JPS58199722A - Permanent magnet material containing ca, pb and la oxides - Google Patents

Permanent magnet material containing ca, pb and la oxides

Info

Publication number
JPS58199722A
JPS58199722A JP7960682A JP7960682A JPS58199722A JP S58199722 A JPS58199722 A JP S58199722A JP 7960682 A JP7960682 A JP 7960682A JP 7960682 A JP7960682 A JP 7960682A JP S58199722 A JPS58199722 A JP S58199722A
Authority
JP
Japan
Prior art keywords
magnet material
permanent magnet
magnet
oxide
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7960682A
Other languages
Japanese (ja)
Other versions
JPH0124733B2 (en
Inventor
Mitsuru Nagakura
永倉充
Hiroshi Yamamoto
山元洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP7960682A priority Critical patent/JPS58199722A/en
Publication of JPS58199722A publication Critical patent/JPS58199722A/en
Publication of JPH0124733B2 publication Critical patent/JPH0124733B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled material comparable or superior to a known magnet contg. Ba or Sr in magnetic characteristics and capable of being easily provided with directional properties by a mechanical method by substituting PbO for part of CaO in a permanent magnet material contg. Ca and La oxides. CONSTITUTION:This permanent magnet material contg. Ca, Pb and La oxides has a chemical composition represented by a formula (CaO1-xPbOx.6Fe2O3)100-y (La2O3)y (where 0.2<=x<0.8 and 2<=y<=5). The magnet material is obtd, by substituting PbO for part of CaO in a Ca-La ferrite magnet made of a compound represented by a formula (CaO.6Fe2O3)97(La2O3)3, and it is comparable or superior to a conventional known Ba or Sr ferrite magnet in magnetic characteristics and is easily provided with directional properties by a mechanical method.

Description

【発明の詳細な説明】 本発明は、Ca−pb−1−a系の酸化物磁石材料に関
し、更に詳しくは、従来公知のバリウム系あるいはスト
ロンチウム系フェライト磁石と同等以上の磁気特性を有
し、しかも機械的に方向性がつき易いという顕著な特性
を兼ね備えた酸化物永久磁石に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Ca-pb-1-a-based oxide magnet material, and more specifically, it has magnetic properties equivalent to or higher than conventionally known barium-based or strontium-based ferrite magnets, Furthermore, the present invention relates to an oxide permanent magnet that has the remarkable property of being easily mechanically oriented.

フェライト酸化、物永久磁石としては、バリウム系ある
いはストロンチウム系フェライトが周知であり、広く工
業化されているが、それ以外にも数多くの系について研
究報告がなされている。例えば本発明者等は、先に、C
a−La系フェライト(Ca O−6F e、O,)f
7(L ax03)s化合物が現用の13a、3r系フ
工ライト磁石と同等の磁気特性を有づることを見出し、
更に、そのCaOの一部をBaO又はSrOで置換した
酸化物永久磁石も提案した(特開昭55−130862
号)その後、本発明者等は、上記Ca(a系)lライト
磁石の磁気特性の向上を0指して種々の材料、条件につ
き鋭意実験研究を進めた結果、CaOの一部をPbOで
置換した酸化物磁石材料は機械的に方向性がつき易い(
単にプレスで成型するという等方的な顎造法によっても
異方性が生じる)という極めて特異な性質を有すること
を知得し、本発明を完成させるに至ったものである。
Barium-based or strontium-based ferrites are well known and widely industrialized as ferrite oxide and physical permanent magnets, but research reports have been made on many other systems. For example, the present inventors first discovered that C
a-La ferrite (Ca O-6F e, O,) f
It was discovered that the 7(L ax03)s compound has magnetic properties equivalent to those of the currently used 13a, 3r type fluorite magnets,
Furthermore, we also proposed an oxide permanent magnet in which part of the CaO was replaced with BaO or SrO (Japanese Patent Laid-Open No. 55-130862).
After that, the present inventors carried out intensive experimental research on various materials and conditions with the aim of improving the magnetic properties of the Ca (a-based) l-light magnet, and as a result, they replaced a part of CaO with PbO. The oxide magnet material is mechanically oriented easily (
The present invention was completed based on the discovery that anisotropy is produced even by an isotropic maxillary construction method that involves simply molding with a press.

即ち本発明の目的は、機械的に方向性(異方性)がつき
易く、しかも従来公知のBa、Sr系磁石と同程度もし
くはそれ以上の磁気特性を有し、仮焼濃度を低くできる
など各種処理が容易となるような新しい酸化物永久磁石
材料を提供することにある。
That is, the object of the present invention is to easily obtain mechanical directionality (anisotropy), to have magnetic properties comparable to or better than conventionally known Ba and Sr magnets, and to be able to reduce the calcination concentration. The object of the present invention is to provide a new oxide permanent magnet material that can be easily subjected to various treatments.

かかる目的を達成することのできる本発明は、(Ca 
07−XP b O,t−6F e、O,)、、、−5
(L alO,)。
The present invention, which can achieve such objects, is based on (Ca
07-XP b O, t-6F e, O, ), , -5
(LalO,).

なる組成式で表わされ、上記Xが0.2〜0.8、■が
2〜5の範囲の化学組成を主成分とするCa−Pb−L
a系酸化物永久磁石材料である。
Ca-Pb-L, which is represented by the compositional formula, and whose main component is a chemical composition in which X is in the range of 0.2 to 0.8 and ■ is in the range of 2 to 5.
This is an a-based oxide permanent magnet material.

以下、本発明について更に詳しく説明する。The present invention will be explained in more detail below.

本発明は、基本的には上記のように、Qa−1a  。The present invention is basically Qa-1a as described above.

系酸化物永久磁石材料において、その酸化カルシウムの
一部を酸化鉛で置換したものであり、(Ca O,−、
Pb O,−6F e、Io、)+−,−、(L a、
0.)。
In the oxide permanent magnet material, a part of the calcium oxide is replaced with lead oxide, (CaO,-,
Pb O, -6F e, Io, ) + -, -, (La,
0. ).

なる化学式で表わされるものである。ここで、酸化ラン
タンの含有1y  (モル%)は2〜5の範囲に選定さ
れる。その理由は、酸化ランタンの含有量が2モル%未
満だと上記化学式で表わされる化合物の結晶形が六方晶
形(マグネトブランバイト系)にならず、磁石特性が大
幅に低下してしまうし、逆に酸化ランタンの含有量が5
モル%を超えても磁石特性が低下し、しかも^価な酸化
ランタンを多量に添加することは経済的な観点からも好
ましくないからである。磁石特性的に言えば、上記範囲
のうち、酸化ランタンの含有量を2.5〜3モル%とす
るのが最も好ましい。
It is expressed by the chemical formula: Here, the content 1y (mol %) of lanthanum oxide is selected in the range of 2 to 5. The reason for this is that if the content of lanthanum oxide is less than 2 mol%, the crystal form of the compound represented by the above chemical formula will not be hexagonal (magnetobrambite system), and the magnetic properties will be significantly reduced. The content of lanthanum oxide is 5
This is because even if the amount exceeds mol %, the magnetic properties deteriorate, and addition of a large amount of valent lanthanum oxide is not preferable from an economical point of view. In terms of magnetic properties, it is most preferable for the content of lanthanum oxide to be 2.5 to 3 mol% within the above range.

次に酸化カルシウムに対する酸化鉛の置換量Xは、0.
2以上、0.8未満に選定される。かかる範囲とした理
由は第1図から明らかであろう。
Next, the replacement amount X of lead oxide for calcium oxide is 0.
It is selected to be 2 or more and less than 0.8. The reason for this range will be clear from FIG.

第1図は、(Ca O,−、P b O,−6F e、
O,)、ワ(L aio、)、磁石を1200℃で30
分間焼成した際の組成と平均的な磁気特性の関係をプロ
ットしたグラフである。最大エネルギー!1j(B・ト
()IaXは、x = 0.1の組成でx=Qの組成に
比べ約3倍の値となり、これは3a、3r系フ工ライト
磁石と同等の値である。PbOの置換−が更に増えると
(B−H) waxは更に増加し、×が0.2以上、0
.8未満では3a、3r系フ工ライト磁石と同等以上の
非常に良好な磁石特性を?する。PbOの置換量が更に
増えてx = 0.8〜0.9になると、(B−H)w
axは逆に減少する傾向にある。これがPbOの@検量
Xを0.2以上、0.8未満とした理由である。とりわ
け、pboのlF*IXが0.5以上、0.7D 下(
7)組成では、等方性磁石としては大変高い1.5M 
G・00以上の(B−H)IaXが得られており、最も
好ましい範囲である。
FIG. 1 shows (Ca O,-, P b O, -6F e,
O,), wa (L aio,), magnet at 1200℃ for 30
It is a graph plotting the relationship between the composition and average magnetic properties when fired for minutes. Maximum energy! 1j(B・t()IaX) has a value approximately three times larger when x = 0.1 than when x = Q, and this is a value equivalent to that of 3a and 3r type ferrite magnets.PbO When the substitution - further increases, (B-H) wax further increases, and when × is 0.2 or more, 0
.. If it is less than 8, it has very good magnetic properties that are equal to or better than 3a and 3r type iron magnets. do. When the amount of PbO substitution increases further to x = 0.8 to 0.9, (B-H) w
On the contrary, ax tends to decrease. This is the reason why @calibration X of PbO was set to 0.2 or more and less than 0.8. In particular, pbo IF*IX is 0.5 or more and 0.7D or less (
7) The composition is 1.5M, which is very high for an isotropic magnet.
(B-H)IaX of G·00 or more has been obtained, which is the most preferable range.

さて、本発明において特筆すべき点は、上記の如き組成
では機械的に方向性がつき易いという特性があるという
ことである。前述の如く、例えばCaOに対するPbO
の置換lxが0.5の場合、(B−H)maxは1.5
MG −00以上という等方性磁石としては非常に大き
い値であり、゛この時の4yc lrが2700〜28
50Gと高い値を示したので、これらの試料を立方体に
切り出し、ブレス押L1一方向とそれに直角の方向の磁
気特性を測定した。その様子を第2図に示す。同図Aは
プレス押圧方向のヒスアリシス曲線、同図Bはプレス押
圧方向に直角の方向のヒステリシス曲線である。この第
2図から判るように、明らかに異方性がついており、単
にプレスで成形するという等方向な製法によっても異方
性がつく、すなわちこれらの系の磁石材料は機械的に方
向がつき易いことを示唆している。
Now, what is noteworthy about the present invention is that the composition as described above has the characteristic that mechanical directionality is easily imparted. As mentioned above, for example, PbO to CaO
If the permutation lx of is 0.5, (B-H)max is 1.5
MG -00 or more, which is a very large value for an isotropic magnet.
Since these samples showed a high value of 50G, these samples were cut into cubes and the magnetic properties were measured in one direction of the press press L1 and in a direction perpendicular thereto. The situation is shown in Figure 2. Figure A is a hysteresis curve in the press pressing direction, and Figure B is a hysteresis curve in a direction perpendicular to the press pressing direction. As can be seen from Figure 2, it clearly has anisotropy, and the isotropic manufacturing method of simply press-forming also creates anisotropy; in other words, these types of magnetic materials are mechanically oriented. It suggests that it is easy.

つまり、本発明に係る酸化物磁石材料は、磁場成型法と
いった面倒な製法を採らずとも、甲に通常のプレスで加
圧成型するだけで異方性磁石を得ることができる点で極
めて顕著な性質を具有しているのである。因に、かかる
性質は、前記従来技術に関連して説明したCaOをBa
OあるいはSrOでM換した酸化物永久磁石材料では全
く認められていない。
In other words, the oxide magnet material according to the present invention is extremely remarkable in that an anisotropic magnet can be obtained by simply press-molding it onto the instep using a normal press, without using a troublesome manufacturing method such as magnetic field molding. It has properties. Incidentally, this property is similar to that of CaO explained in connection with the above-mentioned prior art.
This is not observed at all in oxide permanent magnet materials in which M is replaced with O or SrO.

また、このことは、本発明に係る酸化物磁石材料を焼結
タイプの磁石として利用する場合のみならず、それら酸
化物磁石材料粉末をゴムやプラスチックス等有機バイン
ダーと混合して成型した所謂プラスナック磁石として利
用する場合も有用である。何故゛ならば、ローラによる
圧延あるいはプレスによる加圧成型時に異方性が生じ易
く、磁石特性の良好な顎品を得ることができるからであ
る。
Moreover, this is applicable not only when the oxide magnet material according to the present invention is used as a sintered type magnet, but also when the oxide magnet material powder is mixed with an organic binder such as rubber or plastics and molded. It is also useful when used as a knack magnet. This is because anisotropy is likely to occur during rolling with rollers or pressure molding with a press, and a jaw product with good magnetic properties can be obtained.

次に、本発明の実施例について述べる。実験に用いた原
材料は、ca co、、 pb o、 a −F e2
0. 、 L a、O,、の粉末である。組成は(Ca
b、。
Next, examples of the present invention will be described. The raw materials used in the experiment were ca co, pbo, a-F e2
0. , La, O,. The composition is (Ca
b.

P b O,” 6 F e203>f7< L a 
、o、)、の組成式において、Xを種々変化させたもの
である。秤量は上記組成になるように原材料粉末を用い
て300gになるように行ない、これらをボールミル(
湿式法)で3時間混合した。混合した粉末を乾燥後、圧
力的0,5t /cI2で30+vφ×6鵬勇の円柱状
の試料に成形した。これらの成形した試料をテコランダ
ム管状炉を用いて乾燥酸素中で900〜1100℃の温
度範囲で1時間仮焼成した。次に、これら仮焼成した試
料をステンレス製乳鉢を用いて破砕し、100メツシユ
のふるいを通し、さらにステンレスボールミル(湿式法
)で30時間粉砕した。そして、このように粉砕された
泥状仮焼成粉末を乾燥後、これら粉末にポリビニルアル
コール溶液(濃廓′5%)を5%加え、混合し、プレス
圧約2t/dで直径1311φ、高さ11〜13m+a
の円柱状に成型した。本焼成はテコランダム管状炉を用
いて、乾燥酸素中で1175〜1300℃、30分間行
なった。得られた試料の測定結果の一例が前述の第1図
である。同図から判るように、本発明に係る酸化物磁石
材料は、最大エネルギー積(B−)−1)waxが大き
く、かつ残留磁束密度(4πIr>が^いのが特徴であ
る。また、図示されてはいないが、CaOを受石のPb
Oで置換することにより、仮焼成゛温度を低くすること
ができることも判明した。すなわちPbOで置換しない
場合のCa−しa系磁石の場合、高温(1200℃以上
)で仮焼成したとき得られる磁気特性と同程度以上の特
性のものが、900〜1100℃の仮焼成条件のときで
も得られ、仮焼成温度を400〜100℃程度低くづる
ことができることも明らかとなった。
P b O,” 6 F e203>f7< La
, o, ), in which X is varied in various ways. The raw material powder was weighed to 300g so as to have the above composition, and these were weighed in a ball mill (
The mixture was mixed for 3 hours using a wet method. After drying the mixed powder, it was molded into a cylindrical sample of 30+vφ×6 cylindrical shape under pressure of 0.5t/cI2. These molded samples were pre-calcined for 1 hour in a temperature range of 900 to 1100° C. in dry oxygen using a Tecorundum tubular furnace. Next, these pre-fired samples were crushed using a stainless steel mortar, passed through a 100 mesh sieve, and further crushed for 30 hours in a stainless steel ball mill (wet method). After drying the slurry calcined powder thus crushed, 5% polyvinyl alcohol solution (concentrate 5%) was added to these powders, mixed, and pressed at a press pressure of about 2 t/d to form a powder with a diameter of 1311 φ and a height of 11 mm. ~13m+a
It was molded into a cylindrical shape. The main firing was performed in dry oxygen at 1175 to 1300°C for 30 minutes using a Tecorundum tubular furnace. An example of the measurement results of the obtained sample is shown in the above-mentioned FIG. 1. As can be seen from the figure, the oxide magnet material according to the present invention is characterized by a large maximum energy product (B-)-1)wax and a high residual magnetic flux density (4πIr>). Although it has not been done, Pb is a catalyst for CaO.
It has also been found that by substituting with O, the pre-calcination temperature can be lowered. In other words, in the case of a Ca-based magnet that is not substituted with PbO, the magnetic properties obtained when pre-sintered at a high temperature (1200°C or higher) are comparable to or higher than those obtained when pre-sintered at a temperature of 900 to 1100°C. It has also become clear that the calcination temperature can be lowered by about 400 to 100°C.

コレラノなかで、(Ca 0o5Pb O,、−6Fe
In cholera, (Ca 0o5Pb O,, -6Fe
.

0、)、7(L a、o、)、なる組成(これをモル分
率でいうと、Ca O・=・6.93−Eル%、Pb 
O−6,93もル%、F e20.−’83.14モル
%、L a、O,−3モル%である)で、仮焼成100
0℃×1時間、本焼成1225℃×30分のものは、残
留磁束密度Br= 2850G、保持力B)」g= 1
300Q e 、最大エネルギー積(B−H)IIla
x−1,52MG・Oeという(ぐれた磁石特性を呈し
、しかも第2図に示すような機械的に異方性がついてい
る。この異方性の程度は、プレス押圧方向が1.5M 
G・00以上に対し、それと直角の方向は1.OM G
・Oe程度である。
0,), 7(L a, o,) (in terms of mole fractions, Ca O = 6.93-E %, Pb
O-6,93%, Fe20. -'83.14 mol%, La, O, -3 mol%), pre-calcination 100
0°C x 1 hour, main firing at 1225°C x 30 minutes, residual magnetic flux density Br = 2850G, coercive force B)' g = 1
300Q e, maximum energy product (B-H) IIla
It exhibits excellent magnetic properties of x-1.52MG・Oe, and has mechanical anisotropy as shown in Figure 2.The degree of this anisotropy is 1.5M in the press direction.
For G・00 or more, the direction perpendicular to it is 1. OMG
- Approximately Oe.

また、本発明に係る酸化物永久磁石材料は、磁場成形と
いった本来的に異方性を付与しうる製法を採ることによ
って更にすぐれた磁石特性をもたせることが可能である
Further, the oxide permanent magnet material according to the present invention can be given even better magnetic properties by using a manufacturing method such as magnetic field molding that can inherently impart anisotropy.

本発明は前記のような組成のCa−P b−L a系酸
化物永久磁石材料であるから、機械的に方向性がつき易
く、それ故、通常のプレス成形のみで異方性の磁石を得
ることができ、焼結型永久磁石のみならずプラスチック
磁石としても有用な材料であり、しかも従来公知の38
 、 Sr系磁石と同程度もしくはそれ以上の磁気特性
を有し、仮焼温度を低くできるなど製造容易であり、モ
ータ用あるいはスピーカ用マグネット等として多くの利
点を有するものである。
Since the present invention is a Ca-Pb-La-based oxide permanent magnet material having the composition as described above, it is easy to mechanically provide directionality, and therefore an anisotropic magnet can be produced only by ordinary press molding. It is a material that is useful not only for sintered permanent magnets but also for plastic magnets.
, has magnetic properties comparable to or better than Sr-based magnets, is easy to manufacture, can be made at a low calcination temperature, and has many advantages as magnets for motors, speakers, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は(Ca O,xPb Ox・6 F e、03
)97(L a、o、)ヨ磁石を1200℃×30分焼
成したときの組成と平均的な磁気特性の関係をプロット
したグラフ、第2図Aは本発明に係る磁石のプレス押圧
り向の磁気ヒステリシス曲線、第2図Bはそのプレス押
圧方向と直角の方向の磁気ヒステリシス曲線である。
Figure 1 shows (Ca O,xPb Ox・6F e,03
) 97 (L a, o, ) yo magnet is fired at 1200°C for 30 minutes. A graph plotting the relationship between the composition and average magnetic properties. Figure 2A shows the pressing direction of the magnet according to the present invention. FIG. 2B shows the magnetic hysteresis curve in the direction perpendicular to the pressing direction.

Claims (1)

【特許請求の範囲】[Claims] 1、  (Ca o、−、P b O,c−6F eL
O,)、、、、(しa、O八なる組成式で表わされ、上
記Xが0.2以上で0.8未満、■が2以上で5以下の
化学組成を主成分とすることを特徴とするCa−pb(
a系酸化物永久磁石材料。
1, (Ca o, -, P b O, c-6F eL
It is represented by the composition formula O,),,,,(shia,O8, and the main component is a chemical composition in which X is 0.2 or more and less than 0.8, and ■ is 2 or more and 5 or less. Ca-pb (
A-based oxide permanent magnet material.
JP7960682A 1982-05-12 1982-05-12 Permanent magnet material containing ca, pb and la oxides Granted JPS58199722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7960682A JPS58199722A (en) 1982-05-12 1982-05-12 Permanent magnet material containing ca, pb and la oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7960682A JPS58199722A (en) 1982-05-12 1982-05-12 Permanent magnet material containing ca, pb and la oxides

Publications (2)

Publication Number Publication Date
JPS58199722A true JPS58199722A (en) 1983-11-21
JPH0124733B2 JPH0124733B2 (en) 1989-05-12

Family

ID=13694669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7960682A Granted JPS58199722A (en) 1982-05-12 1982-05-12 Permanent magnet material containing ca, pb and la oxides

Country Status (1)

Country Link
JP (1) JPS58199722A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797331A (en) * 1985-11-19 1989-01-10 Ricoh Company, Ltd. Magneto-optical recording material
US6402980B1 (en) 1997-09-19 2002-06-11 Tdk Corporation Oxide magnetic material, ferrite particles, bonded magnet, sintered magnet, process for producing the same, and magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797331A (en) * 1985-11-19 1989-01-10 Ricoh Company, Ltd. Magneto-optical recording material
US6402980B1 (en) 1997-09-19 2002-06-11 Tdk Corporation Oxide magnetic material, ferrite particles, bonded magnet, sintered magnet, process for producing the same, and magnetic recording medium

Also Published As

Publication number Publication date
JPH0124733B2 (en) 1989-05-12

Similar Documents

Publication Publication Date Title
EP3364426B1 (en) Ferrite magnetic material and ferrite sintered magnet
CN102701721B (en) Low-cost sintered calcium permanent magnetic ferrite and preparation method thereof
KR101082389B1 (en) Magnetoplumbite-type ferrite magnetic material and segment-type permanent magnet derived therefrom
WO2006106910A1 (en) Method for producing semiconductor porcelain composition
GB780278A (en) Improvements in or relating to methods of manufacturing non-metallic anisotropic permanent magnets
US3113927A (en) Ferrite magnets
US2677663A (en) Manganite composition
KR20010102970A (en) Ferrite magnet powder and magnet using the magnet powder, and method for preparing them
JPS58199722A (en) Permanent magnet material containing ca, pb and la oxides
US3337461A (en) Two-phase ferrite magnet composition and method for preparing same
JP2021150620A (en) Ferrite sintered magnet
JP2005057083A (en) Ferrite magnet and its manufacturing method
JP7347296B2 (en) Ferrite sintered magnets and rotating electrical machines
JP3617070B2 (en) Low loss ferrite manufacturing method
JP2000173812A (en) Manufacture of anisotropic ferrite magnet
SU1404178A1 (en) Method of producing magnetodielectric articles from nickel-zinc ferrite
JPS589303A (en) Manufacture of oxide permanent magnet with high insulation resistance
JP2004296514A (en) Ferrite magnet and its producing process
JPS6310113B2 (en)
JPH0817617A (en) Ni based ferrite core of high permeability and high saturation magnetic flux density and its manufacture
JPS60235723A (en) Lead-lanthanum based ferrite magnet
JPH09180926A (en) Low loss oxide magnetic material
JP2000323313A (en) Ferrite composite powder material for rubber magnet or plastic magnet and its manufacture
JP2021155317A (en) Ferrite sintered magnet and rotating electric machine
JP2000323315A (en) Ferrite based rubber magnet