JPS58197209A - Production of low nitrogen and low hydrogen steel - Google Patents

Production of low nitrogen and low hydrogen steel

Info

Publication number
JPS58197209A
JPS58197209A JP7922482A JP7922482A JPS58197209A JP S58197209 A JPS58197209 A JP S58197209A JP 7922482 A JP7922482 A JP 7922482A JP 7922482 A JP7922482 A JP 7922482A JP S58197209 A JPS58197209 A JP S58197209A
Authority
JP
Japan
Prior art keywords
steel
nitrogen
low
converter
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7922482A
Other languages
Japanese (ja)
Inventor
Kazuo Ogahira
大河平 和男
Masazumi Hirai
平居 正純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7922482A priority Critical patent/JPS58197209A/en
Publication of JPS58197209A publication Critical patent/JPS58197209A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4653Tapholes; Opening or plugging thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To enable the easy production of low nitrogen and low hydrogen steel by decarburizing and refining molten iron which is subjected to preliminary desiliconization, dephosphorization and desulfurization treatments with the samll amt. of the lime to be used in a converter then shielding the same from the atmospheric air with a device for tapping the steel isolatedly from the atmospheric air and tapping the steel into a ladle. CONSTITUTION:The molten iron which is beforehand subjected to preliminary desiliconization, desulfurization and dephosphorization treatments by using NaCO3, etc. is charged into a converter 1, and mainly the decarburization, as well as desiliconization, desulfurization and dephosphorization are perfected by oxygen top blowing refining or the like, whereby the molten iron is refined to steel. Since the molten iron is refined preliminarily in this case, the required amt. of basic slag can be as small as 5-50kg for each 1 tone of the molten steel, and the amt. of the lime to be charged can be correspondingly smaller, so that the moisture to be carried from the lime into the molten steel is reduced considerably. A gas such as argon, CO2 or the like contg. moisture and nitrogen in an extremely small amt. is blown into the converter from the tuyere at the bottom thereof and the steel is tapped isolatedly from the atmospheric air through a communicating pipe 3 into a ladle 5 kept in an atmosphere of Ar or the like, whereby the absorption of nitrogen from the atmospheric air is reduced and the steel contg. nitrogen and hydrogen slightly is produced stably.

Description

【発明の詳細な説明】 本発明は低窒素低水素鋼の溶製方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing low nitrogen and low hydrogen steel.

一般に鋼溶製時の窒素や水素の含有′を鍵転炉での溶製
条件と出鋼時における前述成分のピックアツプ量によっ
て大きく影響される。例えば転炉での吹錬終了時におけ
る溶鋼中の水素含有量は、との吹錬に供された副材中の
水分含有量の影響が大きい。したがって大気中の湿度に
応じて季節対応があることは発明者においてもつとに経
験するところである。
Generally, the content of nitrogen and hydrogen during steel melting is greatly influenced by the melting conditions in the key converter and the amount of pick-up of the above-mentioned components during steel tapping. For example, the hydrogen content in molten steel at the end of blowing in a converter is largely influenced by the water content in the auxiliary material that has been subjected to blowing. Therefore, the inventor has always experienced that there is a seasonal response depending on the humidity in the atmosphere.

一方、転炉における溶製時にアルゴンや二酸化炭素がス
、酸素などの窒素外を含有しないガスを炉底から吹き込
むことにより、窒素含有°量の低い鋼の溶製が可能であ
ることも最近見出されている。
On the other hand, it has recently been discovered that it is possible to melt steel with a low nitrogen content by blowing argon, carbon dioxide, and other gases such as oxygen from the bottom of the furnace during melting. It's being served.

しかしながら吹錬終了時点において窒素あるいは水素が
低い溶鋼は出鋼に際して、とくに該窒素あるいは水素の
ビラファツジが大きく、従って吹錬終了時点における前
記窒素、水素の低減効果を十分に最終製品にまで生かす
ことは難かしい。
However, molten steel with low nitrogen or hydrogen content at the end of blowing has a particularly large amount of nitrogen or hydrogen when tapped, and therefore it is difficult to fully utilize the nitrogen and hydrogen reduction effect at the end of blowing into the final product. It's difficult.

一方材質の向上やMn、T11Bなど有価元素を節約す
る省資源の観点から低水素ならびに低窒素鋼の製造法の
改善が求められている。
On the other hand, from the viewpoint of improving material quality and saving resources by saving valuable elements such as Mn and T11B, there is a need to improve the manufacturing method of low-hydrogen and low-nitrogen steel.

一般に鋼中の水素含有量を低減させる方法としてはDH
法やRH法に代表される真空脱がス法が周知である。
Generally speaking, DH is a method for reducing the hydrogen content in steel.
Vacuum degassation methods such as the RH method and the RH method are well known.

この真空脱ガス処理工程において処理後の水素レベルを
十分に低くするためには、脱ガス処理時間を十分長く確
保するが処理前の水素含有量をあらかじめ低い値にして
おくことが必要でちる。とくに連続鋳造設備と結合して
連続連続鋳造(通常連連鋳と称している)によシ合理的
に鋼の連続鋳造を実施するためには、いわゆる鋳造作業
とその前工程の真空脱ガス処理工程との時間のマツチン
グが必要となることから、真空脱ガス処理工程にllゞ おける脱ガス処理時間は制約され、短かい方が望ましい
。したがって、溶鋼中の水素含有量をこのような限定条
件下で極力低くするためには、真空脱ガス処理前の溶鋼
中水素含有量を低減する技術の確立が必要である。
In order to make the hydrogen level after the process sufficiently low in this vacuum degassing process, it is necessary to ensure a sufficiently long degassing process time, but to set the hydrogen content before the process to a low value in advance. In particular, in order to rationally perform continuous casting of steel by combining continuous casting equipment with continuous casting equipment (usually referred to as continuous casting), it is necessary to perform so-called casting work and the vacuum degassing process that is the pre-process. Therefore, the degassing time in the vacuum degassing process is limited, and a shorter time is desirable. Therefore, in order to reduce the hydrogen content in molten steel as much as possible under such limited conditions, it is necessary to establish a technique for reducing the hydrogen content in molten steel before vacuum degassing treatment.

溶鋼中の窒素は水素と異なり真空処理に依っても余り変
動しないので、これまだ真空処理前に低含有量に抑えて
おくことが必要である。
Unlike hydrogen, nitrogen in molten steel does not change much even when vacuum treatment is performed, so it is necessary to keep the content low before vacuum treatment.

従来の転炉吹錬においては、吹止め時における溶鋼中の
水素含有量を低減させる方法として転炉に装入される生
石灰や鉄鉱石などの副材料として水分の含有量の少ない
ものを使用すること、その使用量を削減する手段として
装入される81分を少なくするため溶銑比の低い操業を
すること、さらにこれらの副材は吹錬初期に装入を完了
し、脱炭反応が弱くなる吹錬末期での使用は避ける方が
よいこと等があげられている。
In conventional converter blowing, as a method to reduce the hydrogen content in molten steel during blow-stopping, materials with low moisture content are used as auxiliary materials such as quicklime and iron ore that are charged into the converter. In addition, as a means to reduce the amount of molten metal used, operation is carried out at a low hot metal ratio to reduce the amount of molten metal charged.Furthermore, these auxiliary materials are charged completely at the beginning of blowing, and the decarburization reaction is weak. It has been suggested that it is better to avoid using it in the final stages of blowing.

さらには出鋼時のピックアップを抑制するために未脱酸
で出鋼する方法も知られてはいるが、この方法では出鋼
での温度降下が大きくなるだめ吹止温度が高くな)、脱
燐に不利になり、従って脱燐のために転炉で相当量の石
灰を使用しなければならないことからその効果に限界が
ある。
Furthermore, a method is known in which steel is tapped without being deoxidized in order to suppress pick-up during tapping, but this method results in a large temperature drop during tapping, resulting in a high blow-off temperature). It is disadvantageous to phosphorus and its effectiveness is therefore limited by the large amount of lime that must be used in the converter for dephosphorization.

また最近では溶銑中のSt、P、Sをあらかじめ除去し
た後に転炉で脱炭させることにより、転炉では生石灰や
鉱石といっだ副材を殆んど使用しない吹錬を実施するこ
とで、吹錬終了時点におゆる水素含有量を通常の転炉操
業における水準以下にさせ得ることも知られている。
Recently, St, P, and S in the hot metal have been removed in advance and then decarburized in the converter, and blowing has been carried out in the converter using almost no auxiliary materials such as quicklime or ore. It is also known that the hydrogen content at the end of blowing can be brought below the level in normal converter operation.

しかしながら上述した方法は、実質的にスラグのない吹
錬となるため、FeOフー−ムの発生が多く従って鉄分
損失が増大するほかに、上吹きランスの高さを高くして
ソフトブローにすると吹錬途上で突発的な脱炭反応が起
こシ、溶鋼を吹き出すといったトラブルを発生すること
もあシ、操業の安定性にかける欠点がある。
However, since the above-mentioned method results in blowing with virtually no slag, a large amount of FeO foam is generated, which increases iron loss. A sudden decarburization reaction may occur during the refining process, which can cause problems such as molten steel blowing out, and this has the disadvantage of affecting operational stability.

さらにこの方法では、実質的にスラグがないことから、
炉体内張シ耐大物の保護のために効果の太きい、いわゆ
るスラグコーティング操作を行なうことが出来なくなる
ために、炉体内張シ耐大物の溶損が顕著になる等の欠点
があシ、また吹止め時に水素や窒素含有量が低くても出
鋼過程でビックアラ!し、その効果が製品では十分に生
かされ(5) 得ない欠陥がある。
Furthermore, this method has virtually no slag, so
Because it is no longer possible to carry out the so-called slag coating operation, which is highly effective for protecting large objects lining the furnace, there are drawbacks such as significant melting of large objects lining the furnace. Even if the hydrogen and nitrogen content is low at the time of blow-stopping, there will be big errors in the tapping process! However, there are defects that prevent this effect from being fully utilized in products (5).

本発明は上述した欠点を解決すべくなされたもので、出
発材料としてあらかじめ脱珪、脱燐、脱硫した溶銑を用
い、転炉では脱炭と脱燐の一部を5〜50kg/Ton
−8te・lの少量スラグを用いて行ない、生石灰等の
副材の使用を極めて少ない量に限定する。この少量スラ
グの形成によってフユームの発生増大を抑制でき且つ内
張り耐火物のスラブコーティングも可能となる。さらに
吹錬中に炉底部から0.2 Nm3/Ton−Min以
下の窒素や水素外の少ない高純度アルゴンや二酸化炭素
ガスを吹込むことで突発的な脱炭反応を抑制するととも
に、吹錬末期に弱まる脱炭反応を補うなどを特徴とする
低窒素低水素鋼の溶製方法を提供するにある。
The present invention has been made to solve the above-mentioned drawbacks, and uses hot metal that has been previously desiliconized, dephosphorized, and desulfurized as a starting material, and decarburizes and dephosphorizes part of it in a converter at a rate of 5 to 50 kg/Ton.
A small amount of slag of -8 te·l is used, and the use of auxiliary materials such as quicklime is limited to an extremely small amount. By forming this small amount of slag, it is possible to suppress the increase in fume generation and also to enable slab coating of the refractory lining. Furthermore, by injecting 0.2 Nm3/Ton-Min or less of high-purity argon or carbon dioxide gas containing less nitrogen and hydrogen from the bottom of the furnace during blowing, sudden decarburization reactions can be suppressed, and the final stage of blowing can be suppressed. The object of the present invention is to provide a method for producing low-nitrogen, low-hydrogen steel, which is characterized by supplementing the decarburization reaction that weakens in the process.

以下本発明について詳述する。、 先ず本発明ではCILO系又はNa2CO3系の精錬剤
を用いて溶銑中の燐、硫黄をあらかじめP<0.040
%、S <0.020%まで低減させた後、該溶銑を少
量のスフラッグと共に転炉に装入する。、 。
The present invention will be explained in detail below. First, in the present invention, phosphorus and sulfur in hot metal are reduced to P<0.040 using a CILO-based or Na2CO3-based refining agent.
%, S <0.020%, the hot metal is charged into a converter together with a small amount of sflag. , .

溶銑の燐含有量、に厄じて溶鋼トン当)5〜50(6) )!相当のスラグを形成するように石灰分(生石灰、石
灰石、カルシウムフェライトなど)を装入し、炉底よV
) 0.2 Nm /Ton=Min望ましくは0.0
3〜0.1ONm3/Ton−Minの高純アルゴン又
は二酸化炭素ガスなどを吹込みながら上吹きランスで吹
酸する。
The phosphorus content of hot metal, per ton of molten steel) is 5 to 50 (6) )! Lime (quicklime, limestone, calcium ferrite, etc.) is charged to form a considerable amount of slag, and the V
) 0.2 Nm /Ton=Min preferably 0.0
Acid is blown using a top blowing lance while blowing high purity argon or carbon dioxide gas at 3 to 0.1 ONm3/Ton-Min.

スラグ量は少な過ぎると、フーームの発生を増大し、さ
らに炉体管理上必須のスラグコーティングが難かしくな
る。反対に多過ぎると転炉への侵入水分削減の目的が十
分に達せられないためその最大量は50 kg/Ton
−8teslに限定される。
If the amount of slag is too small, the generation of fumes will increase, and furthermore, it will become difficult to coat the slag, which is essential for furnace body management. On the other hand, if it is too large, the purpose of reducing moisture entering the converter cannot be sufficiently achieved, so the maximum amount is 50 kg/Ton.
- Limited to 8 tesl.

この際、溶銑の燐含有量が高めの場合には、装入石灰量
が多くなるのでスフラッグ使用量を減じ、含水分の低い
焼結鉱を吹錬中に添加して脱炭反応を活発にして系外へ
の水素の放出を促進することが望ましい。
At this time, if the phosphorus content of the hot metal is high, the amount of lime charged will be large, so reduce the amount of sflag used, and add sintered ore with a low moisture content during blowing to activate the decarburization reaction. It is desirable to promote the release of hydrogen to the outside of the system.

さらに出鋼孔に出鋼孔開閉装置を摺動自在に設けた転炉
ならびに溶鋼連通管を貫通して設けた蓋を有する取鍋を
組合せて用い:大気を遮断するところのシール出鋼を行
なうことが望ましい。
Furthermore, a converter with a tap hole opening/closing device slidably installed in the tap hole and a ladle with a lid installed through the molten steel communication pipe are used in combination to perform sealed steel tapping where the atmosphere is shut off. This is desirable.

また添加成分として用いる合金中の水素や窒業含有量は
低い程望ましい。
Further, it is desirable that the hydrogen and nitrogen content in the alloy used as an additive component be as low as possible.

次いで本発明の一実施例を示す。Next, an example of the present invention will be shown.

溶銑装入に先立って、装入量の5チ相当のスクラップを
転炉1に装入した後、あらかじめCaO系精煉剤によシ
脱珪、脱燐、脱硫処理したP=0.020%、S=0.
015%の低珪素、低燐、低硫銑を転炉に装入した。溶
鋼トン当D7kgの生石灰を用いて吹錬し、スラグ量は
約15 kg/Ton−8teel程であった。生石灰
や焼結鉱などの副材は吹錬過程の前半に添加を終了した
Prior to charging hot metal, scrap equivalent to 5 tons of the charging amount was charged into the converter 1, and then treated with a CaO-based refiner to desiliconize, dephosphorize, and desulfurize P = 0.020%. S=0.
0.15% low silicon, low phosphorus, and low sulfur pig iron was charged into the converter. The molten steel was blown using D7 kg of quicklime per ton of molten steel, and the amount of slag was about 15 kg/Ton-8 teal. Addition of auxiliary materials such as quicklime and sintered ore was completed during the first half of the blowing process.

また、転炉の炉底から高純度アルゴンガスを吹錬の前半
には0.03 Nm3/Ton−Mln、後半には0.
1ONm3/Ton−Minの割合で溶湯中に吹き込ん
だ。吹止め後溶鋼については、出鋼孔に出鋼孔開閉装置
2を設けた転炉1と溶鋼連通管3を貫通して設けた蓋4
を有する取鍋5との組合せによるシール出鋼を実施した
In addition, high-purity argon gas was supplied from the bottom of the converter at a rate of 0.03 Nm3/Ton-Mln during the first half of blowing, and at a rate of 0.03 Nm3/Ton-Mln during the second half.
It was blown into the molten metal at a rate of 1 ONm3/Ton-Min. For molten steel after blow-stopping, a converter 1 is provided with a tap hole opening/closing device 2 in the tap hole, and a lid 4 is installed through the molten steel communication pipe 3.
Sealed steel tapping was carried out in combination with a ladle 5 having a ladle 5.

即ち、吹錬終了後、転炉出鋼前には出鋼孔を閉として炉
体1をほぼ水平状態に傾動位置させる。
That is, after finishing blowing and before tapping the steel in the converter, the tapping hole is closed and the furnace body 1 is tilted to a substantially horizontal position.

取鍋5の内部をアルゴン々どの窒素や水素含有量の少な
いガスで置換しさらにはアルゴンを吹き込んでおく。溶
鋼連通管3を出鋼孔に合わせ取鍋昇降装置(図示せず)
を用いて開閉装置2の下面へ圧着させた後、出鋼孔開閉
装置2を開動作して出鋼流と大気との接触をほぼ完全に
断った状態で出鋼する。出鋼末期にはあらかじめアルゴ
ンでその内部を置換した合金シュート6で合金を添加し
成分調整を実施した。
The inside of the ladle 5 is replaced with a gas having low nitrogen or hydrogen content, such as argon, and further argon is blown into the ladle 5. Align the molten steel communication pipe 3 with the tapping hole and ladle lifting device (not shown)
After the steel is crimped onto the lower surface of the opening/closing device 2 using the tapping hole opening/closing device 2, the tapping hole opening/closing device 2 is opened to tap the tap in a state where contact between the tapping flow and the atmosphere is almost completely cut off. At the final stage of steel tapping, alloy was added through the alloy chute 6 whose interior had been previously replaced with argon to adjust the composition.

本発明による取鍋自溶鋼中の窒素ならびに水素含有量と
精錬コストを、普通溶銑を用いた通常転炉吹錬法(A法
)と普通溶銑を用′い、・た・□低窒素低水素吹錬法(
B法)と比較してその効果を示した。
The nitrogen and hydrogen contents and refining costs in the ladle self-molten steel according to the present invention were determined by using the conventional converter blowing method (A method) using ordinary hot metal and the ordinary hot metal. Blowing method (
The effect was shown in comparison with Method B).

シール出鋼は中、高炭素鋼のように溶鋼中酸素含有量が
低いもので、特に効果が顕著であるが、低炭素鋼の際に
は溶鋼中酸素含有量が高い時にはシール出鋼に代えて未
脱炭状態で出鋼しても水素ならびに窒素のピックアップ
は中、高炭素鋼の場合程に大きくならない。
Sealed tapping is particularly effective for medium and high carbon steels where the oxygen content in the molten steel is low; however, in the case of low carbon steel, when the oxygen content in the molten steel is high, it can be used instead of sealed tapping. Even if the steel is tapped in an undecarburized state, the pickup of hydrogen and nitrogen will not be as large as in the case of medium- to high-carbon steel.

第2図は従来法(A法、B法)と本発明の成分調整後の
N、Hの値をA法を基準にして評価した(9) ものでアシ、本発明法では、従来(4)法に比較してN
値において25%、H値において20%の低下をみたこ
とを表わしており、窒素、水素値共に大きく低減したこ
とを示している。また第3図は従来(A法、B法)法と
本発明法の精錬コストの比較を示したもので、七〈に本
発明法では従来(A)法に比較して3チのコストダウン
を可能とするなど大きい効果をもたらすことが出来た。
Figure 2 shows the evaluation of N and H values after component adjustment in the conventional methods (methods A and B) and the present invention based on the method A (9). ) compared to the law
This shows that the value decreased by 25% and the H value decreased by 20%, indicating that both the nitrogen and hydrogen values decreased significantly. In addition, Figure 3 shows a comparison of the refining costs of the conventional (methods A and B) and the method of the present invention. It was able to bring about great effects, such as making it possible.

本発明は上述したように構成したことによし精錬副材の
装入を生成するスラグ量がフユームの発生阻止、炉ライ
ニングのスラグコーティングを可能とする程度に少量に
抑制すること、併せて炉底部からの低窒素低水素攪拌ガ
スの吹込みにより突発的脱炭反応を抑制するなどの冶金
操作を行なうことで従来きわめて困難であった低コスト
効率的な低窒素低水素鋼の溶製が可能となった効果はき
わめて大きい。
The present invention is constructed as described above, and the amount of slag produced when charging the refining auxiliary material is suppressed to a small amount to the extent that it is possible to prevent the generation of fumes and coat the furnace lining with slag. By performing metallurgical operations such as suppressing the sudden decarburization reaction by injecting low-nitrogen, low-hydrogen stirring gas from the steel, it is now possible to produce low-nitrogen, low-hydrogen steel at low cost and efficiency, which was extremely difficult in the past. The resulting effect is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に供される概略全体構成図、第2
図は従来法(A法、B法)と本発明の成(10) 分調整後のN、Hの比較図、第3図は従来法(A法、B
法)と本発明の精錬コストの相対比較図である。 特許出願人 新日本製鐵株式會社 代理人大関 和犬 誦□ (11) 洸l目 ハと 扇2圀         第3目
FIG. 1 is a schematic overall configuration diagram used for carrying out the present invention, and FIG.
The figure is a comparison diagram of N and H after adjusting the composition (10) of the conventional method (method A, method B) and the present invention.
Fig. 3 is a relative comparison diagram of the refining costs of the present invention. Patent Applicant Nippon Steel Corporation Agent Ozeki Kazuyuki Wainu (11) Law 1 Ha and Ougi 2 Koku 3

Claims (2)

【特許請求の範囲】[Claims] (1)  あらかじめ脱燐、脱珪した溶銑を酸素吹き転
炉で吹錬するに際し、該溶銑中の燐含有量に応じて石灰
分添加量を決定し、溶鋼単位重量当り5〜50kg/ 
Ton 5teel のスラグを生成させるとともに、
炉底部から0.2 Nm3/’ron−Min以下のア
ルゴンまたは二酸化炭素などの低窒素低水素高純ガス若
しくは高純混合ガスを吹き込むことを特徴とする低窒素
低水素鋼の溶製方法。
(1) When blowing hot metal that has been previously dephosphorized and desiliconized in an oxygen-blown converter, the amount of lime added is determined according to the phosphorus content in the hot metal, and is 5 to 50 kg/unit weight of molten steel.
While generating slag of Ton 5 Teel,
A method for producing low nitrogen, low hydrogen steel, which comprises blowing a low nitrogen, low hydrogen, high purity gas or a high purity mixed gas such as argon or carbon dioxide at a rate of 0.2 Nm3/'ron-Min or less from the bottom of the furnace.
(2)  あらかじめ脱燐、脱珪した溶銑を酸素吹き転
炉で吹錬するに際し、該溶銑中の燐含有量に応じて石灰
分添加量を決定し、溶鋼単位重量肖り、5〜50kg/
Ton 5teelのスラグを生成させるとともに、炉
底部から0.2 Nm3/’I’on −Mi n以下
のアルゴンまたは二酸化炭素などの低窒素低水素高純ガ
ス若しくは高純混合ガスを吹き込みなから吹錬を行なっ
たのち、転炉出鋼孔、取鍋間を大気遮断装置を用いて断
気出鋼することを特徴とする低窒素低水素鋼の溶製方法
(2) When blowing hot metal that has been dephosphorized and desiliconized in advance in an oxygen-blown converter, the amount of lime added is determined according to the phosphorus content in the hot metal, and the amount of lime added is 5 to 50 kg per unit weight of molten steel.
At the same time as generating slag of 1.5 ton, 5 steel, low nitrogen, low hydrogen, high purity gas such as argon or carbon dioxide or high purity mixed gas of 0.2 Nm3/'I'on -Min or less is blown from the bottom of the furnace. 1. A method for producing low nitrogen and low hydrogen steel, which is characterized in that the steel is tapped using an air cut-off device between the tap hole of the converter and the ladle.
JP7922482A 1982-05-13 1982-05-13 Production of low nitrogen and low hydrogen steel Pending JPS58197209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7922482A JPS58197209A (en) 1982-05-13 1982-05-13 Production of low nitrogen and low hydrogen steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7922482A JPS58197209A (en) 1982-05-13 1982-05-13 Production of low nitrogen and low hydrogen steel

Publications (1)

Publication Number Publication Date
JPS58197209A true JPS58197209A (en) 1983-11-16

Family

ID=13683938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7922482A Pending JPS58197209A (en) 1982-05-13 1982-05-13 Production of low nitrogen and low hydrogen steel

Country Status (1)

Country Link
JP (1) JPS58197209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100949724B1 (en) * 2002-12-12 2010-03-25 주식회사 포스코 A Molten Metal Refinery Method with Low Hydrogen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100949724B1 (en) * 2002-12-12 2010-03-25 주식회사 포스코 A Molten Metal Refinery Method with Low Hydrogen

Similar Documents

Publication Publication Date Title
EP2331715B2 (en) Low cost making of a low carbon, low sulfur, and low nitrogen steel using conventional steelmaking equipment
AU2011267833B2 (en) Low cost making of a low carbon, low sulfur, and low nitrogen steel using conventional steelmaking equipment
CN114606357A (en) Method for removing phosphorus and leaving carbon in medium-high carbon steel by converter
JP3557910B2 (en) Hot metal dephosphorization method and low sulfur and low phosphorus steel smelting method
JPH0437132B2 (en)
JPH0959709A (en) Method for dephosphorizing molten iron
JP3002593B2 (en) Melting method of ultra low carbon steel
JPS58197209A (en) Production of low nitrogen and low hydrogen steel
JPH09235611A (en) Production of extra-low sulfur pure iron having high cleanliness
JP3333339B2 (en) Converter steelmaking method for recycling decarburized slag
JP3505791B2 (en) Dephosphorization and desulfurization of hot metal
JPH0437135B2 (en)
JP3339982B2 (en) Converter steelmaking method
JPS6362562B2 (en)
JPH0557327B2 (en)
JP2003293022A (en) Method for producing molten low nitrogen and chromium- containing steel
JPH01312020A (en) Method for dephosphorizing molten iron by heating
JPH01147012A (en) Steelmaking method
JPH01215917A (en) Method for melting stainless steel
JPS62290815A (en) Steel making method
JPS58207316A (en) Production of low nitrogen and low hydrogen steel having high cleanliness
JPH0437134B2 (en)
JPH0431003B2 (en)
JPS62192519A (en) Refining method for molten steel
JP2005048238A (en) Method for dephosphorizing molten iron