JPS589303A - Manufacture of oxide permanent magnet with high insulation resistance - Google Patents

Manufacture of oxide permanent magnet with high insulation resistance

Info

Publication number
JPS589303A
JPS589303A JP56106899A JP10689981A JPS589303A JP S589303 A JPS589303 A JP S589303A JP 56106899 A JP56106899 A JP 56106899A JP 10689981 A JP10689981 A JP 10689981A JP S589303 A JPS589303 A JP S589303A
Authority
JP
Japan
Prior art keywords
insulation resistance
fe2o3
compound
permanent magnet
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56106899A
Other languages
Japanese (ja)
Inventor
Keiichi Honda
本多 敬一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP56106899A priority Critical patent/JPS589303A/en
Publication of JPS589303A publication Critical patent/JPS589303A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2683Other ferrites containing alkaline earth metals or lead

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To make it possible to obtain excellent magnetism and high insulation resistance, by after mixing, sintering provisionally and crushing a mixture of BaO or SrO and Fe2O3 materials and adding to the mixture a Ba or Sr compound and then forming and sintering them. CONSTITUTION:In manufacturing oxide permanent magnets of magnetoplumbite type with a chemical formula: MO.Fe2O3 (M is Ba or Sr, and n is mol ratio by 5-6) their main ingredients and auxiliary ingredient added as needed are weighted, mixed, sintered provisionally and crushed. Then, after a Ba or Sr compound is added to the mixture, it is formed and sintered. Between Fe2O3 or Fe<2+> that is thereby left and a newly added compound of Ba or Sr solid phase reaction is developed to obtain a magnetoplumbite phase, in which the Fe2O3 ingredient is made as little as possible for much improving the insulation resistance of the sintered mixture. It is preferable to add the Ba or Sr compount in the amount of 0.05-3.0wt% of the ferrite.

Description

【発明の詳細な説明】 本発明は化学式MO@n Fe 103 (但しnはモ
ル比で5.0〜6.0をとる。またMは金属元素でBa
あるいはSrを表わす。)としたマグネットブランバイ
トの結晶構造を呈する六方晶酸化物永久磁石に関するも
ので、特、に磁気特性を損なうことなく絶縁性の高い永
久磁石を提供することに係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention has the chemical formula MO@n Fe 103 (where n is 5.0 to 6.0 in molar ratio. M is a metal element and Ba
Alternatively, it represents Sr. ) The present invention relates to a hexagonal oxide permanent magnet exhibiting a magnet branbite crystal structure, and particularly relates to providing a permanent magnet with high insulation properties without impairing magnetic properties.

最近の電子部品素子、あるいは回路装置としては小型化
や省エネルギー省資源の要求が極めて高い。このような
目的に沿う一つの手段として絶縁性の高い小形の永久磁
石を組み入れるということが提案されている。例えば、
有極リレーに用いる永久磁石には高性能で安価、しかも
絶縁性の極めて高いものが必要とされるので。
Recent electronic component elements or circuit devices are required to be miniaturized and to save energy and resources. As one means for achieving this purpose, it has been proposed to incorporate small permanent magnets with high insulation properties. for example,
The permanent magnets used in polarized relays need to be high-performance, inexpensive, and have extremely high insulation properties.

使用される永久磁石材料の絶縁性が低いと駆動コイルに
高電圧が印加されるためにレアーショートを起しリレー
に誤動作を生じさせるおそれがある。
If the insulation of the permanent magnet material used is low, a high voltage will be applied to the drive coil, which may cause a layer short and cause the relay to malfunction.

永久磁石材料としてはアルニコ、フェライト。Permanent magnet materials include alnico and ferrite.

希土類、その他の磁石が市販されているが、磁石特性、
絶縁性1価格の面からみれば、マグネトブランバイト構
造をもつフェライト磁石が最も有効と考えられる。
Rare earth and other magnets are commercially available, but the magnetic characteristics,
From the standpoint of insulation and price, ferrite magnets with a magnetobrambite structure are considered to be the most effective.

コニライト磁石は一般的には、仮焼成してBaO又はS
rOとなる原料と酸化鉄とを所定のモル比に混合し、仮
焼成後、粗、微粉砕して、プレス成型あるいは磁場中成
型焼成の工程を経て得られる。磁気特性の向上のために
混合時、あるいは粉砕時にCab、 Sin、 、 A
403 、 Bi20B 、 8203 。
Conilite magnets are generally calcined to produce BaO or S.
It is obtained by mixing the raw material for rO and iron oxide at a predetermined molar ratio, calcining it, then coarsely or finely pulverizing it, and going through a process of press molding or molding and firing in a magnetic field. Cab, Sin, A during mixing or grinding to improve magnetic properties
403, Bi20B, 8203.

pboなどの添加物が微量添加されるのが通常である。Additives such as pbo are usually added in trace amounts.

フェライト磁石はBaO・6Fe20BまたはSrO・
6Fe203の化学式をもつマグネトブランバイト型の
六方晶酸化物であるが、一般的な量産の場合には、Fe
2O,や2価の鉄の酸化物が磁石中に若干存在している
といわれている。これは、仮焼後でも未反応のFe、O
sが残留していることや。
Ferrite magnets are BaO・6Fe20B or SrO・
It is a magnetobrambite-type hexagonal oxide with the chemical formula of 6Fe203, but in general mass production, Fe
It is said that a small amount of 2O and divalent iron oxides are present in the magnet. This is due to unreacted Fe and O even after calcination.
That s remains.

湿式微粉砕の工程で過粉砕によりBaBaO−6Fe2
0+ BaO+6Fe201の解離によって発生するF
e z OBが残留すること、また粗粉砕及び湿式微粉
砕の工程で、使用される粉砕装置の内壁や粉砕媒体より
発生する鉄分が焼成時に酸化されて生じる2価の鉄の酸
化物、またはFe2O3が存在することによると考えら
れている。
BaBaO-6Fe2 is produced by over-pulverization during the wet pulverization process.
F generated by dissociation of 0+ BaO+6Fe201
e z OB remains, and during the coarse pulverization and wet pulverization processes, iron generated from the inner wall of the pulverizer used and the pulverizing media is oxidized during firing, resulting in divalent iron oxides, or Fe2O3. It is thought that this is due to the existence of

このようにして混入してくるFe2O3や2価の鉄の酸
化物は、磁気特性に影響を及ぼすと共に。
Fe2O3 and divalent iron oxides mixed in this way affect the magnetic properties.

磁石の絶縁抵抗を大幅に劣化させる。しかしながら+ 
Fe2O2や2価の鉄の酸化物の存在は、磁気特性の観
点からのみ考案されてきたため、ある程度の存在は製造
上許容されていた。しかし絶縁抵抗に関してはFe10
Bまたは2価の鉄の酸化物の存在は、極めて悪影響を及
ぼしている。
Significantly deteriorates the insulation resistance of the magnet. However+
Since the presence of Fe2O2 and divalent iron oxides has been considered only from the viewpoint of magnetic properties, their presence to some extent has been allowed in manufacturing. However, regarding insulation resistance, Fe10
The presence of B or divalent iron oxides has a very negative effect.

また、一般的な製造の場合、 Fe103と仮焼してB
aOまたはSrOとなるBa、 Sr化合物を含む原料
を9等方性の場合モル比で5.3程度、異方性の場合で
5.8程度と化学量論的な組成よl) Bad。
In addition, in the case of general manufacturing, B is calcined with Fe103.
The raw material containing Ba and Sr compounds, which become aO or SrO, has a stoichiometric composition of about 5.3 in terms of molar ratio in the case of isotropic and about 5.8 in the case of anisotropic.l) Bad.

SrOを過剰に秤量し、混合しているため、仮焼。Calcination occurs because SrO is weighed and mixed in excess.

粉砕を経て残存するFe10Bと焼成時に再び反応する
ものと考えられていた。しかし、仮焼時に分解生成した
Bad、 !たはSrOは9反応性が非常に低下して、
焼成時にFe2O3と反応をおこし難くなる。しかも、
過剰のBad、 SrOの大部分は湿式粉砕時に水に溶
出して流出してしまい。
It was thought that Fe10B remaining after pulverization would react again during firing. However, Bad, which was decomposed and generated during calcination! Or SrO has a very low reactivity,
It becomes difficult to react with Fe2O3 during firing. Moreover,
Most of the excess Bad and SrO is eluted into water during wet grinding and flows out.

フェライト磁石の絶縁抵抗値を著しく劣化することが明
らかになった。
It has become clear that this significantly deteriorates the insulation resistance value of ferrite magnets.

本発明はこのような問題点を解決して、磁石特性を向上
させ、しかも磁石の固有抵抗を大幅に向上させることに
ある。
The object of the present invention is to solve these problems, improve the magnetic properties, and significantly improve the specific resistance of the magnet.

本発明の要旨は、 MO*nFe2O3(n=5〜6 
MはBaまたはSr)の化学式を持つマグネトブランバ
イト型の酸化物永久磁石の製造において、主成分及び必
要により添加副成分を秤量、配合し仮焼成、粗粉砕及び
微粉砕したのち、 BaまたはSrの化合物を添加して
混合後、成型焼成し、残存するFe2O3またはFe 
 と新たに添加したBaまたはSrの化合物との間に固
相反応を起こさせ。
The gist of the present invention is MO*nFe2O3 (n=5-6
In the production of magnetobrambite-type oxide permanent magnets with the chemical formula (M is Ba or Sr), after weighing and blending the main component and optionally additional subcomponents, calcining, coarsely pulverizing and finely pulverizing, Ba or Sr is used. After adding and mixing the compound, the remaining Fe2O3 or Fe
and the newly added Ba or Sr compound to cause a solid phase reaction.

マグネトブランバイト相となし、 Fe20B分を極少
量とすることによって焼結体の絶縁抵抗を大幅に向上さ
せることを特徴としたものである。
The sintered body is characterized by having a magnetobrambite phase and a very small amount of Fe20B, thereby greatly improving the insulation resistance of the sintered body.

さらに本発明の好ましいものとしては、微粉砕後に添加
するBaあるいはSr化合物の添加量はフェライトに対
し0.05〜5.Ovt%が良い。またこの添加物の種
類は、 BaフェライトにおいてはBaCO3が、Sr
7エライトにおいては龜−吻〒−8rCO3が絶縁抵抗
を向上させるためにはより好ましい。
Furthermore, in the present invention, it is preferable that the amount of Ba or Sr compound added after pulverization is 0.05 to 5. Ovt% is good. The types of additives are BaCO3 in Ba ferrite, Sr
In the case of 7-elite, it is more preferable to use 8rCO3 in order to improve the insulation resistance.

本発明による永久磁石材の目標特性として。As a target characteristic of the permanent magnet material according to the present invention.

絶縁抵抗として直流印加1,0OOVで100以上。Insulation resistance is 100 or more when DC is applied at 1,000 V.

また有極リレーとして用いる際の実用性から交流3.0
00V印加では300にΩ以上とし、なおかつ磁石特性
としては、残留磁束密度Brは3800(ガウス)以上
、保磁力111(Cは1900 (エルステッド)。
Also, for practicality when used as a polarized relay, AC 3.0
When 00V is applied, it is 300Ω or more, and the magnetic properties are as follows: residual magnetic flux density Br is 3800 (Gauss) or more, and coercive force is 111 (C is 1900 (Oersted)).

最大エネルギー積(BH) m1LXは3.6X10 
(ガウス・エルステッド)以上を兼ね備えたものである
Maximum energy product (BH) m1LX is 3.6X10
(Gauss Ørsted) It combines the above.

以下9本発明の実施例について説明する。Nine embodiments of the present invention will be described below.

実施例−1) BaC03とFe、03をモル比で5.4及び5,6と
なるよう原料を秤量、混合し、 1200℃で約2時間
仮焼成し、更に乾式の振動ロッドミルで平均粒子径が4
μ程となるまで粗粉砕した後、湿式の粉砕機で平均粒子
径が1μとなるまで微粉砕する。
Example-1) Raw materials were weighed and mixed so that the molar ratio of BaC03 and Fe,03 was 5.4 and 5.6, calcined at 1200°C for about 2 hours, and further reduced to an average particle size using a dry vibrating rod mill. is 4
After coarsely pulverizing the particles to a particle diameter of about 1 μm, the particles are finely pulverized using a wet pulverizer until the average particle size is 1 μm.

粉砕の終了時にBaCO3を重量比にて0.0.5%。0.0.5% by weight of BaCO3 at the end of the grinding.

1.0%、2.0%となるように添加混合して試料とし
た。
They were added and mixed to give a sample of 1.0% and 2.0%.

上記試料を約0.57ON/、2の圧力でスラリーを磁
場中湿式成形し1220℃の温度で焼結した。
A slurry of the sample was wet-molded in a magnetic field at a pressure of about 0.57 ON/2, and sintered at a temperature of 1220°C.

焼結面を研磨し、絶縁抵抗値、磁気特性値を測定した。The sintered surface was polished and the insulation resistance and magnetic properties were measured.

この結果を表−1に示す。The results are shown in Table-1.

この結果、 BaCO3の添加しないもの(0%)は絶
縁抵抗値がり、C,1000V ’t’ IMΩ以下テ
、AC3000V以上では、 0.OIMGよりはるか
に小さい値しかもたない。これに対し、 BaCO3を
0.5%添加したものは、 DCloooVで10MΩ
以上を。
As a result, when BaCO3 is not added (0%), the insulation resistance value is lower than C, 1000 V 't' IMΩ, and at AC 3000 V or higher, it is 0. It has a much smaller value than OIMG. On the other hand, the one with 0.5% BaCO3 added has a DCLoooV of 10MΩ.
More than that.

AC3000Vで0.2MΩ以上を示した。更に1%以
上添加したもノI/i、  1ooovで10以上、 
3000Vテ20MΩで、 AC3000Vにおイー’
(も0.2MQ以上の絶縁抵抗値を示している。
It showed 0.2MΩ or more at AC3000V. Furthermore, 1% or more of added Mono I/i, 10 or more in 1ooov,
3000V 20MΩ, compatible with AC3000V
(Also shows an insulation resistance value of 0.2MQ or more.

しかもBaCO3を添加することによシ、磁石特性にお
いてaI(cはやや低下するものの、焼結密度が増加し
残留磁束密度Brが大幅に向上した。
Furthermore, by adding BaCO3, although aI(c) of the magnetic properties decreased slightly, the sintered density increased and the residual magnetic flux density Br significantly improved.

BaCO3の添加が、焼結時においてFe203と反応
を起こし、焼結反応を促進することを示しており、BH
(max)が向上した。
This shows that the addition of BaCO3 causes a reaction with Fe203 during sintering and promotes the sintering reaction, and BH
(max) was improved.

上述の如く、微粉砕後にBaCO3を添加することによ
り、磁石特性を損なうことなく、絶縁特性を大幅に向上
させていることが明らかである。
As mentioned above, it is clear that by adding BaCO3 after pulverization, the insulation properties are significantly improved without impairing the magnetic properties.

実施例−2) BaCO3とFe203をモル比で5.40となるよう
秤量、混合した後、実施例−1)と同様に仮焼。
Example 2) BaCO3 and Fe203 were weighed and mixed so that the molar ratio was 5.40, and then calcined in the same manner as in Example 1).

粉砕した。粉砕の終了時に、この粉末を2分して添加物
としてBaCO3,BaSO4,、をそれぞれに0〜3
.0%重量%で添加、混合した後、このスラリーを実施
例−1)と同様に成形、焼結、研磨して、絶縁抵抗値及
び磁気特性を測定した。
Shattered. At the end of the grinding, the powder was divided into two parts and 0 to 3 of each of BaCO3, BaSO4, etc. was added as additives.
.. After adding and mixing at 0% by weight, this slurry was molded, sintered, and polished in the same manner as in Example 1), and the insulation resistance value and magnetic properties were measured.

第1図にこの結果の、 DCloooVでの絶縁抵抗値
、磁気特性値を示す。DCloooVでIOMΩ以上の
絶縁抵抗をもつものは、 AC5000Vでも0.1M
Ω以上の絶縁抵抗をもつことを確認した。
Figure 1 shows the insulation resistance value and magnetic property value at DCLoooV as a result of this. Those with insulation resistance of IOMΩ or more at DCLoooV are 0.1M even at AC5000V.
It was confirmed that the insulation resistance was Ω or more.

BaCO3、Ba5O,、それぞれ絶縁抵抗値を大幅に
向上している。特KBaCOsの添加では少ない添加量
でも大幅に絶縁抵抗を改善していることがわかる。
BaCO3 and Ba5O each have significantly improved insulation resistance values. In particular, it can be seen that the addition of KBaCOs significantly improves the insulation resistance even with a small addition amount.

磁気特性も2つのBa化合物の間で差はあるものの、密
度とBrは向上し+ BHCを下げるもののBH(ma
x)を向上させている。
Although there are differences in the magnetic properties between the two Ba compounds, the density and Br are improved, and the BH (ma
x).

実施例−3) SrCO,とFe2O3をモル比で5.50となるよう
秤量、混合した後、 1220℃で仮焼し、平均粒子径
が3〜4μとなるよう振動ロットミルで乾式粉砕し、更
に平均粒子径が1μとなるよう湿式で粉砕した。粉砕の
終了時にこの粉末を3分しBaCO3,SrCO3,S
rSO4をそれぞれに重量%で0〜3%添加し混合した
。このスラリーを実施例−1)と同様に成形、焼結、研
磨して、絶縁抵抗値、磁気特性値を測定した。
Example 3) After weighing and mixing SrCO and Fe2O3 at a molar ratio of 5.50, they were calcined at 1220°C, dry-pulverized with a vibrating rot mill to have an average particle size of 3 to 4μ, and further It was wet-pulverized so that the average particle size was 1 μm. At the end of the grinding, the powder was divided into 3 parts and BaCO3, SrCO3, S
0 to 3% by weight of rSO4 was added to each and mixed. This slurry was molded, sintered, and polished in the same manner as in Example 1), and the insulation resistance value and magnetic property value were measured.

この結果を第2図に示す。DC1000VでIOMΩ以
上の絶縁抵抗値をもつものはAC5000Vでも0.1
MΩ以上の絶縁抵抗をもつことを確認した。
The results are shown in FIG. If the insulation resistance value is IOMΩ or more at 1000V DC, the resistance will be 0.1 at 5000V AC.
It was confirmed that the insulation resistance was greater than MΩ.

添加しないもの(0チ)は、絶縁抵抗値がDCIDOO
Vで[2以下であり、たかだかDC250Vで4〜10
MΩであった。これに対し、 BaCO3、SrCO3
For those without additives (0chi), the insulation resistance value is DCIDOO
V [2 or less, at most 4 to 10 at DC250V
It was MΩ. On the other hand, BaCO3, SrCO3
.

SrSO4は絶縁抵抗値を著しく改善させ、また。SrSO4 significantly improves the insulation resistance value and also.

焼結体の密度、 Brをも向上させている。The density and Br of the sintered body are also improved.

5rSO,に比べBaCO3,5rCOsは一層優れた
効果を示している。
Compared to 5rSO, BaCO3 and 5rCOs show a more excellent effect.

以上、実施例をもって本発明を説明したが。The present invention has been explained above using examples.

Ba、 Sr化合物の粉砕終了時の添加、混合によって
、絶縁抵抗を大幅に改善すると共に焼結体密度を向上し
てBrを高め+ BH(ma幻を大幅に向上させること
が出来る。
By adding and mixing Ba and Sr compounds at the end of grinding, it is possible to significantly improve the insulation resistance, increase the density of the sintered body, increase Br, and significantly improve the +BH (ma).

またBaCO3,SrCO3は、他Ba化合物、 Sr
化合物に比べその効果が大きいことが判明した。
In addition, BaCO3 and SrCO3 are other Ba compounds, Sr
It was found that the effect was greater than that of other compounds.

なお、上述の実施例では湿式磁場成形による方法のみを
説明したが、乾式磁場成形法、乾式成形法でもその効果
を確認でき、また、磁気特性を改善するための添加物を
添加することは当然であり9本発明の範囲を限定するも
のではない。
In addition, in the above example, only the method using wet magnetic field molding was explained, but the effect can also be confirmed by dry magnetic field molding method and dry molding method, and it is natural to add additives to improve magnetic properties. 9, and does not limit the scope of the present invention.

また無添加と同様のBHpを要求する場合には。Also, if you require the same BHp as without additives.

焼結温度を下げて、焼結体密度を無添加と同様に密度を
多少低下させることで、絶縁抵抗を劣化させることなく
、無添加と同等の磁気特性をもつことを確認している。
It has been confirmed that by lowering the sintering temperature and slightly lowering the density of the sintered body to the same degree as without additives, it can have magnetic properties equivalent to those without additives without deteriorating insulation resistance.

以上9本発明について説明したが9本発明のように微砕
後に、 BaあるいはSr化合物を0.05〜3.0w
t%添加してやることによシ、絶縁性も大きく且つ磁石
特性の良いマグネトブランバイト構造の六方晶酸化物永
久磁石を得ることができた。
The nine present inventions have been described above, but after pulverization as in the present invention, 0.05 to 3.0 w of Ba or Sr compound is added.
By adding t%, it was possible to obtain a hexagonal oxide permanent magnet having a magnetoblanbite structure with high insulation properties and good magnetic properties.

本発明による永久磁石は前述した有極リレー用磁石のみ
ならず、感温リードスイッチ等に使用する永久磁石につ
いても極めて有効なものである。
The permanent magnet according to the present invention is extremely effective not only as a magnet for polarized relays as described above, but also as a permanent magnet used in temperature-sensitive reed switches and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による実施例−2の永久磁石の(a)絶
縁抵抗、(b)磁石特性をそれぞれ示す特性曲線であり
、第2図も本発明による実施例−3の(a)絶縁抵抗、
(b)磁石特性をそれぞれ示す特性曲線を示す。 馬2図        (α) 添 カ口 量  (We%) (b) (wt%)
FIG. 1 shows characteristic curves showing (a) insulation resistance and (b) magnet characteristics of the permanent magnet of Example-2 according to the present invention, and FIG. 2 also shows (a) insulation resistance of the permanent magnet of Example-3 according to the present invention. resistance,
(b) Shows characteristic curves showing the magnet characteristics. Figure 2 (α) Addition amount (We%) (b) (wt%)

Claims (1)

【特許請求の範囲】 1、 Mo*nFe2O3(但しMはBaまたはSr、
nはモル比で5.0乃至6.0)の化学式をもつマグネ
トブランバイト型結晶構造の酸化物永久磁石の製造にお
いて、 BaO又はSrOとなる原料とFe2O3とを
混合、仮焼成を経て、粉砕後に9M化合物を添加、混合
して後成形焼成することを特徴とする高絶縁抵抗をもつ
酸化物永久磁石の製造方法。 2、 Ba化合物、 Sr化合物を重量%で0.05〜
3.0%。 粉砕の終了時に添加混合す乙特許請求の範囲第1項記載
の高絶縁抵抗をもつ酸化物永久磁石の製造方法。 5、 Ba化合物、 Sr化合物の中で特にBaC0,
。 SrCO3を005〜3.0%粉砕の終了時に添加混合
する特許請求の範囲第1項記載の高絶縁抵抗をもつ酸化
物永久磁石の製造方法。
[Claims] 1. Mo*nFe2O3 (where M is Ba or Sr,
In the production of oxide permanent magnets with a magnetobrambite crystal structure having a chemical formula in which n is a molar ratio of 5.0 to 6.0, raw materials for BaO or SrO and Fe2O3 are mixed, pre-calcined, and then pulverized. A method for producing an oxide permanent magnet with high insulation resistance, which comprises adding and mixing a 9M compound and then post-forming and firing. 2. 0.05 to 0.05% by weight of Ba compound and Sr compound
3.0%. A method for producing an oxide permanent magnet having high insulation resistance as claimed in claim 1, wherein the oxide permanent magnets are added and mixed at the end of pulverization. 5. Among Ba compounds and Sr compounds, especially BaC0,
. A method for producing an oxide permanent magnet with high insulation resistance according to claim 1, wherein 0.05 to 3.0% of SrCO3 is added and mixed at the end of pulverization.
JP56106899A 1981-07-10 1981-07-10 Manufacture of oxide permanent magnet with high insulation resistance Pending JPS589303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56106899A JPS589303A (en) 1981-07-10 1981-07-10 Manufacture of oxide permanent magnet with high insulation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56106899A JPS589303A (en) 1981-07-10 1981-07-10 Manufacture of oxide permanent magnet with high insulation resistance

Publications (1)

Publication Number Publication Date
JPS589303A true JPS589303A (en) 1983-01-19

Family

ID=14445306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56106899A Pending JPS589303A (en) 1981-07-10 1981-07-10 Manufacture of oxide permanent magnet with high insulation resistance

Country Status (1)

Country Link
JP (1) JPS589303A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616766U (en) * 1992-08-05 1994-03-04 株式会社日本製鋼所 Ultra high pressure seal structure of high pressure cylinder
US5607615A (en) * 1994-05-13 1997-03-04 Tdk Corporation Hexagonal ba-ferrite sintered magnet, its making method, and polar anisotropy ring magnet
US5811024A (en) * 1995-06-26 1998-09-22 Tdk Corporation Preparation of anisotropic hexagonal barium ferrite sintered magnet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626769A (en) * 1979-08-07 1981-03-14 Hitachi Metals Ltd Manufacture of ferrite magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626769A (en) * 1979-08-07 1981-03-14 Hitachi Metals Ltd Manufacture of ferrite magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616766U (en) * 1992-08-05 1994-03-04 株式会社日本製鋼所 Ultra high pressure seal structure of high pressure cylinder
US5607615A (en) * 1994-05-13 1997-03-04 Tdk Corporation Hexagonal ba-ferrite sintered magnet, its making method, and polar anisotropy ring magnet
US5811024A (en) * 1995-06-26 1998-09-22 Tdk Corporation Preparation of anisotropic hexagonal barium ferrite sintered magnet

Similar Documents

Publication Publication Date Title
KR101347851B1 (en) Oxide magnetic material
JP4367649B2 (en) Ferrite sintered magnet
WO2011004791A1 (en) Ferrite magnetic material
EP3364426B1 (en) Ferrite magnetic material and ferrite sintered magnet
JP2922864B2 (en) Ferrite magnet and manufacturing method thereof
EP3473606A1 (en) Ferrite magnetic material and ferrite sintered magnet
WO2001035424A1 (en) Ferrite magnet powder and magnet using the magnet powder, and method for preparing them
JP3262109B2 (en) Magnet powder and method for producing the same
JPS589303A (en) Manufacture of oxide permanent magnet with high insulation resistance
JP3506174B2 (en) Method for producing ferrite magnet and powder thereof
JP3990291B2 (en) Manufacturing method of ferrite type magnet
JP2001052912A (en) Ferrite magnet material, sintered magnet and bonded magnet
JP2007258880A (en) Non-receiprocal circuit element
KR20030025229A (en) Magnetic oxide material
JPH01283802A (en) Strontium ferrite magnet
JP2021150619A (en) Ferrite sintered magnet
JP2021150620A (en) Ferrite sintered magnet
KR20070017466A (en) Ferrite sintered magnet
JPH11307331A (en) Ferrite magnet
JPH05275221A (en) Ferrite magnet and its manufacture
JP3257536B2 (en) Composite ferrite magnet material
JPS5913306A (en) Anisotropic strontium ferrite magnet
JPS6050324B2 (en) Manufacturing method of oxide permanent magnet
CN113024236A (en) Lanthanum-copper doped sintered permanent magnetic ferrite material and magnet prepared from same
JPH0125212B2 (en)