is perpendicular to the flange surface 11 and orthogonal to these two lens surfaces ll. Inside this lens mount mechanism 10,
It is assumed that, for example, a single lens 20 is installed in advance, and the eccentricity ε of this single lens 20 with respect to the reference axis B' is already known. The amount of eccentricity ε of the single lens 20 with respect to the reference axis B' can be easily determined by measuring it at the same time as manufacturing the lens mount mechanism 10. Preferably, the eccentricity of the single lens 20 (is reduced to 0 by cone pressing, etc.)
It is more convenient to do so because the optical axis of the single lens 20 and the reference axis B' coincide.

実際の測定に際しては、写真レンズL!をレンズマウン
ト機構10に取付けた状態で、写真レンズLx内の個々
の面の測定と同時にレンズマウント機構10内の単し・
ンズ20の面も同時に測定する。
For actual measurements, use the photo lens L! is attached to the lens mount mechanism 10, and at the same time the individual surfaces within the photographic lens Lx are measured.
The surface of the lens 20 is also measured at the same time.

この測定は前述のレンズ回転方式又はレンズ静止方式等
の何れの方式でも支障はない、即ち、この測定によって
写真レンズLXの各レンズ面、単レンズ20の面による
反射像I2のふれ量Δを測定し、計算によって測定基準
軸Bに対する各面の偏心量6及び単レンズ20の2つの
面の偏心量を求めればよい、ここで、単レンズ20の面
の基準軸B′に対する偏心量は予め正確に把握されてい
るので、この測定により単レンズ20の2つの面の基準
軸Bに対する偏心量が判れば、これによって基準軸B′
と基準軸Bとの関係が求まり、基準軸Bから基準軸B′
への座標変換により、写真レンズLxの各レンズ面の偏
心量εは基準軸B′に対する偏心量εとして表すことが
できる。
This measurement can be carried out by any method such as the above-mentioned lens rotation method or lens stationary method. In other words, by this measurement, the amount of deflection Δ of the reflected image I2 by each lens surface of the photographic lens LX and the surface of the single lens 20 is measured. Then, the amount of eccentricity 6 of each surface with respect to the measurement reference axis B and the amount of eccentricity of the two surfaces of the single lens 20 may be determined by calculation. Therefore, if the amount of eccentricity of the two surfaces of the single lens 20 with respect to the reference axis B is determined by this measurement, the reference axis B' can be determined from this.
The relationship between and reference axis B is determined, and from reference axis B to reference axis B'
By the coordinate transformation, the eccentricity ε of each lens surface of the photographic lens Lx can be expressed as the eccentricity ε with respect to the reference axis B'.

いま、写真レンズLx内の第1番目の面Siによる反射
像工2のふれ量ΔをY−Z直交座標系で(Δ(yi)、
Δ(2i))とし、前記第1番目の面の偏心量εを(t
 (yi)、 ε(zi))とすると、これらの間には
、 Δ(yi)=a(il) ε(yl)+a(i2) ε
(y2)+ ・・・・・+a(ii) ε(yi) Δ(zi)=a(it) ε(zl)+a(i2) e
 (z2)+ * −・・番十、a(ii)ε(21) なる関係が存在することが知られている。ここで、a(
il) 、 a(i2) 、  e e 拳等は光学系
のデータから予め計算しておくことのできる定数である
Now, the amount of deflection Δ of the reflection imager 2 due to the first surface Si in the photographic lens Lx is expressed as (Δ(yi),
Δ(2i)), and the eccentricity ε of the first surface is (t
(yi), ε(zi)), between these, Δ(yi)=a(il) ε(yl)+a(i2) ε
(y2)+ ...+a(ii) ε(yi) Δ(zi)=a(it) ε(zl)+a(i2) e
It is known that the following relationship exists: (z2)+*-...banju, a(ii)ε(21). Here, a(
il), a(i2), ee, etc. are constants that can be calculated in advance from data of the optical system.

従って、k面から成る写真レンズLx内の各面S1、S
2、S3、・・・、 Sk及び単レンズ20の2つの面
Ss、 Snについて反射像I2のふれ量(Δ(yl)
、Δ(21))  、 (Δ(!2) 、  Δ(22
))  11  *  *  *、 (Δ(yk)、Δ
(zk))及び(Δ(ym) 、Δ(2m) )、(Δ
(yn) 。
Therefore, each surface S1, S in the photographic lens Lx consisting of the k-plane
2, S3, ..., the amount of deflection (Δ(yl)) of the reflected image I2 regarding Sk and the two surfaces Ss and Sn of the single lens 20
, Δ(21)), (Δ(!2), Δ(22)
)) 11 * * *, (Δ(yk), Δ
(zk)) and (Δ(ym), Δ(2m)), (Δ
(yn).

Δ(zn) )を測定すれば、上記の関係式から、  
 ゛なる連立方程式が成立し、この連立方程式を解くこ
とにより測定基準軸Bに対する各面の偏心量(ε(yl
)、ε(zl))、(ε(I2)、ε(22)) 、・
拳・・、(ε(yk)、e (zk))及び(ε(ys
) 、 e (z+a))・ (ε(yn) 、ε(z
n))を知ることができる。ここで、(@(ym) 、
ε(zm))、(@(yn) 、 e (zn))は先
に述べたように単レンズ2oの基準軸Bに対する偏心量
であり、一方この単レンズ2oの基準軸B′に対する偏
心量は、写真レンズLxの各面の偏心量εは単レンズ2
oの偏心量(の基準である基準軸B′に座標を変換して
表示することができる。
If Δ(zn) ) is measured, from the above relational expression,
A simultaneous equation is established, and by solving this simultaneous equation, the eccentricity of each surface with respect to the measurement reference axis B (ε(yl
), ε(zl)), (ε(I2), ε(22)),・
Fist..., (ε(yk), e (zk)) and (ε(ys
), e (z+a)) (ε(yn), ε(z
n)) can be known. Here, (@(ym),
ε(zm)), (@(yn), e(zn)) are the eccentricity of the single lens 2o with respect to the reference axis B, as described above, and on the other hand, the eccentricity of this single lens 2o with respect to the reference axis B' The eccentricity ε of each surface of the photographic lens Lx is the single lens 2
The coordinates can be converted to the reference axis B' which is the reference for the eccentricity of o and displayed.

先に説明したように、従来の測定の際には写真レンズL
!の取付は方にょっ王、本来望ましい実用的な表示の基
準軸B′に対して大きな片寄った状態で測定されること
があり、偏心量もが一見大きいように見えることがある
。しかし、本発明に係る実施例で述べたような方法で測
定すれば、写真レンズL11と同時に単レンズ20を介
して実用的な基準軸B′も間接的に測定されることにな
るから、第3図に示したように測定の基準軸Bから実用
的な基準軸B′に座標を変換することによって、el、
e2、e3、・・・のように実用的な偏心量εの表示が
可能になる。
As explained earlier, during conventional measurements, the photographic lens L
! However, the measurement may be made in a state where it is largely offset from the reference axis B' of a desirable practical display, and the amount of eccentricity may also appear to be large at first glance. However, if the measurement is performed using the method described in the embodiment of the present invention, the practical reference axis B' will also be measured indirectly through the single lens 20 at the same time as the photographic lens L11. As shown in Figure 3, by converting the coordinates from the measurement reference axis B to the practical reference axis B', el,
Practical eccentricity ε can be displayed as e2, e3, . . . .

なお前述の実施例においては、レンズマウント機構10
の内部に組込む基準軸B′に対する偏心量εが既知の光
学系は単レンズ20であるとしたが、偏心量εが既知で
あれば複数個のレンズでもよい0通常の写真レンズのよ
うに主にレンズマウント機構10に対するレンズ全体の
傾きが問題で、平行なずれの許容量が比較的大きい場合
には、第5図に示すように平行平面ガラス21又は写真
レンズ系自体の1面だけが平面であるようなレンズ系を
使用してシ、本い。
Note that in the above embodiment, the lens mount mechanism 10
The optical system with a known eccentricity ε with respect to the reference axis B' to be incorporated into the lens 20 is assumed to be a single lens 20, but as long as the eccentricity ε is known, a plurality of lenses may be used. If the problem is the inclination of the entire lens with respect to the lens mount mechanism 10, and the allowable amount of parallel deviation is relatively large, only one surface of the parallel plane glass 21 or the photographic lens system itself is flat, as shown in FIG. It is best to use a lens system like this.

以上説明したように本発明に係るレンズ系の偏    
 1心量測定方法は、偏心量を表示すべき特定の基準軸
を基に被測定レンズ系の偏心量を容易に求めることがで
きる。また、本発明の方法によれば、被測定レンズ系の
実用的な使用状態に対応した偏心量εの測定が可能にな
るので、例えばレンズ系自体の偏心量εは少ないが、マ
ウント方法が悪いために結像性能が劣化しているような
場合の原因解析の手段として利用可能である。
As explained above, the lens system according to the present invention is polarized.
The single center amount measuring method allows the amount of eccentricity of the lens system to be measured to be easily determined based on a specific reference axis on which the amount of eccentricity is to be displayed. Furthermore, according to the method of the present invention, it is possible to measure the eccentricity ε corresponding to the practical usage conditions of the lens system to be measured, so for example, the eccentricity ε of the lens system itself is small, but the mounting method is poor It can be used as a means of cause analysis in cases where imaging performance is degraded due to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はオートコリメーション反射方式の原理的な説明
図、第2図(a) 、 (b)は従来の測定方法の説明
図、第3図は基準軸のとり方によって偏心量が変化する
ことの説明図、第4図、第5図はそれぞれ本発明に係る
レンズ系の偏心量測定方法の実施例の説明図である。 符号1は光源、2はレンズ、3.9.11はハーフミラ
−14は結像レンズ、5は結像面、6は接眼レンズ、8
はイメージローテータ、1oはレンズマウント機構、1
1はフランジ面、12は円筒面、20は単レンズ、21
は平行平面ガラス、Lは被測定レンズ系、LXは写真レ
ンズ、■は指標、11は指標像、I2は反射像である。 図面  、、。 12 1211 13I!1 114!l lllIS図 125
Figure 1 is an illustration of the principle of the autocollimation reflection method, Figures 2 (a) and (b) are illustrations of the conventional measurement method, and Figure 3 shows how the amount of eccentricity changes depending on how the reference axis is taken. The explanatory diagrams, FIG. 4, and FIG. 5 are explanatory diagrams of an embodiment of the method for measuring the amount of eccentricity of a lens system according to the present invention, respectively. 1 is a light source, 2 is a lens, 3.9.11 is a half mirror, 14 is an imaging lens, 5 is an imaging surface, 6 is an eyepiece, 8
is the image rotator, 1o is the lens mount mechanism, 1
1 is a flange surface, 12 is a cylindrical surface, 20 is a single lens, 21
is a parallel plane glass, L is a lens system to be measured, LX is a photographic lens, ■ is an index, 11 is an index image, and I2 is a reflected image. drawing ,,. 12 1211 13I! 1 114! l lllISFigure 125

Claims (1)

【特許請求の範囲】 1、被測定レンズ系の予め計算された位置に指標像を投
影し、レンズ系内の被測定面による反射像の基準軸から
のふれ量を観察光学系を用いて測定し、計算により各レ
ンズ面の偏心量を求める光反射方式の偏心量測定方法に
おいて、偏心量を測定すべき被測定レンズ系を、偏心量
を表示する基準軸に対する偏心量が既知の光学系と組合
せてふれ量を測定することにより、前記基準軸に対する
被測定レンズ系の各面の偏心量を求めることを特徴とす
るレンズ系の偏心量測定方法。 2、 前記基準軸に対する偏心量が既知の光学系を単レ
ンズとする特許請求の範囲第1項記載のレンズ系の偏心
量測定方法。 3、前記基準軸に対する偏心量が既知の光学系を特徴と
する特許請求の範囲第1項記載のレンズ系の偏心値測定
方法。 4、 前記被測定レンズ系を写真レンズとし、前記基準
軸に対する偏心量が既知の光学系をマウント機構内に組
込んだレンズとする特許請求の範囲第1項記載のレンズ
系の偏心量測定方法。
[Claims] 1. Projecting an index image onto a pre-calculated position of the lens system to be measured, and measuring the amount of deflection from the reference axis of the image reflected by the surface to be measured in the lens system using an observation optical system. However, in the optical reflection method for measuring the amount of eccentricity of each lens surface by calculation, the lens system to be measured for which the amount of eccentricity is to be measured is an optical system whose amount of eccentricity is known with respect to the reference axis that displays the amount of eccentricity. A method for measuring the amount of eccentricity of a lens system, characterized in that the amount of eccentricity of each surface of the lens system to be measured with respect to the reference axis is determined by measuring the amount of deflection in combination. 2. The method for measuring the eccentricity of a lens system according to claim 1, wherein the optical system whose eccentricity with respect to the reference axis is known is a single lens. 3. The method for measuring the eccentricity value of a lens system according to claim 1, characterized in that the optical system has a known eccentricity with respect to the reference axis. 4. The method for measuring eccentricity of a lens system according to claim 1, wherein the lens system to be measured is a photographic lens, and the lens has an optical system whose eccentricity with respect to the reference axis is known built into a mount mechanism. .
JP8448182A 1982-05-18 1982-05-18 Method for measuring amount of eccentricity of lens system Pending JPS58200125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8448182A JPS58200125A (en) 1982-05-18 1982-05-18 Method for measuring amount of eccentricity of lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8448182A JPS58200125A (en) 1982-05-18 1982-05-18 Method for measuring amount of eccentricity of lens system

Publications (1)

Publication Number Publication Date
JPS58200125A true JPS58200125A (en) 1983-11-21

Family

ID=13831829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8448182A Pending JPS58200125A (en) 1982-05-18 1982-05-18 Method for measuring amount of eccentricity of lens system

Country Status (1)

Country Link
JP (1) JPS58200125A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107739A (en) * 1989-09-20 1991-05-08 Olympus Optical Co Ltd Instrument and method for measuring eccentricity of lens system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107739A (en) * 1989-09-20 1991-05-08 Olympus Optical Co Ltd Instrument and method for measuring eccentricity of lens system

Similar Documents

Publication Publication Date Title
CA2206212A1 (en) Phase shifting diffraction interferometer
US4957357A (en) Multiple axis reticle
US5059022A (en) Device for measuring radius of curvature and a method thereof
JP2672563B2 (en) Device for measuring display screen contrast as a function of viewing direction.
US20030184763A1 (en) Spherical form measuring and analyzing method
CN108507492A (en) The high-precision wide-dynamic-range measurement method and measuring system on a kind of plane surface transmissive element surface
US5075560A (en) Moire distance measurements using a grating printed on or attached to a surface
US587443A (en) Albert konig
JPS58200125A (en) Method for measuring amount of eccentricity of lens system
US4653911A (en) Autocollimation method and apparatus
US3960450A (en) Lens meter with target orthogonalizer
WO2001004572A1 (en) Laser reflector alignment
US4386851A (en) Instrument for measuring or marking out distances from a line or a plane
CN100370296C (en) Through-axis center alignment method for novel optical system
CN106017362A (en) Portable high-dynamic-precision large-working-distance auto-collimation device and method
JP2521736B2 (en) Microscope adjustment inspection device
JPS59220604A (en) Method for detecting position between two objects opposed each other with minute gap therebetween
Faust Multiple-beam interference microscopy
JPH0262801B2 (en)
CN106052597B (en) A kind of portable high frequency rings big working distance autocollimation and method
Platzeck et al. The method of the caustic for measuring optical surfaces
JP3236090B2 (en) Plane azimuth measuring device, plane azimuth measuring method, and optical component inspection method
JPH0810177B2 (en) Astigmatism inspection method and astigmatism inspection apparatus
JPS58200126A (en) Method for measuring amount of eccentricity of lens system
CN114322850A (en) Double-shaft different-focus photoelectric auto-collimator