JPS58170523A - Desulfurization and denitration of exhaust gas from sintering machine - Google Patents

Desulfurization and denitration of exhaust gas from sintering machine

Info

Publication number
JPS58170523A
JPS58170523A JP57053398A JP5339882A JPS58170523A JP S58170523 A JPS58170523 A JP S58170523A JP 57053398 A JP57053398 A JP 57053398A JP 5339882 A JP5339882 A JP 5339882A JP S58170523 A JPS58170523 A JP S58170523A
Authority
JP
Japan
Prior art keywords
exhaust gas
desulfurization
ore
denitration
sintering machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57053398A
Other languages
Japanese (ja)
Inventor
Hiromi Tanaka
田中 裕実
Toshio Tsukuda
佃 利夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP57053398A priority Critical patent/JPS58170523A/en
Publication of JPS58170523A publication Critical patent/JPS58170523A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE:To carry out the desulfurization and denitration of an exhaust gas from a sintering machine availably from the point of view of economical efficiency, by a method wherein the exhaust gas after desulfurization treatment is introduced into the first half part of a sintering process to be subjected to denitration treatment to put the characteristics of the exhaust gas from the sintering machine to practical use and to effectively carry out desulfurization and denitration. CONSTITUTION:The sintering of supplied ore (a) is advanced as said ore is moved to the ore discharge side of a sintering machine 21 from the ore supply side thereof and an exhaust gas is formed from window boxes 1-16. In this case, the exhaust gas is divided into two parts in the ore supply side (window boxes 1-11) with a low SO2 concn. and the ore discharge side (window boxes 12-16) with a high SO2 concn. The exhaust gas with a high SO2 concn. is introduced into a waste heat boiler after dust collection to be cooled to about 160 deg.C or less and subjected to desulfurization in a desulfurization apparatus 26 while the treated exhaust gas is introduced into the pallet 27 of the ore supply side of the sintering machine without exhausting the same into the atmosphere to be taken out at about 100 deg.C along with a gas generated in the ore supply side thereof and, after subjected to dust collection by an electric dust collector 22, subjected to denitration treatment in a denitration apparatus 23 to be exhausted from a chimney 24.

Description

【発明の詳細な説明】 本発明は焼結機排ガスの脱硫脱硝方法の改良に関する。[Detailed description of the invention] The present invention relates to an improvement in a method for desulfurizing and denitrating sintering machine exhaust gas.

従来よシ製鉄原料として粉鉱を焼結して使用する高炉方
式による製鉄方法が主流となっているが、焼結工程にお
いて排出される排ガス中には粉じんおよびイオウ酸化物
・窒素酸化物(以下それぞれr SOx 、 NOx 
Jと呼ぶ)が含まれるため、根境保全上集じん器、脱硫
・脱硝装置等により浄化して大気に放出される。
Traditionally, the mainstream method for making iron has been a blast furnace method that uses sintered ore powder as raw material for iron making, but the exhaust gas emitted during the sintering process contains dust, sulfur oxides, and nitrogen oxides (hereinafter referred to as r SOx, NOx, respectively
(referred to as J), so it is purified by dust collectors, desulfurization/denitrification equipment, etc., and released into the atmosphere to protect the environment.

しかしながら、これらの環境保全設備費および連転経費
は焼結機本体のそれらに匹敵し、焼結−高炉方式の経済
性を悪化させる大きな要因となっていた。
However, these environmental protection equipment costs and continuous operation costs are comparable to those of the sintering machine itself, and have been a major factor in deteriorating the economic efficiency of the sintering-blast furnace method.

このため、従来よシ脱硫能力、脱硝能力及び経済性等の
点から種々の改善策が提案されている。
For this reason, various improvement measures have been proposed from the viewpoint of desulfurization ability, denitrification ability, economic efficiency, etc.

例えば、焼結機の排鉱側寄シの高濃度Box発生鄭分の
ウインドーツクスからの排ガスを選択的に脱硫の行える
脱硫装置(実登第1296507号)や前記と同様の装
置においてBox 9度の高い排ガスを焼結機給鉱aを
シに除湿後供給して全体の併ガス菫を減らして脱硫する
方法(%許第1019857号)が提案されている。し
かしながら、いずれも脱硫のみに関し脱硝についての提
案はされていない。
For example, in a desulfurization device (Act No. 1296507) that can selectively desulfurize the exhaust gas from the high-concentration Box generating window near the discharge side of a sintering machine, or in a device similar to the above, Box 9 is used. A method has been proposed (Percentage Permit No. 1019857) in which high-strength exhaust gas is dehumidified and then supplied to the sintering machine feed ore a to reduce the total amount of combined gas and desulfurize it. However, all of these proposals relate only to desulfurization and do not propose denitrification.

一方、前記の方法において除湿のかわシに脱硫脱硝する
方法(%計第1062i092号)等か提案されている
が、特に脱硝能力は十分ではなかった。
On the other hand, in the above method, a method of desulfurization and denitration using a dehumidifier (% meter No. 1062i092) has been proposed, but the denitrification ability was not particularly sufficient.

この原因は次に述べるような排ガスの性状によるところ
が大きいと考えられる。
The reason for this is thought to be largely due to the properties of the exhaust gas as described below.

第1図は、移動床式焼結機のウィンドボックス毎よシ発
生する排ガス中の801 、 NOx 嬢度分布及び排
ガス温度分布の実測値の一例でおる。
FIG. 1 shows an example of actually measured values of the 801, NOx density distribution and the exhaust gas temperature distribution in the exhaust gas generated from each wind box of a moving bed sintering machine.

(但し、ウィンド2ツクスtIkLrt給鉱側から排1
側に付番されている。〕 この図から明らかなように、SO,m度は排鉱側(焼結
過程後半部)寄シに高く集中し、NOx濃度は全体的に
分布し、両端を除く中央部分が高い特性となっている。
(However, the exhaust 1 from the wind 2xtIkLrt ore supply side
Numbered on the side. ] As is clear from this figure, the SO,m degree is highly concentrated near the ore discharge side (the latter half of the sintering process), and the NOx concentration is distributed throughout, with a high concentration in the center excluding both ends. ing.

また排ガス温度は排鉱側で高く、給鉱fiil(焼結過
程前半部ンから全体の2/3は100℃前後となってい
る。焼結機によりこの特性は多少異なるが同様の傾向を
持っていると百って艮い。
In addition, the exhaust gas temperature is high on the ore discharge side, and is around 100°C from the first half of the sintering process to 2/3 of the entire sintering process. Although this characteristic differs depending on the sintering machine, it has the same tendency. It's like 100.

前記脱硫脱硝法は、このような特性を十分に生かしてお
らず、第1図に示したNOx 黴度分布となり動床の縄
い脱硝を行うことはできなかった。又、従来のいずれの
方法も経済的にも不利であった。
The desulfurization and denitrification method described above does not take full advantage of these characteristics, resulting in the NOx moldiness distribution shown in FIG. 1, making it impossible to denitrify the moving bed. Furthermore, all of the conventional methods are economically disadvantageous.

本発明は、以上の点に鑑み、焼結機排ガスの特性を生か
し、脱硫脱硝を効果的に行い、経済的にも有利な焼結機
排ガスの脱硫脱硝方法を提供することを目的とし、本発
明者らは鋭意検討を重ねた結果、本発明を完成するに至
り九。
In view of the above points, the present invention aims to provide an economically advantageous desulfurization and denitration method for sintering machine exhaust gas, which effectively performs desulfurization and denitration by taking advantage of the characteristics of sintering machine exhaust gas. As a result of intensive studies, the inventors have completed the present invention.

即ち、本発明は、鉄鉱石の焼結過程後半部する排ガスf
 SOx 曖度の低い焼結過程前半部の排ガスとSOX
線度の高い焼結過程後半部の排ガスとに2分17て焼結
機排ガスを脱硫脱硝する方法において、前記焼結過程後
半部の排ガスを脱硫処理後、前記焼結過程前半部へ導入
し、かつこの導入嘔れたガスとともに前記焼結過程前半
部の排ガスを脱硝処理することを%黴とするものである
That is, the present invention provides exhaust gas f during the latter half of the iron ore sintering process.
SOx Exhaust gas and SOx from the first half of the sintering process with low ambiguity
In the method of desulfurizing and denitrating the sintering machine exhaust gas with the exhaust gas from the latter half of the sintering process having a high degree of linearity, the exhaust gas from the latter half of the sintering process is desulfurized and then introduced into the first half of the sintering process. , and the exhaust gas from the first half of the sintering process is denitrified together with the introduced gas.

従来より知られている脱硫方法として亜##L1法2石
灰/石灰石・石こう法、活性炭法尋があり、脱硝法とし
て金属酸化物または活性炭を触媒として用いる接触還元
法、同時脱硫・脱硝法として活性炭法吟が公知である。
Conventionally known desulfurization methods include the lime/limestone/gypsum method and the activated carbon method, and the denitrification method includes the catalytic reduction method using metal oxides or activated carbon as a catalyst, and the simultaneous desulfurization and denitrification method. Activated carbon method is known.

本発明の方法における脱−・脱硝には省エネルギー等の
観点から排ガス温度の低下かなく、かつ排ガス中の水分
増加のない乾式法が適しており、また脱硝は100℃前
後の低温度で行なえる方法が適していると言える。
For denitrification and denitrification in the method of the present invention, a dry method is suitable from the viewpoint of energy saving, etc., without reducing the exhaust gas temperature and without increasing moisture in the exhaust gas, and denitrification can be performed at a low temperature of around 100°C. It can be said that the method is suitable.

低温脱硝(脱硫)方法として鉱アンモニア注入下で活性
炭を用いて行なう方法(%願昭54−127693号、
%fiBd50−28674g)が知られているが、こ
れらはいずれも同時脱硫脱硝を目的としたもので、通常
のSOx共存下では40%程度の脱硝率しか得られない
と報告されている。
A low-temperature denitrification (desulfurization) method using activated carbon under injection of mineral ammonia (%Gan No. 127693/1983)
%fiBd50-28674g), but all of these are aimed at simultaneous desulfurization and denitrification, and it is reported that a denitrification rate of only about 40% can be obtained in the coexistence of normal SOx.

しかし本発明者らが種々試験したところでは80x 9
度が250 ppm以下では驚くべきことに空間速度(
BY)600〜800hr  、ガス温度145℃、N
ox@度200 ppmの条件で第2図に示すように高
い脱硝率が得られた。また脱硝率はNO一度への依存性
があシ通常の触媒法と異なりNO礫度か低い#よど高い
脱硝率が得られる現象を見いだした。その原因は共存B
ox濃度が低いために活性炭の表面が生成物(硫酸、硫
酸アンモニウム塩等)によっておおわれないために触媒
活性が持妖するためと推定される。
However, according to various tests conducted by the present inventors, 80x 9
Surprisingly, when the degree is below 250 ppm, the space velocity (
BY) 600-800hr, gas temperature 145℃, N
As shown in FIG. 2, a high denitrification rate was obtained under the condition of 200 ppm ox. Furthermore, unlike the conventional catalytic method, the denitrification rate is dependent on the amount of NO, and we have found that a higher denitrification rate can be obtained when the NO grit level is low. The cause is coexistence B
It is presumed that this is because the surface of the activated carbon is not covered with products (sulfuric acid, ammonium sulfate, etc.) due to the low ox concentration, so that the catalytic activity is maintained.

本発明では循楢排ガス(排鉱側寄プから給鉱1lI11
寄りへ尋人される排ガス)を活性炭を用いて、好ましく
はアンモニア注入下で脱硫を行ない、給鉱軸寄りの排ガ
スを低SOx共存下、アンモニア注入下で活性炭を用い
て脱硝を行なうのが、最も適していると實える。
In the present invention, circulating flue gas (from the ore discharge side to the ore supply 1lI11
Desulfurization of the exhaust gas near the feed shaft is performed using activated carbon, preferably while injecting ammonia, and denitrification of the exhaust gas near the feed shaft is performed using activated carbon while injecting ammonia in the coexistence of low SOx. I believe it is the most suitable.

次に、本発明をウィンドボックスを有する移動床式の焼
結機及び脱硫、脱硝剤として活性炭を用いた場合を例に
第3図に基づいて説明を行う。
Next, the present invention will be explained with reference to FIG. 3, taking as an example a case in which a moving bed type sintering machine having a wind box and activated carbon are used as a desulfurization and denitrification agent.

給鉱された鉱石は、焼結機21の給鉱側から排鉱側へ移
動するに従って焼結が進行していくが、ウィンドボック
ス1〜16からは第1図に示したような性状の排ガスが
生成する゛。この際、特にSO2の績度分布に着目して
SO,一度の低い排ガス、つまり給鉱側寄シ(ウィンド
Iツクス1〜11)とSO,濃度の高い排ガス、つまり
排鉱似寄り(ウインド〆ツクス12〜16)とに2分し
て各々の排ガスの性状に応じた処理を行う。
The sintering of the fed ore progresses as it moves from the feeding side to the ore discharge side of the sintering machine 21, but from the wind boxes 1 to 16 exhaust gas with properties as shown in Fig. 1 is generated. is generated. At this time, we focused especially on the performance distribution of SO2.SO, low concentration exhaust gas, that is, the ore feed side approach (windows 1 to 11), and SO, high concentration exhaust gas, that is, the exhaust gas similar to the ore discharge side (wind The exhaust gas is divided into two parts (12 to 16) and treated according to the properties of each exhaust gas.

後者の8019gの高い排ガスは、集11抜腕熱ゼイラ
25で約160℃以下に冷却し脱硫装置26にて脱硫に
供される。この場合、温度は脱硫の目的からは低い方が
良いが低温腐食吟を考慮し120℃以上とするのが好ま
しい。
The latter 8019 g of exhaust gas is cooled down to about 160° C. or less in a heat zeiler 25 and desulfurized in a desulfurization device 26. In this case, the temperature is preferably lower than 120° C. for the purpose of desulfurization, but considering low-temperature corrosion.

脱硫処理された排ガスは、大気中へ排出せずに焼結機の
給鉱側寄シのノにレット27へ導き、給鉱側寄シの発生
ガスと伴に100℃前後の温度で取出され、電気集塵器
22による果塵恢、脱硝装置23にて脱硝処理し煙突2
4より排出される。            □ これによって、脱硫処理により排ガス中に含まれるSO
lが吸層除去され排ガス温度低下による酸露点腐食の問
題がない。又、脱硫後の排ガスの熱(乾式脱硫の場合1
00℃程度)を直接焼結に利用できるため、エネルギー
面で非常に有利である。脱硫装置送給前の排ガスにアン
死ニアを注入すると同時脱硝効果が期待でき、140〜
160℃の温度範囲では約40%程度の脱硝が脱硫装置
26にて行え、脱硝装置23の負担を軽減することがで
きる。他に、給鉱側寄りの排ガスのSox 濃度か十分
に低いため、前記の脱硝とSOX嵌度との関係から明ら
か表ようにアンモニア注入下で活性炭による脱硝を効果
的に何える。又、脱硝反応は温度依存性が高いので活性
炭の空間速度を比較的低く選ぶことにより、約100℃
の低温度においても高い脱硝率を侍ることかできる。
The desulfurized exhaust gas is led to the let 27 on the feed side of the sintering machine without being discharged into the atmosphere, and is taken out at a temperature of around 100°C along with the generated gas on the feed side of the sintering machine. , fruit dust is removed by an electric precipitator 22, denitrified by a denitrification device 23, and the chimney 2
It is discharged from 4. □ As a result, SO contained in exhaust gas due to desulfurization treatment
Since l is absorbed and removed, there is no problem of acid dew point corrosion due to a drop in exhaust gas temperature. In addition, the heat of the exhaust gas after desulfurization (in the case of dry desulfurization 1
00°C) can be used directly for sintering, which is very advantageous in terms of energy. Simultaneous denitrification effect can be expected by injecting anhydrous nitrogen into the exhaust gas before it is sent to the desulfurization equipment.
In a temperature range of 160° C., about 40% denitration can be performed by the desulfurization device 26, and the burden on the denitration device 23 can be reduced. In addition, since the Sox concentration of the exhaust gas closer to the ore feed side is sufficiently low, denitrification using activated carbon can be effectively replaced while ammonia is being injected, as is clear from the relationship between denitrification and SOX penetration. In addition, since the denitrification reaction is highly temperature dependent, by choosing the space velocity of activated carbon to be relatively low, it is possible to
A high denitrification rate can be achieved even at low temperatures.

このように、本発明は焼結機排ガスの特性を十分に生か
して効果的に脱硫脱硝が行え、エネルギー面や経済面に
おいても非常に有利である。
As described above, the present invention can effectively perform desulfurization and denitration by fully utilizing the characteristics of the sintering machine exhaust gas, and is very advantageous in terms of energy and economy.

なお・、活性炭以外の脱体、脱硝剤を用いる場合には、
谷々の脱餉、脱他剤に応じた温度条件昏を設足すればよ
い。第3図中、2Bはプロワ−129はマルチクロンを
示す。
In addition, when using denitrification and denitrification agents other than activated carbon,
It is sufficient to set temperature conditions according to the de-altering and de-altering agents in the valley. In FIG. 3, 2B indicates the blower 129 is a multichron.

以下、実施例によυ本発明の効果を明らかにする。Hereinafter, the effects of the present invention will be clarified with reference to Examples.

実施例 脱硫装置及び脱硝装置として活性戻光てん菫1tの固定
床式のペンチ試験装置を用いて、焼結機排ガスを第3図
に示すようなプロセスで脱硫脱硝を行った。
EXAMPLE A fixed-bed type pliers test device with 1 ton of active return pulverizer was used as the desulfurization device and the denitrification device, and sintering machine exhaust gas was desulfurized and denitrated in the process shown in FIG.

焼結機の排鉱側寄#)(焼結過程後半部)の排ガス、給
鉱側寄り(焼結過程前半部)の排ガスの性状、処理条件
と伴に結果を下表に示した。
The results are shown in the table below along with the properties and processing conditions of the exhaust gas from the ore discharge side of the sintering machine (second half of the sintering process) and the exhaust gas from the ore feed side (first half of the sintering process).

この結果から明らかなように、優れ六8つ研脱硝効果が
得られた。
As is clear from the results, an excellent denitrification effect was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、移動床式焼&t′磯のウィンドボックス毎よ
シ発生する排ガス中の802 T NOx J点’ 7
6分布及び排ガス温度分布の実測値の一例を示し、第2
図はSOl濃度の脱硝率への影響を不しだものであり、
第3図は本発明の5J″、1Aの態様を例示したもので
ある。 21・・・焼結機     23・・・脱硝装置?・2
6・・・脱硫装賞
Figure 1 shows the amount of 802T NOx in the exhaust gas generated from each wind box of the moving bed type incineration system.
6 distribution and exhaust gas temperature distribution, and the second
The figure shows the influence of SOl concentration on the denitrification rate.
Fig. 3 illustrates the 5J'', 1A embodiment of the present invention. 21...Sintering machine 23...Denitrification device?-2
6... Desulfurization Award

Claims (1)

【特許請求の範囲】[Claims] 1、鉄鉱石の焼結過程中に発生する排ガスを80x濃度
の低い焼結過程前半部・の排ガスとSOx #に度の高
い焼結過程後半部の排ガスとに2分して焼結機排ガスを
脱硫脱硝する方法において、前記焼結過程後半部の排ガ
スをPlil恢処理後、前記焼結過程前半部へ導入し、
かつこの導入されたガスとともに前記焼結過程前半部の
排ガスを脱硝処理することを特徴とする焼結機排ガスの
脱硫脱硝方法。
1. The exhaust gas generated during the sintering process of iron ore is divided into two parts: the exhaust gas from the first half of the sintering process, which has a low concentration of 80x, and the exhaust gas from the second half of the sintering process, which has a high SOx concentration, and then converts it into sintering machine exhaust gas. In the method for desulfurizing and denitrating, the exhaust gas from the latter half of the sintering process is subjected to Plil treatment, and then introduced into the first half of the sintering process,
A method for desulfurizing and denitrating exhaust gas from a sintering machine, characterized in that, together with the introduced gas, the exhaust gas from the first half of the sintering process is denitrified.
JP57053398A 1982-03-31 1982-03-31 Desulfurization and denitration of exhaust gas from sintering machine Pending JPS58170523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57053398A JPS58170523A (en) 1982-03-31 1982-03-31 Desulfurization and denitration of exhaust gas from sintering machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57053398A JPS58170523A (en) 1982-03-31 1982-03-31 Desulfurization and denitration of exhaust gas from sintering machine

Publications (1)

Publication Number Publication Date
JPS58170523A true JPS58170523A (en) 1983-10-07

Family

ID=12941716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57053398A Pending JPS58170523A (en) 1982-03-31 1982-03-31 Desulfurization and denitration of exhaust gas from sintering machine

Country Status (1)

Country Link
JP (1) JPS58170523A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270202A (en) * 2006-03-30 2007-10-18 Kobe Steel Ltd Method and equipment for sintering operation by exhaust gas circulation method
CN102997697A (en) * 2012-12-12 2013-03-27 武汉钢铁(集团)公司 Sinter waste-heat utilization process based on purification of sintering flue gas
CN107051202A (en) * 2017-06-13 2017-08-18 武汉钢铁有限公司 Sinter flue gas section cyclic coupling flue dust self-catalysis denitrating system
CN107413193A (en) * 2017-06-13 2017-12-01 武汉钢铁有限公司 One kind sintering flue gas section cyclic flue dust catalytic denitration technique
CN108939901A (en) * 2017-05-27 2018-12-07 钢研晟华工程技术有限公司 A kind of sintering flue gas desulfurization denitrification apparatus and method
CN107198962B (en) * 2017-06-13 2020-06-02 武汉钢铁有限公司 Sintering smoke autocatalytic denitration system capable of coupling and utilizing waste heat of sintering smoke

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270202A (en) * 2006-03-30 2007-10-18 Kobe Steel Ltd Method and equipment for sintering operation by exhaust gas circulation method
CN102997697A (en) * 2012-12-12 2013-03-27 武汉钢铁(集团)公司 Sinter waste-heat utilization process based on purification of sintering flue gas
CN108939901A (en) * 2017-05-27 2018-12-07 钢研晟华工程技术有限公司 A kind of sintering flue gas desulfurization denitrification apparatus and method
CN108939901B (en) * 2017-05-27 2020-07-24 钢研晟华工程技术有限公司 Sintering flue gas desulfurization and denitrification device and method
CN107051202A (en) * 2017-06-13 2017-08-18 武汉钢铁有限公司 Sinter flue gas section cyclic coupling flue dust self-catalysis denitrating system
CN107413193A (en) * 2017-06-13 2017-12-01 武汉钢铁有限公司 One kind sintering flue gas section cyclic flue dust catalytic denitration technique
CN107198962B (en) * 2017-06-13 2020-06-02 武汉钢铁有限公司 Sintering smoke autocatalytic denitration system capable of coupling and utilizing waste heat of sintering smoke
CN107413193B (en) * 2017-06-13 2020-06-02 武汉钢铁有限公司 Sintering flue gas zoned circulating smoke catalytic denitration process
CN107051202B (en) * 2017-06-13 2020-06-12 武汉钢铁有限公司 Sintering flue gas subregion circulation coupling smoke and dust autocatalytic denitration system

Similar Documents

Publication Publication Date Title
KR890000512B1 (en) Process for removal of nitrogen oxides and sulfur oxides from waste gases
CN104195326A (en) Sintering energy-saving technique and system capable of removing multiple pollutants
CN107983154A (en) One kind sintering parallel double tower desulfurizing and denitrifying process of flue gas activated carbon
CN101422692A (en) Pulse corona plasma reaction and absorption catalysis desulfurization denitration method and device
CN104324575B (en) A kind of system of spray absorber formula sintering flue gas and desulfurizing and denitrifying
CA1039031A (en) Method for removing so2 and nox simultaneously from the exhaust of a combustion furnace
CN102671691A (en) Low-temperature SCR (Selective Catalytic Reduction) denitrification catalyst, as well as preparation method and application thereof
CN109173653A (en) A kind of SCR denitration process of sintering flue gas
CN106178862A (en) Sintering smoke denitrifier and preparation method thereof
JPH0262296B2 (en)
JPS58170523A (en) Desulfurization and denitration of exhaust gas from sintering machine
JPS62144736A (en) Removal of noxious substance from waste gas
CN1327939C (en) High-efficient catalyzing smoke desulfurizing and denitrifying method and apparatus thereof
CN207221704U (en) A kind of cement clinker production line grading desulfurization denitrification apparatus
EP0351613A3 (en) Process for removing nitrogen oxide from exhaust gases during fertilizer production
CN111249873A (en) Device and method for dry desulfurization and SCR low-temperature denitration of lime kiln flue gas SDS
CN101161331A (en) Method for processing low concentration unwanted waste gas using microwave-solid castoff
CN207221702U (en) A kind of cement clinker production line catalytic desulfurization and denitrification system
Helfritch et al. Flue gas SO2/NOX control by combination of dry scrubber and electron beam
CN208711421U (en) The processing unit of high temperature chamotte flue gas
CN212369887U (en) High-energy electron beam irradiation treatment reaction device
JP2655725B2 (en) Exhaust gas treatment method for pulverized coal combustion boiler
CN112569758B (en) Online denitration process for sintering flue gas
JPS58196828A (en) Desulfurization and denitration of exhaust gas from sintering machine
CN107166963A (en) A kind of agglomeration for iron mine system and method