JPS58196828A - Desulfurization and denitration of exhaust gas from sintering machine - Google Patents

Desulfurization and denitration of exhaust gas from sintering machine

Info

Publication number
JPS58196828A
JPS58196828A JP57076527A JP7652782A JPS58196828A JP S58196828 A JPS58196828 A JP S58196828A JP 57076527 A JP57076527 A JP 57076527A JP 7652782 A JP7652782 A JP 7652782A JP S58196828 A JPS58196828 A JP S58196828A
Authority
JP
Japan
Prior art keywords
exhaust gas
desulfurization
denitration
sintering machine
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57076527A
Other languages
Japanese (ja)
Inventor
Toshio Tsukuda
佃 利夫
Hiromi Tanaka
田中 裕実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP57076527A priority Critical patent/JPS58196828A/en
Publication of JPS58196828A publication Critical patent/JPS58196828A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To effectively carry out desulfurization and denitration in an optimum temp. region, by a method wherein the exhaust gas of the first half part in a sintering process is subjected to low temp. denitration treatment while the exhaust gas of the latter half part in said sintering process is subjected to desulfurization treatment to make efficient use of characteristics of the exhaust gas from a sintering machine. CONSTITUTION:The exhaust gas of a sintering machine 21 is separated into a low SO2 concn. exhaust gas near to an ore supply side (wind boxes 1-9) and a high SO2 concn. exhaust gas near to an ore discharge side (wind boxes 10-16) while the former is taken out at about 100 deg.C to be introduced into a denitration apparatus 24 where subjected to denitration by activated carbon, while NH3 is injeted, to be exhausted from a chimney 25. The latter is cooled to 120-160 deg.C in a waste heat boiler 22 and, after dust is removed therefrom, the dust removed gas is subjected to desulfurization in a desulfurization apparatus 23 by activated carbon.

Description

【発明の詳細な説明】 本発明は焼結機排ガスの脱硫脱硝方法の改爽に関する。[Detailed description of the invention] The present invention relates to a refreshing method for desulfurization and denitration of sintering machine exhaust gas.

従来よp製鉄原料として粉鉱を焼結して使用する高炉方
法による製鉄方法が主流となっているが、焼結工程にお
いて排出される排ガス中には粉じんおよびイオウ酸化物
・窒素酸化物(以下それぞれl’ SOx 、 N0x
jと呼ぶ)がiすれる九め、壌境保全上集じん器、脱硫
・脱硝装置等により浄化して大気に放出される。
Conventionally, the mainstream method for making iron has been the blast furnace method, which uses sintered ore powder as raw material for p-steel making, but the exhaust gas emitted during the sintering process contains dust, sulfur oxides, and nitrogen oxides (hereinafter l'SOx, NOx, respectively
When the water (referred to as J) is washed away, it is purified by dust collectors, desulfurization/denitrification equipment, etc., and released into the atmosphere to protect the soil environment.

しかしながら、これらの環境保全設備費および運転経費
は焼結機本体のそれらに匹敵し、焼結−高炉方式の経済
性を悪化させる大きな要因となっていた。
However, these environmental protection equipment costs and operating costs are comparable to those of the sintering machine itself, and have been a major factor deteriorating the economic efficiency of the sintering-blast furnace method.

このため、従来よシ脱硫能力、脱硝能力および経済性等
の点から種々の改善策が提案されている。
For this reason, various improvement measures have been proposed from the viewpoint of desulfurization ability, denitrification ability, economic efficiency, etc.

例えば、焼結機の排鉱側寄シの高濃度SOx発生部分の
ウィンドボックスからの排ガスを選択的に脱硫の行える
脱硫装置(実登第1296507号)や前記と同様の装
置において80x濃度の高い排ガスを焼結機給鉱側寄シ
に除湿後供給して全体の排ガス量を減らして脱硫する方
法(特許第1019857号)が提案されている。しか
しながら、いずれも脱硫のみに関し脱硝についての提案
はされていない。
For example, a desulfurization device (Jitto No. 1296507) that can selectively desulfurize the exhaust gas from the wind box of the high-concentration SOx generation part on the discharge side of the sintering machine, and a device similar to the above, have a high 80x concentration. A method (Japanese Patent No. 1019857) has been proposed in which exhaust gas is dehumidified and then supplied to the feed side of the sintering machine to reduce the total amount of exhaust gas and perform desulfurization. However, all of these proposals relate only to desulfurization and do not propose denitrification.

一方、前記の方法において除湿のかわりに脱 ・硫脱硝
する方法(%杵築1065092号)等が提案されてい
るが、特に脱硝能力は十分ではなかった。
On the other hand, in the above-mentioned method, a method of denitrification and sulfur removal instead of dehumidification (%Kitsuki No. 1065092) has been proposed, but the denitrification ability is not particularly sufficient.

この原因は次に述べるような排ガスのa状によるところ
が大匙いと考えられる。
The cause of this is thought to be largely due to the a-state of the exhaust gas as described below.

第1図は、移動床式焼結機のウィンドホックス毎よ多発
生する排ガス中の801− NOx 111g分布およ
び排ガス温度分布の実測値の一例である。
FIG. 1 shows an example of actually measured values of the 801-NOx 111g distribution in the exhaust gas and the exhaust gas temperature distribution, which are frequently generated in each wind hox of a moving bed sintering machine.

(但し、ウィンドホックス毎は給鉱側から排鉱側に付番
されている。) この図から明らかなように、802議度は排鉱11C焼
結過m*半部)寄ヤに高く集中し、NOx濃度は全体的
に分布し、両端を除く中央部分が高い特性となっている
。を九排ガス温度は排鉱側で高く、給鉱側(焼結過程前
半部)から全体の2/は100℃前後となっている。焼
結機によりこの特性は多少異なるが同様の傾向を持つて
いると首って良い。
(However, each Windhox is numbered from the ore supply side to the ore discharge side.) As is clear from this figure, 802 degrees are highly concentrated in the ore discharge 11C sintering layer (m*half). However, the NOx concentration is distributed throughout, and is high in the center excluding both ends. The exhaust gas temperature is high on the ore discharge side, and is around 100°C from the ore feed side (the first half of the sintering process). Although these characteristics differ somewhat depending on the sintering machine, it is safe to assume that they have similar trends.

前記脱硫脱硝法は、このような特性を十分に生かしてお
らず、第1図に示したNOx濃度分布から見て約半分は
未処理のまま排出される結果となシ効果の高い脱硝を行
うことはできなかった。又、従来のいずれの方法も経済
的に4不利であった。
The desulfurization and denitrification methods described above do not take full advantage of these characteristics, and judging from the NOx concentration distribution shown in Figure 1, approximately half of the NOx is discharged untreated. I couldn't do that. Furthermore, all of the conventional methods have four disadvantages economically.

本発明は、以上の点に龜み、焼結機排ガスの特性を生か
し、脱硫脱硝に蛾適な温度域を与えて、脱硫脱硝を効果
的に行い、経済的にも有利な焼結機排ガスの脱硫脱硝方
法を提供することを目的とし、本発明者らは鋭意検討を
重ねた結果、本発明を完成するに至った。
The present invention takes into consideration the above points, takes advantage of the characteristics of sintering machine exhaust gas, provides a suitable temperature range for desulfurization and denitrification, effectively performs desulfurization and denitration, and provides an economically advantageous sintering machine exhaust gas. With the aim of providing a desulfurization and denitrification method, the present inventors have conducted extensive studies and have completed the present invention.

即ち、本発明は鉄鉱石の焼結過程中に発生する排ガスを
5OxQ度の低い焼結過程前半部の排ガスとSOx媛度
0^い焼結過程後半部の排ガスとに2分して焼結機排ガ
スを縦素質吸着剤によ如脱憾脱硝する方法において、I
tI紀焼結過楊藺牛部の排ガスはN)i、存在下で90
〜120℃の温度範囲にて脱硝処理し、前記焼結過程後
中部の排ガスをそのまま或いはNH,存在下で120〜
160℃の温度範囲にて脱硫処理することを特徴とする
ものである。
That is, the present invention performs sintering by dividing the exhaust gas generated during the sintering process of iron ore into the exhaust gas from the first half of the sintering process, which has a low 5OxQ degree, and the exhaust gas from the second half of the sintering process, which has a low SOx degree of 0. I
The exhaust gas of the tI period sintered filter is 90% in the presence of N)i.
Denitration treatment is carried out at a temperature range of ~120°C, and after the sintering process, the exhaust gas in the middle part is denitrated as it is or in the presence of NH.
It is characterized by desulfurization treatment in a temperature range of 160°C.

従来よυ知られている脱硫方法として亜*繭法、石灰/
石灰石・石こう法、活性炭法尋があり、脱i法として金
禰酸化物または活性炭を触媒として用いる接触還元法、
同時脱硫・脱硝法として活性員法尋が公知である。
Conventionally known desulfurization methods include the sub-cocoon method and the lime/cocoon method.
There are the limestone/gypsum method and the activated carbon method, and the catalytic reduction method uses Kinne oxide or activated carbon as a catalyst as a deionization method.
The active member method is known as a simultaneous desulfurization and denitrification method.

このうち、脱硫・脱硝に1省エネルギー等の観点から排
ガス温度の低下がなく、かつ排ガス中の水分増加のない
乾式法が適しており、を九脱硝は100℃前後の低温度
で行える方法が適していると首える。
Among these, dry methods are suitable for desulfurization and denitrification because they do not cause a drop in exhaust gas temperature and do not increase moisture in the exhaust gas from the viewpoint of energy conservation, etc.; I get headaches when I sit there.

低温脱硝(脱硫)方法として社アンモニア注入下で活性
炭を用いて行う方法(%願昭54−127693号、4
131181sO−28674号)>E知られているが
、これらはいずれも同時脱硫脱硝を目的としたもので、
通常のSOx共存下では40%根度の脱硝率しか得られ
ないと報告されている。
A low-temperature denitrification (desulfurization) method using activated carbon under injection of ammonia (%Gan Sho 54-127693, 4
131181sO-28674)>E is known, but all of these are aimed at simultaneous desulfurization and denitrification.
It is reported that under normal SOx coexistence, a denitrification rate of only 40% can be obtained.

しかし本発明者らが檀々試験したところではSOX濃度
が250 ppm以下では驚くべきことに空間速t(s
V) a o o〜800 hr−’、ガス温度145
℃、NOx i1度200 ppmの条件でwJ2図に
示すように高い脱硝率が得られた。その原因は共存SO
x績度濃度いために活性炭の表面が生成物(硫酸、fI
&酸アンモニウム塩等)によっておおわれないために触
媒油性が持続する丸めと推定される。
However, the inventors have conducted numerous tests and found that when the SOX concentration is below 250 ppm, the space velocity t(s
V) a o o ~ 800 hr-', gas temperature 145
℃, NOx i1 degree, and 200 ppm, a high denitrification rate was obtained as shown in the wJ2 diagram. The cause is coexistence SO
Due to the low concentration of carbon, the surface of activated carbon is
It is presumed that the catalytic oiliness persists because it is not covered by the catalytic acid ammonium salt, etc.).

第1図から明らかなように、焼結過程前半部の排ガスは
前記SOX員度条件を十分満足している。
As is clear from FIG. 1, the exhaust gas in the first half of the sintering process fully satisfies the above-mentioned SOX content condition.

従って、焼結過程前半部の排ガスは脱硝処理し、焼結*
h程後後半部排ガスを脱硫処理することが蛾適である。
Therefore, the exhaust gas from the first half of the sintering process is denitrified, and the sintering*
It is suitable to desulfurize the exhaust gas in the second half after about 1 hour.

更に、これによって各々の処理に漱適な低&Aの温度域
で実施が可能と表る。
Furthermore, this makes it possible to carry out the process in a low &A temperature range suitable for each treatment.

次ニ、本発明をウィンドボックスを有する移動床式の焼
結機を用いた場合を例に第3図に基づいて説明を行う。
Next, the present invention will be explained based on FIG. 3, taking as an example a case where a moving bed type sintering machine having a wind box is used.

給鉱され九鉱石は、焼結機21の給鉱側から排鉱側へ移
動するに従ってIIA結が進行してい〈が、ウィンドボ
ックス1〜16からは第1図に示したような性状の排ガ
スが生成する。この除、特にSOlの濃度分布に着目し
てSO1濃度の低い排ガス、つま)給鉱−寄p(ウィン
ドボックス1〜9)とSO2鎖度0高い排ガス、つlシ
併鉱飼寄シ(ウィンドボックス10〜16)とに2分し
て各々の排ガスの性状にLじた処理を行う。
As the supplied nine ores move from the supply side to the discharge side of the sintering machine 21, IIA consolidation progresses. is generated. In particular, we focused on the concentration distribution of SO1, focusing on the exhaust gas with a low concentration of SO1, the exhaust gas with a low SO1 concentration (wind box 1 to 9), and the exhaust gas with a high SO2 chain concentration (wind box 1 to 9). Boxes 10 to 16) are divided into two parts, and each type of exhaust gas is processed according to its properties.

後者のSO,6度の高い排ガスは、廃熱ボイラ22で1
60℃以下に冷却し集じん後、脱硫装置23にてJN硫
に供される。この場合、温度は脱硫の目的からは低い方
が良いが低I!腐食等を考慮し120℃以上とするので
ある。−rンモニアを注入する場合は低温腐食の問題は
ないが、同時脱硝効果を期待して140〜160℃の範
囲の温度とすれば、第1図に見るように相対的に低い平
均NOx濃度の効果と相まって、SOx共存下でも30
〜40%楓度の、比較的高い脱硝効果が得られるメリッ
トがある。
The latter SO, 6 degree high exhaust gas is processed by the waste heat boiler 22.
After cooling to 60° C. or lower and collecting dust, it is supplied to JN sulfur in a desulfurization device 23. In this case, lower temperatures are better for desulfurization purposes, but low I! The temperature is set at 120°C or higher in consideration of corrosion, etc. -r When injecting ammonia, there is no problem of low-temperature corrosion, but if the temperature is set in the range of 140 to 160°C in hopes of simultaneous denitrification, the average NOx concentration will be relatively low, as shown in Figure 1. Coupled with the effect, even in the coexistence of SOx, the
It has the advantage of providing a relatively high denitrification effect with a maple degree of ~40%.

また給鉱側寄シのウィンドボックスからの排ガスはSO
Xを#1とんど含まずに約100℃meの温度で取出さ
れ、脱硝装置24にて脱硝後煙突25から排出される。
In addition, the exhaust gas from the wind box near the ore supply side is SO.
#1 is taken out at a temperature of about 100° C.me, containing almost no X, and after being denitrified in the denitrification device 24, is discharged from the chimney 25.

この場合、脱硝処理すべき給鉱側寄シの排ガス温度が、
従来実施されている低温脱硝処理温f(約150℃前後
)よシも更に低いが、80X濃度が十分に低いのでアン
モニア注入下で活性炭によ〕90〜120℃にて効果的
に脱硝が行える。又、活性炭のSV(空間速度)は比較
的低く選ぶことが好ましい。
In this case, the exhaust gas temperature at the ore feed side to be denitrified is
Although the temperature f of conventional low-temperature denitrification treatment (approximately 150°C) is lower, the 80X concentration is sufficiently low that denitrification can be effectively carried out at 90 to 120°C using activated carbon while injecting ammonia. . Further, it is preferable that the activated carbon has a relatively low SV (space velocity).

給鉱側寄シの排ガス温度をいく分高めたい場合には、排
ガス温度が高(80x濃度の低い焼結過程末期の排ガス
(第1および第3図中のウィンドボックス16からの排
ガス)の一部を給鉱側寄りの排ガスに混合して脱硝処理
すると良い。
If you want to increase the exhaust gas temperature on the feed side to some extent, the exhaust gas temperature should be high (80x exhaust gas at the end of the sintering process with low concentration (exhaust gas from the wind box 16 in Figs. 1 and 3)). It is best to mix this with the exhaust gas near the ore feed side for denitration treatment.

図中、26.26’は電気業じん器、27.27’はボ
イラーを示す。
In the figure, 26.26' indicates an electric industrial appliance, and 27.27' indicates a boiler.

以上の操作によシ、ウィンドボックスからの排ガスはす
べて脱硫および脱硝処理されるので全体として高い除去
率が得られるのである。
Through the above operations, all of the exhaust gas from the wind box is desulfurized and denitrated, resulting in a high overall removal rate.

脱硫および脱硝に供した活性炭は加熱再生され再利用さ
れるが、第4図には上記の脱硫および脱硝装置の排ガス
処理部を活性炭による移動床で構成し、脱離塔28にて
活性炭の再生を一括で行う場合のフローシートを例示し
た。このように、活性炭の再生を一括で行うと設備費が
割安になる他、敷地面積が少なくなるメリットがある。
Activated carbon subjected to desulfurization and denitrification is regenerated by heating and reused. In FIG. The following is an example of a flow sheet for carrying out all of the above in one go. In this way, if activated carbon is recycled all at once, the equipment cost will be lower and the site area will be reduced.

脱離し九SOtガスは、副生品回収装置29にて回収さ
れる。
The desorbed SOt gas is recovered by a by-product recovery device 29.

なお、本発明の説明には巌素質吸着剤を活性炭で代表さ
せ九が、半成コークス、チャーま九はそれらに金X酸化
物を担持させたもの或いは活性炭に金属酸化物を担持さ
せ九ものでも同一の効果が得られる。
In the explanation of the present invention, activated carbon is used as a representative adsorbent for Iwao element, while semi-formed coke and charcoal are used to refer to those made by supporting gold X oxides or activated carbon to support metal oxides. But you can get the same effect.

以下、実施例によシ本発明の効果を明らかにする。Hereinafter, the effects of the present invention will be clarified through examples.

実施例 脱硫装置および脱硝装置として活性戻光てん量1看の固
定床式のベンチ試験装置を用いて、焼結機排ガスを第3
図に示すようなプロセスで脱硫脱硝を行った。
Example A fixed-bed bench test device with an active return capacity of 1 dia. was used as the desulfurization device and the denitrification device.
Desulfurization and denitrification were performed using the process shown in the figure.

焼結機の排鉱側寄シ(焼結過程後半部)の排ガス、給鉱
側寄り(焼結過程前半部)の排ガスの性状、処理条件と
伴に結果を下表に示した。
The results are shown in the table below, together with the properties and processing conditions of the exhaust gas from the ore discharge side of the sintering machine (the latter half of the sintering process) and the exhaust gas from the ore feed side (the first half of the sintering process).

この結果から明らかなように、優れ九脱硫脱硝効果が得
られた。
As is clear from the results, an excellent desulfurization and denitrification effect was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、移動床式焼結機のウィンドボックス毎より発
生する排ガス中のSQ、 、 NOx濃度分布および排
ガス温度分布の実測値の一例を示し、第2図はSO2濃
度の脱硝率への影響を示したものであり、第3図は本発
明の実施の態様を例示したものである。第4図は、吸着
剤再生の一例を示すフローシートである。 21・・・焼結機    23・・・脱硝装置26・・
・脱硫装置 特許出願人 住友重機械工業株式会社
Figure 1 shows an example of actual measured values of SQ, NOx concentration distribution and exhaust gas temperature distribution in the exhaust gas generated from each wind box of a moving bed sintering machine, and Figure 2 shows the influence of SO2 concentration on the denitrification rate. FIG. 3 illustrates an embodiment of the present invention. FIG. 4 is a flow sheet showing an example of adsorbent regeneration. 21...Sintering machine 23...Denitrification device 26...
・Desulfurization equipment patent applicant Sumitomo Heavy Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、鉄鉱石の焼結過程中に発生する排カスをSOx濠度
0低い焼結過程前半部の排カスとSOx濃度の高い焼結
過程後半部の排ガスとに2分して焼結機排ガスを巌素質
吸着剤により脱硫脱硝する方法において、前記焼結過#
AI!t1半部の排ガスはNH,存在下で90〜120
℃の温度範囲にて脱硝処理し、前記焼結過程後半部の排
ガスをその壕★或いはNH,存在下で120〜160℃
の温度範囲にて脱硫処理することを特徴とする焼結機排
ガスの脱硫脱硝法0
1. The waste gas generated during the sintering process of iron ore is divided into two parts: waste gas from the first half of the sintering process with a low SOx concentration of 0, and waste gas from the second half of the sintering process with a high SOx concentration. In the method of desulfurizing and denitrating using a solid adsorbent, the sintered
AI! The exhaust gas in the t1 half is 90 to 120 in the presence of NH.
The exhaust gas from the latter half of the sintering process is denitrified at a temperature range of 120-160°C in the presence of NH or NH.
A desulfurization and denitrification method for sintering machine exhaust gas characterized by desulfurization treatment at a temperature range of 0
JP57076527A 1982-05-10 1982-05-10 Desulfurization and denitration of exhaust gas from sintering machine Pending JPS58196828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57076527A JPS58196828A (en) 1982-05-10 1982-05-10 Desulfurization and denitration of exhaust gas from sintering machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57076527A JPS58196828A (en) 1982-05-10 1982-05-10 Desulfurization and denitration of exhaust gas from sintering machine

Publications (1)

Publication Number Publication Date
JPS58196828A true JPS58196828A (en) 1983-11-16

Family

ID=13607750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57076527A Pending JPS58196828A (en) 1982-05-10 1982-05-10 Desulfurization and denitration of exhaust gas from sintering machine

Country Status (1)

Country Link
JP (1) JPS58196828A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433254B1 (en) * 1999-12-30 2004-05-27 주식회사 포스코 Method for making sinter mix for the sintering process
JP2009183921A (en) * 2008-02-08 2009-08-20 Sumitomo Heavy Ind Ltd Exhaust gas treatment apparatus and exhaust gas treating method
JP2011161329A (en) * 2010-02-05 2011-08-25 Nippon Steel Corp Apparatus for treating exhaust discharged from sintering machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51138575A (en) * 1975-05-28 1976-11-30 Sumitomo Heavy Ind Ltd Process for r emoval of nitrogen exides and sulfur oxides in exhaust gas
JPS51140870A (en) * 1975-05-30 1976-12-04 Sumitomo Heavy Ind Ltd An exhaust gas treatment process
JPS52146768A (en) * 1976-06-01 1977-12-06 Nippon Steel Corp Treatment of flue gas from sintering furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51138575A (en) * 1975-05-28 1976-11-30 Sumitomo Heavy Ind Ltd Process for r emoval of nitrogen exides and sulfur oxides in exhaust gas
JPS51140870A (en) * 1975-05-30 1976-12-04 Sumitomo Heavy Ind Ltd An exhaust gas treatment process
JPS52146768A (en) * 1976-06-01 1977-12-06 Nippon Steel Corp Treatment of flue gas from sintering furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433254B1 (en) * 1999-12-30 2004-05-27 주식회사 포스코 Method for making sinter mix for the sintering process
JP2009183921A (en) * 2008-02-08 2009-08-20 Sumitomo Heavy Ind Ltd Exhaust gas treatment apparatus and exhaust gas treating method
JP2011161329A (en) * 2010-02-05 2011-08-25 Nippon Steel Corp Apparatus for treating exhaust discharged from sintering machine

Similar Documents

Publication Publication Date Title
KR890000512B1 (en) Process for removal of nitrogen oxides and sulfur oxides from waste gases
US2992895A (en) Process for recovering oxides of nitrogen and sulfur from gaseous mixtures
CA2193638C (en) Exhaust gas treating systems
CN104001403A (en) Active coke/charcoal flue gas desulphurization denitration and elemental sulfur-recovery technology and device
CA1039031A (en) Method for removing so2 and nox simultaneously from the exhaust of a combustion furnace
CN109173655A (en) A kind of SCR denitration process of sintering flue gas
JPS5843224A (en) Dry type flue gas desulfurization and denitration method
CN108144443A (en) A kind of powdered activated coke combined desulfurization and the system and method for denitration
Karatepe A comparison of flue gas desulfurization processes
JPS63171624A (en) Method of catalytically reducing no contained in gas
CN109173653A (en) A kind of SCR denitration process of sintering flue gas
US6106791A (en) Exhaust gas treating systems
JPS58196828A (en) Desulfurization and denitration of exhaust gas from sintering machine
JPS58170523A (en) Desulfurization and denitration of exhaust gas from sintering machine
JPS61287423A (en) Treatment of exhaust gas
JPH08155300A (en) Dry denitration of sulfur oxide-containing low temperature exhaust gas and desulfurizing-denitrating catalyst
KR101395548B1 (en) High effectiveness molybdenum-nickel based catalyst-sorbent for simultaneous removing H2S and NH3 and Manufacturing method thereof
JPH06210138A (en) Dry exhaust gas purifying method and operation of blast furnace and sintering machine
CN215863435U (en) Industrial waste's processing apparatus
JPH1147536A (en) Method for treating exhaust gas
JP2002370011A (en) Exhaust gas treatment method
JPS5998720A (en) Desulfurization and denitration of exhaust gas of sintering machine
JP2617561B2 (en) Purification method of high-temperature reducing gas
JPH0790137B2 (en) Refining method for high temperature reducing gas
JPS6061024A (en) Process for removing sox and nox simultaneously