JPS5819556A - Soundwave probe for ultrasonic microscope - Google Patents

Soundwave probe for ultrasonic microscope

Info

Publication number
JPS5819556A
JPS5819556A JP56117523A JP11752381A JPS5819556A JP S5819556 A JPS5819556 A JP S5819556A JP 56117523 A JP56117523 A JP 56117523A JP 11752381 A JP11752381 A JP 11752381A JP S5819556 A JPS5819556 A JP S5819556A
Authority
JP
Japan
Prior art keywords
soundwave
probe
wave
sample
sonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56117523A
Other languages
Japanese (ja)
Inventor
Junichi Ishibashi
石橋 純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP56117523A priority Critical patent/JPS5819556A/en
Publication of JPS5819556A publication Critical patent/JPS5819556A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/221Arrangements for directing or focusing the acoustical waves

Abstract

PURPOSE:To eliminate need for the readjustment of the focus when the soundwave transmission medium is changed by constructing at least two accoustic lenses each made out of an electricity soundwave conversion member so as to normally share the same focal length and focal point. CONSTITUTION:Four electricity-soundwave conversion members 10a-10d are integrated in symmetry with respect to the center axis to construct a diagonal irradiation type soundwave probe 9. When a high frequency signal is applied to a wave transmitting transducers 15a and 15c and converted into ultrasonic waves. The ultrasonic waves are propagated as plane wave through a soundwave propagation elements 19a and 19c and projected into a soundwave transmission medium 21 through accoustic lenses 20a and 20c for wave transmission at the bottom thereof so as to be focused on the focal point F. Those ultrasonic waves focused on accoustic lenses 20b and 20d are propagated as plane wave through wave receiving elements 19b and 19d, converted into high frequency signals with wave receiving transducers 15b and 15d and transmitted to a signal processing section. The soundwave probe is moved relative to the surface of the sample to scan it and electrical signals are processed to obtain a two- dimensional image of the surface of the sample.

Description

【発明の詳細な説明】 本発明は超音波顕微鏡に適用し超音波の送受を行なう音
波探触子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sonic probe that is applied to an ultrasonic microscope and transmits and receives ultrasonic waves.

超音波顕微鏡には反射型、透過盤等があり、反射型にも
1つの音波探触子により超音波の送受を行ない試料を走
査するものや、試料の被観察面に対して2つの音波探触
子を所定の角度に配置し・一方の探触子より射出した超
音波を他方の探触子で受けて試料の走査を行なうものが
ある。このような構成の11iv111超音波顕微鏡に
使用する音波探触子としては例えば特開昭U−J?参o
i号公報に示されたものがある。第7図に示すように送
波側と受渡・側の2つの音波探触子/&、/bを互いに
所定の角度をなすように傾け、音波探触子/&、/bの
夫々の音響レンズJIL、コbが共に同一の焦点!を有
するように配置されている・音波探触子/JL。
Ultrasonic microscopes include reflection types and transmission disks, etc. Among the reflection types, there are those that use one sonic probe to send and receive ultrasonic waves to scan the sample, and those that scan the sample using two sonic probes on the surface to be observed of the sample. Some probes are arranged at a predetermined angle and the sample is scanned by receiving ultrasonic waves emitted from one probe with the other probe. An example of a sonic probe used in the 11iv111 ultrasonic microscope with such a configuration is the JP-A-Sho U-J? Visit o
There is one shown in Publication No. As shown in Figure 7, the two sonic probes /&, /b on the transmitting side and the receiving side are tilted at a predetermined angle to each other, and the acoustic waves of the sonic probes /&, /b are measured. Both lenses JIL and Cob have the same focus!・Sound wave probe/JL.

/bは夫々送波用伝搬素子Ja、受渡用伝搬素子Jb・
、。
/b is the transmission propagation element Ja, the delivery propagation element Jb, respectively.
,.

の一端に夫々電気信号を超音波に変換する送波用のトラ
シスデューサ亭aと、母音波を電気信号に変換する受渡
用のFランスデエーサ参すとが設けられ、他端には夫々
送i用の音響レンズ2a”、受波用の音響レンズコbが
形成されている。2つの音波探触子の共焦点1に超音波
伝達媒体j(例えば液体)を介して観察すべき試料tが
配置されている0このような構成の音波探触子による動
作は送波用トランスユーサダaに印加された11gII
信号は送波用トランデユー′を参aにより超音波に変換
され、この超音波は送波用の伝搬素子Ja内を伝搬し、
送波用音響レンズ2aにより射出され超音波伝達媒体!
を介して焦点Fに集束する。焦点!で試料乙により反射
される超音波等を焦点tを共有するように設けた受渡用
音響レンズ2bにて集音する。
At one end, a transducer a for transmitting waves that converts electrical signals into ultrasonic waves, and an F transducer a for transmitting waves that converts vowel waves into electrical signals, are provided at one end, and at the other end, transducers a for transmitting waves that convert electrical signals into ultrasonic waves, respectively, and an F transducer a for transmitting waves that converts vowel waves into electrical signals. A sample t to be observed is placed at the confocal point 1 of the two sonic probes via an ultrasound transmission medium j (for example, a liquid). The operation of a sonic probe with such a configuration is based on 11gII applied to the transmitting transuser a.
The signal is converted into an ultrasonic wave by the transmission trandue 'a, and this ultrasonic wave propagates inside the wave transmission propagation element Ja,
Ultrasonic transmission medium emitted by the transmitting acoustic lens 2a!
is focused on the focal point F via the . focus! The ultrasonic waves reflected by the sample B are collected by the delivery acoustic lens 2b provided so as to share the focal point t.

試料≦は図示しない走査装置により探触子と相対運動を
行なう0この超音波は受波用伝搬素子3b内を伝搬して
受渡用トランスデューサダbに達し、ここで超音波から
電気信号に変換される。この信号を処理することにより
試料面の像を得ることができる。
The sample ≦ is moved relative to the probe by a scanning device (not shown). This ultrasonic wave propagates within the receiving propagation element 3b and reaches the delivery transducer b, where it is converted from the ultrasonic wave to an electrical signal. Ru. By processing this signal, an image of the sample surface can be obtained.

しかし、このような構成の音波探触子では、2つの音波
探触子を所定の角度で接近して配置しなければならず音
響レンズの焦点距離をはじめ音波探触子の寸法を制限し
なければならない欠点があると共に、不明確な焦点位置
を共有するように2つの音波探触子を配置しなければな
らず調節が非常に雌かしくなる。特に一旦調節を行なっ
ても音波探触子と試料との間に満たす超音波伝達媒体を
興なる種類のものに交換すると、その超音波伝達媒体中
での音速が異なるため焦点位置が移動し再調節の必要が
ある。このような焦点位置への位置決めは試料について
も同様であり調節を内鑵にしている。また、2つの音波
探触子が互いに共焦点となるよう調節するには複雑な調
節機構を必要とするため、試料の画像を得る場合の試料
の走査は音波探触子側を駆動させることは内鑵なため試
料側のみを走査振動だせることになる。このため試料は
その振動に耐えれるように大きざや重量等の制限を受け
るという欠点がある。
However, with such a sonic probe configuration, the two sonic probes must be placed close to each other at a predetermined angle, and the dimensions of the sonic probes, including the focal length of the acoustic lens, must be limited. In addition, the two acoustic probes must be arranged so as to share an unclear focal position, making the adjustment very cumbersome. In particular, even if the adjustment is made once, if the ultrasound transmission medium between the sonic probe and the sample is replaced with a different type, the focal position will shift and re-adjust due to the difference in sound speed in the ultrasound transmission medium. Needs adjustment. This positioning to the focal position is the same for the sample, making adjustment a matter of course. In addition, since a complicated adjustment mechanism is required to adjust the two sonic probes so that they are confocal with each other, it is not possible to scan the sample by driving the sonic probe when obtaining an image of the sample. Since it is internal, scanning vibration can only be generated on the sample side. For this reason, the sample has the drawback of being limited in size, weight, etc. in order to withstand the vibrations.

ざらに、超音波顕微鏡に使用する音波探触子の他の例と
しては特開昭# −116011号明細書に示されるも
のがある。この明細書の音波探触子を第2図に示す。図
において第1図と同様の部分に同一の符号を付け、同様
の構成と動作の説明を省略する。は埋プリズム形をした
一体の送波・受渡伝搬素子lに、送波用と受渡用の各々
のトランスデューサダa、*bが互いに900の角度を
なすように設けられている。@/図と同様にこれらトラ
ンスデユーサ参a、ダbに対応して形成される夫々の音
曹しンズコa、λbは同一の焦点!を共有している。・
このような構成の音波探触子では、送波側と受渡側の伝
搬素子を一体にしであるため探触子側を移動させて走査
することは比較的容易であり、この場合試料にSさられ
る大きざや重量等の制限は除去される。しかt第1図に
示した従来例の上述した欠点以外の欠点に加えてλつの
音響レンズの軸がデO0に交わり、かつ共焦点となるよ
うな送波・受渡伝搬素子の製造がかなり醸しいという欠
点がある。
In general, another example of a sonic probe used in an ultrasonic microscope is shown in Japanese Patent Application Laid-Open No. 116011/1998. The sonic probe of this specification is shown in FIG. In the figure, the same parts as in FIG. 1 are given the same reference numerals, and descriptions of the similar configurations and operations will be omitted. In the integral transmitting/receiving propagation element 1 in the shape of a buried prism, transducers a and *b for transmitting and transmitting waves are provided so as to form an angle of 900 degrees with respect to each other. @/Similar to the figure, the respective tone scales a and λb formed corresponding to these transducers a and da b have the same focal point! are shared.・
In a sonic probe with such a configuration, the propagation elements on the transmitting side and the receiving side are integrated, so it is relatively easy to move the probe side and scan. Restrictions on size, weight, etc. that can be used are removed. However, in addition to the above-mentioned drawbacks of the conventional example shown in FIG. It has the disadvantage of being ugly.

本発明の目的は上述した欠点を除去し複数個の電気−音
波変換部材の位置調節を簡単にするよう適切に構成した
超音波顕微鏡用の音波探触子を提供しようとするもので
ある〇 本発明は音波伝搬素子の一端に電気−音響トランスデユ
ーサを設け、4他端に同一の曲率の曲面より成る音響レ
ンズを形成した少なくとも2つの電気−音波変換部材を
中心軸に対称°にかつ前記各音響レンズが前記中心軸上
に同一の焦点を有するように互いに音波分離体を介して
一体に結合し、前記中心軸に対しそ一方の変換部材な送
波側として他方の変換部材を受渡側として夫々独立に使
用することを特徴とするものである。
SUMMARY OF THE INVENTION The object of the present invention is to provide a sonic probe for an ultrasound microscope that is appropriately configured to eliminate the above-mentioned drawbacks and to simplify the position adjustment of a plurality of electro-sonic converting members. The present invention provides at least two electro-acoustic transducers having an electro-acoustic transducer provided at one end of a sound wave propagation element and an acoustic lens formed of a curved surface of the same curvature at the other end, symmetrically about a central axis and Each acoustic lens is integrally coupled to each other via a sound wave separator so that each acoustic lens has the same focal point on the central axis, and with respect to the central axis, one converting member is on the wave transmitting side and the other converting member is on the receiving side. They are characterized in that they can be used independently.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第3図は本発明による超音波顕微鏡用音波探触子の一例
の構成の外観を示す斜視図である。斜照射型の音波探触
子デは中心軸に対称に参つの電気−音波変換部材la&
、 10b、 /Do、 /σdをは埋円筒状に一体に
して構成されている。各々の音波探触子toa−toc
lは中心軸について送波側の電気−音波変換部材IO&
、106に対して反対側に夫々受波側の電気−音波変換
部材/(Ib、10eiが配置されている。
FIG. 3 is a perspective view showing the external appearance of an example of the configuration of a sonic probe for an ultrasound microscope according to the present invention. The oblique irradiation type sonic probe has three electrical-sonic converting members la and symmetrical about the central axis.
, 10b, /Do, /σd are integrally formed into a buried cylindrical shape. Each sonic probe toa-toc
l is the electrical-sonic transducer member IO & on the transmitting side about the central axis.
, 106 are provided with receiving-side electro-sonic wave converting members/(Ib, 10ei), respectively.

第参図(6)、Φ)および幹)、は夫々第3図の斜照射
型音波探触子の平面図、底面図およびs!A−ムで切断
して示す断面図である。s参図(〜に示すように参つの
電気−音波変換部材70a−10aの上部−面に夫々金
チタン、アルミニつ^、り田−ム等の下部電極/Ja、
 /l、 /20. /Jd t 8着し、これら下部
電極721−/Jdの上の中心付近に、夫々41113
’a円の形状をした酸化亜鉛等の薄膜状の圧電体lJ&
、/Jb。
Figure (6), Φ) and trunk) are the top view, bottom view and s! of the oblique irradiation type acoustic wave probe in Figure 3, respectively. It is a sectional view taken along the line A-m. s (As shown in ~), lower electrodes of gold titanium, aluminum, aluminum, etc. are provided on the upper surfaces of the three electric-sonic transducer members 70a-10a, respectively.
/l, /20. /Jd t 8 and 41113 respectively near the center above these lower electrodes 721-/Jd.
'a A thin film-like piezoelectric material such as zinc oxide in the shape of a circle lJ&
,/Jb.

/10,1361g設け、ざらic コnら圧電体/J
IL−/Jdの上に夫々円形の上部電極l参a、/参す
、/亭0./参dを設ける。これら圧電体を挾む上下の
電極は各々トランスデユーサを構成する。即ち、送波側
の電気−音波変換部材10&、/Doの上部に夫々送波
用のトランスデユーサ/3&、/10を、受渡側の電気
−音波変換部材10b、IOaの上部に夫々送波用のト
ランスデユーサ/!b、/jc1を、%l1II′@亀
気\普箇変換部階〜”%%N%%形成している。参つの
電気−音波変換部材10&−/Daは互いに干渉するこ
となく独立して作物するように音波分離体nを挾んで一
体に成形する。音波分離体nは高分子材料または音波探
触子の音波伝搬素子の音響特性が大きく興なる材料等よ
り成り、音波゛探触子で送受する音響エネルギを吸収ま
たは反射する。第O帥)および(0)に示すように参つ
の電気−音波変換部材10a〜10dの底面には夫々す
7アイヤ等の音波伝搬素子/9&、/9b。
/10,1361g provided, rough IC contact piezoelectric material /J
Above IL-/Jd are circular upper electrodes 1, 1, 0 and 0, respectively. / reference d is provided. The upper and lower electrodes sandwiching the piezoelectric body each constitute a transducer. That is, transducers /3&, /10 for transmitting waves are placed above the electro-sonic transducers 10&, /Do on the wave sending side, respectively, and transducers /3&, /10 are placed above the electro-sonic transducers 10b, IOa on the receiving side, respectively. Transducer for /! b, /jc1 are formed as %l1II'@Kameki\Fuka conversion part floor~''%%N%%.The three electric-sonic wave converting members 10&-/Da independently without interfering with each other. The sonic separator n is sandwiched like a crop and formed into one piece.The sonic separator n is made of a polymeric material or a material that greatly improves the acoustic properties of the sound wave propagation element of the sonic probe. As shown in (0) and (0), the bottom surfaces of the three electro-sonic transducer members 10a to 10d are equipped with sound wave propagation elements such as 7-ears, respectively. 9b.

/90./9(1が表われる。これら音波伝搬素子/9
a〜/9aの底面の所定位置に夫々音響レンズ21a、
 xb。
/90. /9 (1 appears. These sound wave propagation elements /9
Acoustic lenses 21a are placed at predetermined positions on the bottom of a to /9a, respectively.
xb.

Jo、xdを形成する。これら音響レンズ−a、Jdお
よび音波分離体17の表[1ft形状はその中心軸上の
一点を中心とする球面となっている0従ってこれら参つ
の音響レンズM&−:llClはその中心軸上+7) 
一点を同一の焦点として、同−焦点距一を有する共焦点
構m′!−持つ。
Jo, form xd. The table of these acoustic lenses -a, Jd and the sound wave separator 17 [1ft shape is a spherical surface centered at one point on its central axis. Therefore, these three acoustic lenses M&-:llCl are +7 on its central axis. )
Confocal structure m' with one point as the same focal point and the same focal length as one! -Have.

第3図はIII参図(0)を拡大して示す断面図である
FIG. 3 is an enlarged sectional view of FIG. 3 (0).

音波伝搬素子/9&、/9bの底面の音響レンズJJJ
171)は、軸線方向に夫々上部電極1*&、I#bの
下方に位置するみこの音波探触子により観察を行なう際
には、音波探触子の音響レンズと観察すべき試料との間
に液体の音波伝達媒体Jを充填して観察!に童かれ□る
。中心軸線上で音波伝搬素子の上面と音波分離体の最端
部との距離1は、例えばフレネル焦点長ざをlとして ρ2 ノー=r ρ富トランスデエーサの半径 λX伝搬素子内での超音波の波長 のように定める。
Acoustic lens JJJ on the bottom of sound wave propagation element /9&, /9b
171), when observing with the sonic probes located below the upper electrodes 1* &I#b, respectively in the axial direction, the acoustic lens of the sonic probe and the sample to be observed are Fill the gap with liquid sound wave transmission medium J and observe! I am a child. The distance 1 between the upper surface of the acoustic wave propagation element and the extreme end of the acoustic wave separator on the central axis is, for example, ρ2 where the Fresnel focal length is l. Define it like a wavelength.

このような構成の斜照射型の音波探触子の動作を説明す
る。送波用のトランスデユーサIj&、/30に高周波
電気信号を印加し超音波に変携する。この超音波は送波
用の夫々a音波伝搬素子/9tL、/ツ0内を平面波と
して伝搬し、夫々送波用音響レンズ、va、 xaよう
音波伝達媒体〃中に射出され焦点Fに集束する。超音波
は試料面で吸収、散乱反射するものと、試料面上の法線
に対して臨界角をなして入射へ4し試料表面を極部的に
伝搬する過程で再放射されるものになる。これらの超音
波のうち受波用音響レンズ°に集音されたものは受渡伝
搬素子/9b、/9a内を平面波として伝搬し、夫々受
波用トランスデユーサ/jb、/j(1により高周波電
気信号に変換され、信号処理部に送られる。送波側の音
波探触子と受渡側の音波探触子は互いに直角に配置され
るので試料面と音波探触子を相対的に移動して走査して
この電気信号を処理することにより試料表面の2次元像
を得ることができる〇各音響レンズと試料との間に満た
した音波伝達媒体Jを種々のものに取換えると、音波伝
達媒体の中の音速の違いによって音響レンズの焦点距離
は変化する、が、変化した焦点位置が各音響レンズにと
って共焦点であることには変りなく、超音波の射出、試
料面上での反射、反射波の集音については何ら変ること
がない。
The operation of the oblique irradiation type sonic probe having such a configuration will be explained. A high-frequency electric signal is applied to the transducer Ij&, /30 for wave transmission and converted into an ultrasonic wave. This ultrasonic wave propagates as a plane wave in the sound wave propagation elements /9tL and /TS0 for wave transmission, and is ejected into the sound wave transmission medium such as the acoustic lenses for wave transmission, VA, and xa, respectively, and is focused at a focal point F. . Ultrasonic waves are absorbed and scattered and reflected on the sample surface, and others are incident at a critical angle with respect to the normal to the sample surface and are re-radiated in the process of propagating locally on the sample surface. . Among these ultrasonic waves, those collected by the receiving acoustic lens ° propagate as plane waves in the delivery propagation elements /9b and /9a, and are transmitted to the receiving transducers /jb and /j (1) as high-frequency waves. It is converted into an electrical signal and sent to the signal processing section.The sonic probe on the transmitting side and the sonic probe on the receiving side are arranged at right angles to each other, so the sample surface and the sonic probe can be moved relative to each other. A two-dimensional image of the sample surface can be obtained by scanning and processing this electrical signal. If the sound wave transmission medium J filled between each acoustic lens and the sample is replaced with a different one, the sound wave transmission The focal length of an acoustic lens changes depending on the difference in the speed of sound in the medium, but the changed focal position is still confocal for each acoustic lens, and the emission of ultrasonic waves, reflection on the sample surface, There is no change in the collection of reflected waves.

第4図は81J図に示す斜照射型の音波探触子の一例の
使用方法を説明するための線図である0送波側の電気−
音波変換部材10&、100と受渡側の電気−音波変換
部材10b、10(1の下に試料nを配置する。受渡側
の変換部材10b、10(1は夫々別個の表示装置21
 、2sに接続する・表示装置M、Bはそれぞれ音波変
換部材10b、/Denから発生される電気信号に基い
て試、斜面の像を表示する。このような構成の装置で、
試料Bの2次元走査を行なえば試料の特性のため走査方
向によって音波の反射状態が変化する場合、例えば試料
が方向性を有、する結晶であり、試料の同一部分におけ
る表示装置21.Hの像に、鮮明である方向と不群明で
ある方向が生じるような場合に、試料に方向性があるこ
とが解る。
Figure 4 is a diagram for explaining how to use an example of the oblique irradiation type sonic probe shown in Figure 81J.
A sample n is placed under the acoustic wave conversion members 10&, 100 and the electric-sonic wave conversion members 10b, 10 (1) on the delivery side.
, 2s. Display devices M and B display images of the slope based on electrical signals generated from the sound wave transducing members 10b and 2s, respectively. With a device configured like this,
When two-dimensional scanning of the sample B is performed, if the reflection state of the sound wave changes depending on the scanning direction due to the characteristics of the sample, for example, if the sample is a crystal with directionality, the display device 21. If there are clear directions and unfocused directions in the H image, it is known that the sample has directionality.

また、このような場合に2つの受渡側の電気−音波1+
侠部材の信号を組合わせて1つの表示装置に表示すれば
試料の方向性にかかわらず試p#表面のより鮮明な1像
を得ることができる0また試料面の@転に対しては送波
側の電気−音波変換部材の出力を同一にして直交する2
つの走向方向に配電した受渡側の電気−音波変換部材の
出力信号を重畳させて信号処理を行なうことにより、試
料面の回転にかかわらず得られる1像の変化をなくすこ
とができる・ 97図は本発明による超音波顕微鏡用音波探触子の池の
例の構成を線図的に示す斜視図である。
In addition, in such a case, the electricity-sound wave 1+ on the two delivery sides
By combining the signals of the cross member and displaying it on one display device, a clearer image of the sample surface can be obtained regardless of the orientation of the sample. 2 orthogonal with the same output of the wave side electric-acoustic conversion member
By performing signal processing by superimposing the output signals of the electric-acoustic transducer on the delivery side, which is distributed in two strike directions, it is possible to eliminate changes in one image obtained regardless of the rotation of the sample surface. 1 is a perspective view diagrammatically showing the configuration of an example of a pond of a sonic probe for an ultrasound microscope according to the present invention.

上述した実施例では2次元走査を行なう斜照射型の音波
探−子を示したが、ここでは従来例のような1次元走査
を行なう斜照射型の音波探触子スを示す。117図に示
した斜、照射型の音波探触子と同一部分に同一の符号を
付け、同様の構成と動作の説明を省略する。本例では1
個の送波側の電気−音波変換部材10&と受渡側の1個
の電気−音波変換部材10bは音波分離体77′f:介
して一体に構成され、中心軸に対して対称である。
In the embodiments described above, an oblique irradiation type sonic probe that performs two-dimensional scanning is shown, but here, a conventional oblique irradiation type sonic probe that performs one-dimensional scanning is shown. The same parts as those of the oblique, irradiation type acoustic wave probe shown in FIG. In this example, 1
The electro-sonic transducer members 10& on the transmission side and the electro-sonic transducer member 10b on the delivery side are integrally formed via the acoustic wave separator 77'f, and are symmetrical about the central axis.

なお本発明による斜照射型の音波探触子の外形ははば円
柱状のものとしたが、これに限定されることなく角柱状
にしても良い。
Although the oblique irradiation type acoustic wave probe according to the present invention has a cylindrical outer shape, the outer shape is not limited to this and may be a prismatic shape.

以上の説明から明らかなように、本発明による斜照射型
の音波探触子によれば、参つまたは2つの電気−音波変
換部材の音響レンズが常に同一の焦点距離を有し、同一
の焦点を共有するよう、構成したので、観察に際して個
々の音波探触子を互い4に同一の焦点位置な有するよう
に、調節する必要がなく、音速の異なる種々の音波伝達
媒体を取換えて使用しても各電音−レンズが共焦点を有
することには変りがないため、従来のように再度焦点調
節をしないで済むという効果がある0また、複数の電気
習音波変換部材を一体に構成したため各変換部材間のス
ペースを省くことかで@装置の小を化が可岬となると共
に、試料−像を得るための走査は音波探触子1Irt走
査移動させることができ、試料に大tざ、重量等の5e
at加えることがな(なるという効果がある。
As is clear from the above description, according to the oblique irradiation type acoustic probe according to the present invention, the acoustic lenses of three or two electro-sonic transducer members always have the same focal length, and Since the structure is configured so that the sound waves are shared, there is no need to adjust the individual sound wave probes so that they have the same focal position during observation, and various sound wave transmission media with different sound velocities can be used interchangeably. However, since each electro-acoustic lens still has a confocal feature, there is no need to adjust the focus again as in the conventional method.In addition, since multiple electro-acoustic transducers are integrated, there is no need to adjust the focus again. By saving the space between each conversion member, the device can be made smaller, and the scanning to obtain the sample image can be performed by moving the sonic probe 1irt, allowing the sample to be scanned over a large distance. , weight etc. 5e
It has the effect of not adding at.

ざらに、個々お電気−音波変換部材の焦点が同一である
ため、音波探触子を観察したい試料の観察位置に容易に
焦点合せできる効果もあるOざら□に試料表面を2次元
走査するので試料表面についてコ組の情報に基づき試料
の方向性の有無が解ると共に、これら2組の受渡信号を
組み合せて又は重畳させて信号処理を行なうことにより
、1次元走査に比べて試料の方向性や回転にもかかわら
ず安定した1像が得られ、試料の観察が正確となる利点
がある。
Since the focus of each electric-sonic transducer is the same, the sonic probe can be easily focused on the observation position of the sample to be observed.The sample surface is scanned two-dimensionally. It is possible to determine whether or not the sample has directionality based on the information on the sample surface based on this set of information, and by performing signal processing by combining or superimposing these two sets of transfer signals, it is possible to determine the directionality of the sample compared to one-dimensional scanning. This has the advantage that one stable image can be obtained despite the rotation, making it possible to observe the sample accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超音波顕微鏡に適用する音波探触子の一
例の構成を示すflii図、第2v4は従来の超音波l
l景−に適用する音波探触子の池の例の構成を示す線図
、第3図は本発明による超音波顕微鏡用音波探触子の一
例の構成の外観を示す斜視図1@41図(〜、Φ)およ
び(0)は夫々97図の音波探触子の平@1図、底面図
および線A−ムで切断して示讐断W1図、第5図は第1
−)を拡大して示す断面図、114図は第3図に示す斜
照射型の音波探峡子の−゛方法説明するための線図、第
7図は本 発明による超音波顕微鏡用音波探鯨子の他の例の構成を
線図的に示す斜視図である。 9・・・斜照射−の音波探触子、10&−10a・・・
電気−/21〜/2a−・・下部電極、/1& 〜11
6−争・圧電体、i亭a〜t9a−・・上部電極、/j
5L 〜/3ei−?ランスデエーサ、17・・・音波
分離体、/9&−/9(1・・・音波伝搬素子、275
L−rd・・・音響レンズ。 特許出履人  オリンパス光学工業株式会社第5図 第6図 第7r?:I
Figure 1 is a flii diagram showing the configuration of an example of a sonic probe applied to a conventional ultrasound microscope, and Figure 2v4 is a flii diagram showing the configuration of an example of a sonic probe applied to a conventional ultrasound microscope.
Fig. 3 is a perspective view showing the external appearance of an example of the structure of a sonic probe for an ultrasound microscope according to the present invention; (~, Φ) and (0) are the plan @ 1 view, bottom view, and cross section W1 of the sonic probe shown in Fig. 97, respectively, and Fig. 5 is the 1st
114 is a line diagram for explaining the oblique irradiation type sonic probe shown in FIG. It is a perspective view diagrammatically showing the structure of another example of a cetacean. 9... Oblique irradiation - sonic probe, 10&-10a...
Electricity-/21~/2a-・Lower electrode, /1&~11
6-Piezoelectric body, i-tei a~t9a-...upper electrode, /j
5L ~/3ei-? Lance deaster, 17...Sound wave separator, /9&-/9(1...Sound wave propagation element, 275
L-rd...acoustic lens. Patent issuer: Olympus Optical Industry Co., Ltd. Figure 5 Figure 6 Figure 7r? :I

Claims (1)

【特許請求の範囲】[Claims] L 音波伝搬素子の一端に電気−音響トランスデユーサ
rteけ、他端に同一の曲率の曲面より成る音響レンズ
を形成した少なくともλつの電気−音波変換部材を、中
心軸に対称にかつ前記各音響レンズが前記中心軸上に同
一の焦点[−Hするように互いに音波分離体を介して一
体に結合し、前記中心軸に対して一方の変換部材を送波
側として他方の変換部材を受渡側として夫々独立に使用
することを特徴とする超音波顕微鏡用音波探触子。
L. An electro-acoustic transducer rte is installed at one end of the sound wave propagation element, and at least λ electro-acoustic transducers, each having an acoustic lens formed of a curved surface with the same curvature formed at the other end, are arranged symmetrically about the central axis and The lenses are integrally coupled to each other via a sound wave separator so that the lenses have the same focal point [-H on the central axis, and one conversion member is on the wave transmission side and the other conversion member is on the reception side with respect to the central axis. A sonic probe for an ultrasonic microscope, characterized in that it can be used independently as a sonic probe.
JP56117523A 1981-07-27 1981-07-27 Soundwave probe for ultrasonic microscope Pending JPS5819556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56117523A JPS5819556A (en) 1981-07-27 1981-07-27 Soundwave probe for ultrasonic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56117523A JPS5819556A (en) 1981-07-27 1981-07-27 Soundwave probe for ultrasonic microscope

Publications (1)

Publication Number Publication Date
JPS5819556A true JPS5819556A (en) 1983-02-04

Family

ID=14713878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56117523A Pending JPS5819556A (en) 1981-07-27 1981-07-27 Soundwave probe for ultrasonic microscope

Country Status (1)

Country Link
JP (1) JPS5819556A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293462A (en) * 1987-05-27 1988-11-30 Koji Toda Ultrasonic device
JPS63302361A (en) * 1987-06-03 1988-12-09 Koji Toda Ultrasonic scanning apparatus
JPS63302362A (en) * 1987-06-03 1988-12-09 Koji Toda Ultrasonic image sensing apparatus
JPS63308557A (en) * 1987-06-10 1988-12-15 Koji Toda Ultrasonic microscope
JPH0273104U (en) * 1988-11-22 1990-06-04
JPH05338605A (en) * 1992-06-03 1993-12-21 Teraoka Seisakusho:Kk Method and device for automatically attaching cylindrical film piece
JP2021511485A (en) * 2018-01-26 2021-05-06 エーエスエムエル ネザーランズ ビー.ブイ. Equipment and methods for locating the target structure on the substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325389A (en) * 1976-08-22 1978-03-09 Noritaka Nakahachi Vhf band ultrasonic focusing recess transducer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325389A (en) * 1976-08-22 1978-03-09 Noritaka Nakahachi Vhf band ultrasonic focusing recess transducer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293462A (en) * 1987-05-27 1988-11-30 Koji Toda Ultrasonic device
JPS63302361A (en) * 1987-06-03 1988-12-09 Koji Toda Ultrasonic scanning apparatus
JPS63302362A (en) * 1987-06-03 1988-12-09 Koji Toda Ultrasonic image sensing apparatus
JPS63308557A (en) * 1987-06-10 1988-12-15 Koji Toda Ultrasonic microscope
JPH0273104U (en) * 1988-11-22 1990-06-04
JPH05338605A (en) * 1992-06-03 1993-12-21 Teraoka Seisakusho:Kk Method and device for automatically attaching cylindrical film piece
JP2021511485A (en) * 2018-01-26 2021-05-06 エーエスエムエル ネザーランズ ビー.ブイ. Equipment and methods for locating the target structure on the substrate
US11927891B2 (en) 2018-01-26 2024-03-12 Asml Netherlands B.V. Apparatus and methods for determining the position of a target structure on a substrate

Similar Documents

Publication Publication Date Title
US5820564A (en) Method and apparatus for surface ultrasound imaging
US4580451A (en) Ultrasonic sector-scan probe
US5360007A (en) Ultrasonic apparatus
US4434799A (en) Ultrasound apparatus for medical examinations
JP3766210B2 (en) 3D ultrasonic imaging device
JPS63121749A (en) Ultrasonic signal transmitter and receiver
JPH0254503B2 (en)
JP2004089311A (en) Ultrasonic transmission/reception device
US20210255322A1 (en) Ultrasound Imaging Probe with a Gradient Refractive Index Lens
JP4740770B2 (en) Ultrasonic probe and ultrasonic imaging apparatus
JPS5819556A (en) Soundwave probe for ultrasonic microscope
JP5179836B2 (en) Ultrasonic probe
EP0293803B1 (en) Fan-shape scanning ultrasonic flaw detecting apparatus
JP2006339968A (en) Ultrasonic search unit and ultrasonic diagnostic device
KR101032239B1 (en) Ultrasonic Transducer And Ultrasonic Probe
JPH08173432A (en) Electron scanning type ultrasonic probe
JPS63234951A (en) Ultrasonic probe
JPH0369534B2 (en)
JPH05285140A (en) Ultrasonic device
JP2983073B2 (en) Reflection type ultrasonic imaging device
JPS6216386B2 (en)
JPH0837695A (en) Ultrasonic wave probe
JPH0155411B2 (en)
JPH01136640A (en) Ultrasonic probe
JPH03151943A (en) Ultrasonic probe