JPH0369534B2 - - Google Patents

Info

Publication number
JPH0369534B2
JPH0369534B2 JP57045395A JP4539582A JPH0369534B2 JP H0369534 B2 JPH0369534 B2 JP H0369534B2 JP 57045395 A JP57045395 A JP 57045395A JP 4539582 A JP4539582 A JP 4539582A JP H0369534 B2 JPH0369534 B2 JP H0369534B2
Authority
JP
Japan
Prior art keywords
ultrasonic
transducer
fan
elements
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57045395A
Other languages
Japanese (ja)
Other versions
JPS58163347A (en
Inventor
Hirohide Miwa
Osamu Hayashi
Nobushiro Shimura
Tadahiko Yanajima
Kenji Kawabe
Setsuo Iida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57045395A priority Critical patent/JPS58163347A/en
Priority to DE8383301540T priority patent/DE3377530D1/en
Priority to EP83301540A priority patent/EP0090567B1/en
Publication of JPS58163347A publication Critical patent/JPS58163347A/en
Priority to US06/618,232 priority patent/US4570488A/en
Priority to US06/735,300 priority patent/US4580451A/en
Publication of JPH0369534B2 publication Critical patent/JPH0369534B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、超音波ビームを扇形走査する探触子
に係り、特に被測定体内の相異なる二つ以上の扇
形走査断面を観測する超音波扇形走査探触子に関
する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a probe that scans an ultrasonic beam in a fan shape, and particularly relates to an ultrasonic fan probe that observes two or more different fan-shaped scanning cross sections within a measured body. Concerning scanning probes.

〔従来技術と問題点〕[Conventional technology and problems]

超音波ビームによる扇形走査は、生体等の観測
に於て、一つの小さな接触部から内部を広い視野
にわたつて観測できる長所がある。特に心臓等の
観測に当つては肋骨の妨害をさけて肋間の狭い部
分に接触することで心臓の可成りの面積を観測で
きるので扇形走査が専ら使用されている。
Fan-shaped scanning using an ultrasonic beam has the advantage of being able to observe a wide field of view inside a living body from one small contact point. In particular, when observing the heart, etc., fan-shaped scanning is exclusively used because a considerable area of the heart can be observed by touching the narrow area between the ribs while avoiding interference with the ribs.

しかし従来は、一つの扇形走査断面しか観測さ
れないので、正確な観測が行なえない欠点があつ
た。何となれば、心臓は拍動して動いており、し
かも呼吸運動のために全体としても前後左右に移
動している。このために一断面の観測のみでは、
その断面が心臓のどの部位の断面であるか不明で
あり、このために探触子の体に対する姿勢を手で
変えたり、探触子軸中心に90°回転したりして交
互に確かめ乍ら希望する断面の観測が行われてい
る。この場合は、手動であるために、毎回の姿勢
変更における幾何学的な精度を保つことが全く困
難である。
However, in the past, only one fan-shaped scanning cross section was observed, so accurate observation was not possible. After all, the heart beats and moves, and because of the movement of breathing, the heart as a whole moves back and forth and from side to side. For this reason, observation of only one cross section is not enough.
It is unclear which part of the heart the cross section corresponds to, and for this reason, it is difficult to check by alternating the position of the probe with respect to the body or by rotating it 90 degrees around the probe axis. Observations of the desired cross section are being carried out. In this case, since it is done manually, it is quite difficult to maintain geometric accuracy in each posture change.

この解決のために、探触子の姿勢を機械的に一
定に保持することが考えられるが、此は呼吸運動
等を妨げるので不都合であり未だ試みられた例を
見ない。
To solve this problem, it may be possible to mechanically maintain the posture of the probe at a constant level, but this is inconvenient because it interferes with breathing movements, and I have not seen any examples of this being attempted yet.

そこで、探触子の外容器を手で体に対し一定に
保持したままで、内部の探触子を軸中心で90°機
械的に回転することが試みられたが、探触子が大
型となること、又手での保持が完全に一定を保つ
ことが困難で、且つ時間的に同時でないこと、回
転に必要な時間が長いこと、等で誤差が依然とし
て大きいのが欠点である。
Therefore, an attempt was made to mechanically rotate the internal probe 90° around its axis while holding the outer container of the probe in a fixed position relative to the body by hand, but the probe was too large. Moreover, it is difficult to maintain a completely constant hand holding, and the errors are still large due to the fact that they are not held at the same time, and the time required for rotation is long.

本願とは別に発明者は、別々の2つの探触子を
用いて、その相互位置をリンク腕と節につけた角
度検出器で知ることによつて、時間的に同時の2
断面をその相対位置とともに観測することを考案
し、三次元的な正確な観測を可能とした。
Separately from the present application, the inventor used two separate probes and determined their relative positions using angle detectors attached to link arms and joints, thereby achieving two simultaneous probes in time.
We devised a method to observe cross sections along with their relative positions, making accurate three-dimensional observation possible.

しかしこの場合は、2つの探触子を用いるため
に、体との接触部が2ケ所必要である。一般に、
壮年以下の若年の人々の心臓観測に当つては有効
な接触部を発見できるが、老令化するとともに有
効な接触部は一つしか発見できない例が増えて来
て、その比率は40ないし50%になる。
However, in this case, since two probes are used, two contact points with the body are required. in general,
When observing the hearts of young people under their prime age, it is possible to find effective contact points, but as people get older, there are more and more cases in which only one effective contact point can be found, and the ratio is 40 to 50. %become.

以上のような状況から一つの接触部を通して、
異なる二つ以上の断面を、電子的高速に切替える
か、又は完全同時に観測する方式の出現が要望さ
れるが、未だ試みられた報告がない。
From the above situation, through one contact point,
There is a desire for a method to electronically switch or observe two or more different cross sections at high speed, or to observe them completely simultaneously, but there are no reports of attempts yet.

通常電子的扇形走査は、位相配列(フエーズ
ド・アレイ)により行われている。この場合、例
えば直交する二扇形走査を行う如く、トランス・
ジユーサーを複層化し、夫々の層が異なる走査面
を担当することも別に発明者によつて考案されて
おり、夫々の走査面は異なる周波数を用いること
によつて、完全同時に作動可能とすることができ
る。
Electronic sector scanning is typically performed using a phased array. In this case, the trans-
The inventor has also devised a multi-layered Juicer, each layer being responsible for a different scanning plane, and by using different frequencies for each scanning plane, it is possible to operate completely simultaneously. I can do it.

しかし此等の場合、複層トランス・ジユーサー
の加工が複雑であり、且つ位相制御回路が複雑で
高価であるのが欠点である。
However, in these cases, the drawbacks are that the processing of the multilayer transformer is complicated, and the phase control circuit is complicated and expensive.

〔発明の目的〕[Purpose of the invention]

本発明は、上記のような種々の欠点を除くもの
であつて、探触子の生体等被測体への姿勢を一定
に保つたまま一つの探触部を通して複数の相異な
る扇形走査面を高速電子切替、及び/又は完全同
時に観測する事を可能とする安価、小型な扇形走
査探触子を提供することを目的とするものであ
る。
The present invention eliminates the various drawbacks mentioned above, and makes it possible to scan a plurality of different fan-shaped scanning planes through a single probe while keeping the attitude of the probe toward the object to be measured, such as a living body, constant. It is an object of the present invention to provide an inexpensive, compact fan-shaped scanning probe that enables high-speed electronic switching and/or complete simultaneous observation.

〔発明の構成〕[Structure of the invention]

上記の目的を達成するため、本発明の超音波扇
形走査探触子は、複数個の超音波トランス・ジユ
ーサー素子を配列した素子配列体と、超音波の出
入する窓と、上記素子配列体と上記窓との間に構
成される前室内に充填される超音波伝達媒体とを
有し、上記超音波トランス・ジユーサー素子を開
口として選択的に作動して超音波をビーム状に集
束して送信及び受信し、一部又は全部の選択を変
更することにより上記窓に外接する被測定体を超
音波ビームにより走査する超音波走査探触子にお
いて、上記素子配列体からの全ての選択による走
査線が上記窓又はその付近のほぼ一点の交叉点を
通過して扇形走査する如くすると共に、少なくと
も二つ以上の被測定体の断層像が得られる如く上
記素子配列体を構成し、且つ上記前室内超音波伝
播経路l1の伝播時間が上記窓に外接する被測定体
の体表から最大測定深さl2の伝播時間とほぼ等し
いか、より長くなるようにしたことを特徴とす
る。走査の詳細は、素子配列体の中から複数個の
超音波トランス・ジユーサー素子を一群として選
択作動して超音波ビームを集束形成するととも
に、その選択した超音波トランス・ジユーサー素
子のうちの一部又は全部を変更することにより超
音波ビームの送受点での中心位置を移動するよう
にするものである。
In order to achieve the above object, the ultrasonic fan-shaped scanning probe of the present invention includes an element array in which a plurality of ultrasonic transducer elements are arranged, a window through which ultrasonic waves enter and exit, and the element array. and an ultrasonic transmission medium filled in a front chamber configured between the window and the ultrasonic transducer element selectively activated as an aperture to focus and transmit the ultrasonic waves into a beam. and in an ultrasonic scanning probe that scans the object to be measured circumscribing the window with an ultrasonic beam by changing some or all of the selections, a scanning line based on all the selections from the element array. The element array is configured to scan in a fan-shaped manner by passing through the window or approximately one intersection point near the window, and the element array is configured so that tomographic images of at least two or more objects to be measured are obtained. It is characterized in that the propagation time of the ultrasonic propagation path l 1 is approximately equal to or longer than the propagation time of the maximum measurement depth l 2 from the body surface of the subject circumscribing the window. The details of the scanning are as follows: A plurality of ultrasonic transducer elements are selected as a group from the element array to focus and form an ultrasonic beam, and some of the selected ultrasonic transducer elements are operated as a group. Alternatively, the center position of the ultrasonic beam transmitting/receiving point can be moved by changing the entire system.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面を参照しつつ説明する。 Hereinafter, the present invention will be explained with reference to the drawings.

第1図は振動子の配列と走査線交叉点と窓との
関係を示した本発明の実施例で、aは3つの複数
線型配列の例を示す図、bは直交する2つの線型
配列の例を示す図、cはマトリクス平面型配置の
例を示す図、dはaの探触子構造を示す断面図で
ある。1は窓、2ないし5は振動子列、6は振動
子面、13は吸音材、14は前室を示す。
Figure 1 shows an embodiment of the present invention showing the relationship between the transducer arrangement, scanning line intersection points, and windows, where a shows an example of three multi-linear arrangements, and b shows an example of two orthogonal linear arrangements. A diagram showing an example, c is a diagram showing an example of matrix planar arrangement, and d is a sectional view showing the probe structure of a. 1 is a window, 2 to 5 are transducer rows, 6 is a transducer surface, 13 is a sound absorbing material, and 14 is a front chamber.

第1図aにおいて、3つの振動子列2,3と4
は、夫々円弧の形状で線型配列され、その曲率中
心がほぼ窓1にある如く、ほぼ並列に配置され
る。円弧の形状は必要に応じて若干補正されう
る。第1図aにおいて振動子列2により形成され
る扇形走査面は窓1の面と直交する様に配置され
ている。振動子列3と4により形成される扇形走
査面は窓1の中心点Oを通過するが、その面は窓
1の面と直交ではなく、斜交している。したがつ
て、振動子列3と4は第1図aにおいて平行にみ
えるが走査扇形面を等間隔平面とするには実際に
はこの斜交のため完全な平行ではなく歪曲させる
必要がある。夫々の線型配列2,3と4は、一般
に腹部診断用等に使用されている完全に直線型に
配列された振動子列、所謂リニア・アレイを円弧
の形状にしたものと考えてよく、夫々多数の短冊
状のPZT等から作られた圧電素子が一列に配列
されている。その作動方法も一般のリニア・アレ
イと同じでよく、相隣る複数のn個の素子を選択
してビーム集束用の開口とする。そのビーム中心
が走査線となる。走査線の移動は選択素子の位置
を変えることで行われる。n+1個の素子を駆動
して半ピツチずれた走査線を得るとか、群を構成
する素子の中央付近から周辺に行くにつれて順次
送信、受信のタイミング位相を制御することで、
走査面内での超音波ビーム幅集束点を電子的に設
定したり、動的に制御したりすることができる。
但し、位相制御を行わなければ集束点は幾何学的
配列で定まり、円弧の曲率中心となる。走査面と
直交する方向のビーム幅の集束は、夫々の短冊型
素子に音波放出方向に凹の曲率をもたせるか、又
は円柱レンズを用いその円柱軸を円弧に沿わせて
曲げた形状として円弧形線型配列の前面に付加す
ることのよつて行いうる。この様に一般のリニ
ア・アレイに用いられている技術を適用すること
ができる。第1図aでは円弧の曲率中心が各走査
線の交叉点と一致する場合を示してある。又、こ
の交叉点は窓1の中心Oと合致した例が示されて
いるが、必要に応じて必ずしも合致させなくても
よい。
In Figure 1a, three transducer rows 2, 3 and 4
are linearly arranged in the shape of circular arcs, and are arranged substantially in parallel so that the center of curvature thereof is approximately at window 1. The shape of the arc can be slightly corrected if necessary. In FIG. 1a, the sector-shaped scanning plane formed by the transducer array 2 is arranged perpendicular to the plane of the window 1. Although the fan-shaped scanning plane formed by the transducer rows 3 and 4 passes through the center point O of the window 1, the plane is not perpendicular to the plane of the window 1, but obliquely intersects with it. Therefore, although the transducer arrays 3 and 4 appear to be parallel in FIG. 1a, in order to make the scanning sector plane a plane with equal intervals, in reality, due to this oblique intersection, they must be distorted rather than perfectly parallel. The linear arrays 2, 3, and 4 can be thought of as a so-called linear array, which is a completely linear array of transducers generally used for abdominal diagnosis, etc., but shaped into an arc. A large number of piezoelectric elements made of strips of PZT etc. are arranged in a row. Its operation method may be the same as that of a general linear array, and a plurality of n adjacent elements are selected and used as an aperture for beam focusing. The center of the beam becomes the scanning line. Movement of the scanning line is performed by changing the position of the selection element. By driving n+1 elements to obtain a scanning line shifted by half a pitch, or by sequentially controlling the timing phase of transmission and reception from near the center to the periphery of the elements that make up the group,
The ultrasound beam width focal point within the scan plane can be electronically set or dynamically controlled.
However, if phase control is not performed, the focal point will be determined by a geometric arrangement and will be the center of curvature of the circular arc. The beam width in the direction perpendicular to the scanning plane can be focused by giving each strip-shaped element a concave curvature in the sound wave emission direction, or by using a cylindrical lens and bending the cylindrical axis along the circular arc. This can be done by adding it to the front of a linear array. In this way, techniques used in general linear arrays can be applied. FIG. 1a shows the case where the center of curvature of the circular arc coincides with the intersection point of each scanning line. Further, although an example is shown in which this intersection point coincides with the center O of the window 1, it does not necessarily have to coincide with the center O of the window 1, if necessary.

第1図dは第1図aの窓1の中心点O点と振動
子列2の中心線を通る面で切つた具体的探触子構
造を示す断面図である。
FIG. 1d is a sectional view showing a specific probe structure taken along a plane passing through the center point O of the window 1 and the center line of the transducer row 2 in FIG. 1a.

探触子は窓1を頂点部に持つほぼ四角錐の形状
の前室14と素子への回路結線等を含み一体とし
て作られる。前室14の四角錐底面に各線型配列
の振動子列2,3と4が設置される。実際は窓1
以外の側面、及び線型配列の振動子列2,3と4
の背面と一体となつた底面等の前室14内面は可
及的吸音材13で覆われ又は形成される。前室1
4の内部には水、ひまし油、流動パラフイン、弗
素油等を充填し、振動子列2,3,4と窓1との
間の超音波の伝達経路とする。振動子列2,3と
4で形成される前室14内扇形走査面は点Oを通
り反対側に点対称的に伸び、被測定体中に相異な
る三つの扇形走査面を形成する。振動子列2,3
と4は、同一周波数で作動される場合は各走査面
は時間的に切替えて作動される。しかし、夫々の
配列の構成素子を、例えば振動子列2は3.5MHz、
3は2.25MHz、4は1.5MHz等と作動周波数を変
えたり、異なるCHIRP変調法を付加したりして
作動できる様にすると、三つの線型配列された振
動子列2,3と4を同時に作動し、その受信信号
をフイルターで弁別することによつて三つの走査
面は同時に走査できる。
The probe is made integrally including a front chamber 14 in the shape of a substantially quadrangular pyramid having a window 1 at its apex, circuit connections to the elements, and the like. The transducer rows 2, 3, and 4 in a linear arrangement are installed on the bottom surface of the square pyramid of the front chamber 14. Actually window 1
Other sides, and linearly arranged transducer rows 2, 3 and 4
The inner surface of the front chamber 14, such as the bottom surface that is integrated with the back surface of the front chamber 14, is covered or formed with as much sound absorbing material 13 as possible. Front room 1
The inside of the transducer 4 is filled with water, castor oil, liquid paraffin, fluorine oil, etc., and serves as a transmission path for ultrasonic waves between the transducer rows 2, 3, and 4 and the window 1. The fan-shaped scanning plane in the front chamber 14 formed by the transducer rows 2, 3, and 4 extends point-symmetrically to the opposite side through point O, forming three different sector-shaped scanning planes in the object to be measured. Transducer rows 2 and 3
and 4 are operated at the same frequency, each scanning plane is operated in a temporally switched manner. However, the constituent elements of each array, for example, the transducer row 2 is 3.5MHz,
If you change the operating frequency such as 2.25MHz for 3 and 1.5MHz for 4, or add a different CHIRP modulation method, you can operate three linearly arranged transducer rows 2, 3, and 4 at the same time. However, by discriminating the received signals with a filter, the three scanning planes can be scanned simultaneously.

第1図bにおいて振動子列2と5は夫々の扇形
走査面が互いに直交する様に、又全ての走査線が
窓1付近又は窓1上の1点Oを交叉して通過する
様に配置されている。振動子列2と5の交叉する
部分は短冊状でなく縦横に分割されたマトリクス
状素子で、縦に接続されて振動子列2の一部とし
て使用されたり、横に接続されて振動子列5の一
部として使用されたりするものである。振動子列
2と5とは中央交叉部を何れかが使用している時
は他はその他の部分を使用している如く、時相を
ずらせて作動される。その他の構造、作動、走査
は第1図aと同様であり、窓1の外の被測定体内
に互いに直交する扇形走査面を時間切替で、又は
完全同時に走査し得ることも同様である。
In FIG. 1b, the transducer arrays 2 and 5 are arranged so that their fan-shaped scanning planes are perpendicular to each other, and so that all scanning lines cross and pass near window 1 or at a point O on window 1. has been done. The intersecting part of transducer rows 2 and 5 is not a strip-shaped element but a matrix-like element divided vertically and horizontally, and can be connected vertically and used as part of transducer row 2, or connected horizontally to be used as a part of transducer row It is sometimes used as part of 5. The transducer arrays 2 and 5 are operated out of phase so that when one is using the central crossing section, the other is using the other sections. The other structure, operation, and scanning are the same as those in FIG. 1a, and it is also possible to scan mutually orthogonal fan-shaped scanning planes in the object outside the window 1 in a time-switched manner or completely simultaneously.

第1図cにおいて、振動子面6は線型配列でな
く、マトリクス状の平面型配置として、点Oを曲
率中心とする球面上に複数の振動子を配置したも
のである。この場合、平面X軸、Y軸上の任意の
位置を中心とし、その付近の振動子を正方形、近
似円形、等と適宜の開口形状と、開口の広さで選
択することができるので、自由な三次元扇形走査
を行い得る。なお、三次元扇形走査とは、二つ以
上の扇形断面像を得るための走査を意味してい
る。
In FIG. 1c, the vibrator surface 6 is not a linear arrangement, but a matrix-like planar arrangement in which a plurality of vibrators are arranged on a spherical surface with the center of curvature at point O. In this case, the vibrator can be centered at any position on the plane X-axis or Y-axis, and the vibrator in the vicinity can be selected with the appropriate aperture shape and width, such as square or approximate circle. A three-dimensional fan-shaped scan can be performed. Note that three-dimensional fan-shaped scanning means scanning for obtaining two or more fan-shaped cross-sectional images.

第2図は本発明による複層構造を有する振動子
列の構造の具体例を示す図であつて、aは線型配
列の例を示す図、bは直交する2つの線型配列の
例を示す図である。7,8と10は振動子列、7
1,72,73……は圧電素子、8′は圧電板、
80はアース電極、81,82,83……は信号
電極、11は反射板、12は非偏極板、13は吸
音材を示す。第2図aの例は振動子列7と8が円
弧形線型配列の二つの層を構成する複層構造にな
つている。振動子列7は例えば中心周波数3.5M
HzのPZT(ジルコン・チタン酸鉛)等で作られた
圧電素子を分割した圧電素子71,72,73等
を有する。振動子列8は例えばPVDF(ポリ・フ
ツ化ビニリデン)の如き有機圧電板8′を有し、
中心周波数が例えば2.25MHzに調整される。有機
圧電板8′は片側(図では表側)に信号電極81,
82,83等が、他側(図では裏側)にアース電
極80が全面に配置される。圧電素子71,7
2,73等にも信号電極とアース電極が夫々配置
される。PZTはセラミツクで可撓性がないので、
圧電素子71,72,73等は1個ずつ独立した
個体として作るか、或は予め円板状に加工した板
に裏までつきぬけない細いスリツトを切り込んで
一体として作ることもできる。PVDFは可撓性が
あり、平面シートで作つてから円弧に合わせて曲
げることができる。振動子列7の背面には金属粉
を混入した樹脂等で作られた吸音材13を設け
る。振動子列7、吸音材13、振動子列8は接着
剤で一体に構成される。PZTは音響インピーダ
ンスが約35×106Kg/m2sec、PVDFは約4×106
Kg/m2secであるので、PZTはλ/2共振、
PVDFはλ/4共振とするのがよい。PZTから
の超音波はPVDFを通過して出入する。PVDFは
PZTにとつて音響インピーダンス整合に近い効
果をもたせることもできる。PVDFの後方への超
音波はPZTで大部分反射し前方に出て行く。こ
の例では第1層は3.5MHz、第2層は2.25MHzを
夫々中心周波数とすることで特徴づけたが、
CHIRP変調、疑似ランダム・コード変調等を用
いることもできる。受信に当つてフイルタを用い
て弁別すると両系を完全同時に作動することがで
きる。この例は、特に、2組の線形配列の振動子
列が同位置に重なり、同一扇形走査面を異なつた
周波数で走査することができるので、人体組織等
に用いた場合、組織の周波数特性の差から組織弁
別等を行うのに適している。
FIG. 2 is a diagram showing a specific example of the structure of a transducer array having a multilayer structure according to the present invention, in which a is a diagram showing an example of a linear arrangement, and b is a diagram showing an example of two orthogonal linear arrangements. It is. 7, 8 and 10 are transducer rows, 7
1, 72, 73... are piezoelectric elements, 8' is a piezoelectric plate,
80 is a ground electrode, 81, 82, 83, . . . are signal electrodes, 11 is a reflecting plate, 12 is a non-polarizing plate, and 13 is a sound absorbing material. The example shown in FIG. 2a has a multilayer structure in which the vibrator arrays 7 and 8 constitute two layers arranged in an arcuate linear arrangement. For example, the center frequency of the transducer row 7 is 3.5M.
It has piezoelectric elements 71, 72, 73, etc., which are divided piezoelectric elements made of Hz PZT (zircon lead titanate) or the like. The transducer array 8 has an organic piezoelectric plate 8' such as PVDF (polyvinylidene fluoride),
The center frequency is adjusted to 2.25MHz, for example. The organic piezoelectric plate 8' has a signal electrode 81 on one side (the front side in the figure),
82, 83, etc., and the ground electrode 80 is arranged on the other side (the back side in the figure) over the entire surface. Piezoelectric elements 71, 7
2, 73, etc., are also provided with a signal electrode and a ground electrode, respectively. PZT is ceramic and has no flexibility, so
The piezoelectric elements 71, 72, 73, etc. can be made as individual pieces one by one, or they can be made integrally by cutting a thin slit that cannot penetrate through to the back of a plate that has been previously processed into a disk shape. PVDF is flexible and can be made from flat sheets and then bent to fit an arc. A sound absorbing material 13 made of resin or the like mixed with metal powder is provided on the back side of the vibrator row 7. The vibrator row 7, the sound absorbing material 13, and the vibrator row 8 are integrally formed with adhesive. The acoustic impedance of PZT is approximately 35×10 6 Kg/m 2 sec, and that of PVDF is approximately 4×10 6
Kg/m 2 sec, PZT has λ/2 resonance,
It is preferable that PVDF has λ/4 resonance. Ultrasound from the PZT passes through the PVDF to enter and exit. PVDF is
PZT can also have an effect similar to acoustic impedance matching. Most of the ultrasonic waves directed toward the rear of the PVDF are reflected by the PZT and exit toward the front. In this example, the first layer was characterized by having a center frequency of 3.5MHz and the second layer having a center frequency of 2.25MHz.
CHIRP modulation, pseudorandom code modulation, etc. can also be used. If a filter is used for discrimination during reception, both systems can be operated completely simultaneously. In particular, in this example, two sets of linearly arranged transducer arrays overlap at the same position and can scan the same fan-shaped scanning plane at different frequencies, so when used for human tissue, etc., the frequency characteristics of the tissue can be changed. It is suitable for performing tissue discrimination based on differences.

第2図bの例は、PZTよりなる中心周波数
3.5MHzの線型配列の振動子列の層7と、PVDF
よりなる中心周波数2.25MHzの線型配列の振動子
列の層10とが互に直交する2つの扇形走査面を
形成するよう複層化されたものである。しかも振
動子列7は下層に、振動子列10は上層に配列さ
れている。反射板11はPZTと厚さ、音響イン
ピーダンスの等しい材質からなり振動子列7と1
0との交叉部と同一特性を与える様にPVDFから
後方へ出た音波を反射するもので、偏極しない
PZTセラミツク等を用いることができる。非偏
極板12はPZTから前方へ出た音波が振動子列
7の全面にわたつて、振動子列7と10との交叉
部と同じになる様にPVDFと厚さ、音響インピー
ダンスの等しい材質からなる板で構成され、振動
子列10の交叉部の左右両側表面に接着される。
非偏極板12の具体的な材質としては振動子列1
0と同じPVDFで偏極しないものを用いると便利
である。この実施例によれば一つの窓から互いに
直交する2つの扇形走査面を形成し、且つ完全同
時に走査することもできる。
The example in Figure 2b is the center frequency of PZT.
Layer 7 of 3.5MHz linear array transducer array and PVDF
The layer 10 is a linear array of transducer arrays with a center frequency of 2.25 MHz, which are multilayered to form two mutually orthogonal fan-shaped scanning surfaces. Moreover, the transducer array 7 is arranged in the lower layer, and the transducer array 10 is arranged in the upper layer. The reflector plate 11 is made of a material having the same thickness and acoustic impedance as PZT, and the transducer rows 7 and 1
It reflects the sound waves emitted backward from PVDF so that it has the same characteristics as the intersection with 0, and is not polarized.
PZT ceramic or the like can be used. The non-polarized plate 12 is made of a material with the same thickness and acoustic impedance as PVDF so that the sound waves emitted forward from the PZT will spread over the entire surface of the transducer row 7 and be at the intersection of the transducer rows 7 and 10. The transducer array 10 is bonded to both left and right surfaces of the intersection portion of the transducer array 10.
The specific material of the non-polarized plate 12 is the vibrator array 1.
It is convenient to use PVDF that is the same as 0 and is not polarized. According to this embodiment, it is possible to form two fan-shaped scanning planes perpendicular to each other from one window, and to scan them completely simultaneously.

第3図は本発明による開口制御を行う振動子列
の構造の具体例を示す図である。第3図におい
て、7と9は振動子列、71,72,73……及
び91,92,93……は圧電素子、90はアー
ス電極を示す。ある開口、例えば半径aの円板状
により形成される音場はビーム状をなし、近距離
ではそのビーム半径はaであるが、遠距離では頂
角がa/λ(λ:波長)に比例した細い円錐状で
拡散する。したがつて遠距離でのビーム形状を2
つの周波数で同一にしたい場合は、開口aを波長
λに比例させればよい。しかしこの場合は近距離
でのビーム形状が異なることとなる。本発明では
この近距離音場の大部分が前室内、即ち窓1より
内部にある如く開口を定めることにより、被測定
体中のビームは大部分遠距離音場とするもので、
このため全測定深度にわたつて周波数に依存しな
い同一のビーム形状を実現することができる。こ
のことは人体組織等の周波数依存性から組織弁別
を行う時に特に重要である。第3図においては圧
電素子71及び91を接着したユニツト素子を線
型に並べて振動子列7と9が作られている。短冊
型PZTの圧電素子71は波長λ1で作動されるが、
Y軸方向には全面の表裏に電極があり全長W1
わたつて有効である。圧電素子91はPVDFより
なり波長λ2で作動されY軸方向の長さはW1であ
るが、有効に対向している電極長はW2でW1
W2=λ1/λ2とされる。PVDFの圧電素子91の
表面電極が下までつづいているのは電極信号の取
り出しのためである。この圧電素子71と91と
を一体としたユニツト素子を配列し、振動子列7
と9及び吸音材13を一体とし、一つの線型配列
をつくる。更に実際の作動に当つて選択する群の
開口として振動子列7はn1個、振動子列9はn2
とし、n1/n2=λ1/λ2とする。この様にするとほ
ぼ矩形断面のビームが形成されるが、遠距離音場
に於てはλ1とλ2の両波長のビーム形状は同一にな
る。第3図のaの組立図では説明のため圧電素子
91のP点(第3図のbの圧電素子91)より上
を除去して図示してあるが、実際には除去しては
ならない。
FIG. 3 is a diagram showing a specific example of the structure of a vibrator array that performs aperture control according to the present invention. In FIG. 3, 7 and 9 are vibrator rows, 71, 72, 73, . . . and 91, 92, 93, . . . are piezoelectric elements, and 90 is a ground electrode. The sound field formed by a certain aperture, for example a disk shape with radius a, is beam-shaped, and at short distances the beam radius is a, but at long distances the apex angle is proportional to a/λ (λ: wavelength). It spreads in a thin cone shape. Therefore, the beam shape at a long distance is 2
If it is desired to make the two frequencies the same, the aperture a may be made proportional to the wavelength λ. However, in this case, the beam shape at a short distance will be different. In the present invention, by defining the aperture so that most of this near-field sound field is in the front room, that is, inside the window 1, most of the beam in the object to be measured is made into a far-field sound field.
Therefore, the same beam shape independent of frequency can be realized over the entire measurement depth. This is particularly important when tissue discrimination is performed based on the frequency dependence of human tissues and the like. In FIG. 3, vibrator rows 7 and 9 are made by linearly arranging unit elements to which piezoelectric elements 71 and 91 are bonded. The strip-shaped PZT piezoelectric element 71 is operated at wavelength λ 1 ,
In the Y-axis direction, electrodes are provided on the front and back of the entire surface and are effective over the entire length W1 . The piezoelectric element 91 is made of PVDF and is operated at a wavelength λ 2 , and its length in the Y-axis direction is W 1 , but the effective length of opposing electrodes is W 2 and W 1 /
It is assumed that W 212 . The reason why the surface electrode of the PVDF piezoelectric element 91 continues to the bottom is to extract the electrode signal. A unit element made up of these piezoelectric elements 71 and 91 is arranged, and the transducer row 7
9 and the sound absorbing material 13 are integrated to form one linear array. Further, in actual operation, the number of openings in the group to be selected is n1 for the transducer array 7 and n2 for the transducer array 9, and n 1 /n 212 . In this way, a beam with a substantially rectangular cross section is formed, but in the far sound field, the beam shapes of both wavelengths λ 1 and λ 2 are the same. In the assembly diagram of FIG. 3a, the portion of the piezoelectric element 91 above point P (piezoelectric element 91 of FIG. 3b) is removed for explanation purposes, but in reality, it should not be removed.

第4図は本発明による開口制御を行う振動子の
構造の他の具体例を示す図であり、第2図aに示
した振動子列8の線型配列のY軸方向開口を変化
する方法を示すものである。8′は1枚のPVDF
の如き有機圧電板、80はアース電極、81,8
2,83……は信号電極を示す。アース電極80
はW2の幅で円弧方向全長に付加されている。予
めこれら電極を形成後電圧印加して加熱し偏極を
行うと、アース電極80と信号電極81,82,
83等と対向した部分のみが偏極され圧電作用を
示し、その他は圧電作用を示さない様に作ること
ができる。非圧電部分はPZTの如き圧電素子7
1,72等からの超音波を出入する媒体として働
き、圧電素子71,72等の超音波のY軸方向分
布がW2幅のPVDFの圧電部分により乱されるの
を防止するのに有効である。
FIG. 4 is a diagram showing another specific example of the structure of a vibrator that performs aperture control according to the present invention, and shows a method for changing the aperture in the Y-axis direction of the linear array of vibrator rows 8 shown in FIG. 2a. It shows. 8' is one piece of PVDF
An organic piezoelectric plate such as 80 is a ground electrode, 81, 8
2, 83... indicate signal electrodes. Earth electrode 80
is added to the total length in the arc direction with a width of W 2 . When these electrodes are formed in advance and polarized by applying a voltage and heating, the ground electrode 80 and signal electrodes 81, 82,
It can be made such that only the portion facing 83 etc. is polarized and exhibits a piezoelectric effect, and the rest does not exhibit a piezoelectric effect. The non-piezoelectric part is a piezoelectric element 7 such as PZT.
It acts as a medium for transmitting and transmitting ultrasonic waves from piezoelectric elements 71, 72, etc., and is effective in preventing the Y-axis distribution of ultrasonic waves from piezoelectric elements 71, 72, etc. from being disturbed by the W2 width PVDF piezoelectric part. be.

以上、三次元扇形走査を線型配列の振動子列に
より実現する本発明の主要部分の説明を行つた
が、位相配列に比して位相制御が不要であるので
制御回路は主として選択切替のみですみ、簡単で
安価である。又、トランス・ジユーサー素子の配
列面が広くとれるので、三次元の各種走査や多周
波作動等とその配列が容易に構成でき、製作も容
易で安価にできる。
The main parts of the present invention, which realizes three-dimensional fan-shaped scanning using a linear array of transducers, have been explained above, but since phase control is not required compared to a phased array, the control circuit only requires selection switching. , easy and cheap. Furthermore, since the arrangement surface of the transducer elements can be widened, various types of three-dimensional scanning, multi-frequency operation, etc. and their arrangement can be easily configured, and manufacturing is also easy and inexpensive.

反面、走査線を交叉するために前室が必要とな
り、且つ窓や体表等とトランス・ジユーサーとの
多重反射の悪影響を除くためには、トランス・ジ
ユーサーと窓間の走査線長l1、前室内媒体の音速
v1とし、窓から外の最大測定深さl2、被測定体の
音速v2とした時、 l1/v1≧l2/v2 の条件が必要となり、前室が大きくなる欠点があ
る。v1≒v2の時はl1はl2と少なくとも同じとなり、
心臓等ではl2=18cmであるので探触子は長くな
る。又、被測定体内の走査角θ2とすると、前室内
走査角θ1は屈折の為、 sinθ1/sinθ2=v1/v2 となり、v1≒v2で2θ2=90°なら2θ1=90°となり、l2
=18cmと共に、探触子の大きさが使用に耐えない
程大型となる。実用に当つてはこの長さl1と前室
内走査角2θ1(四角錐状の探触子外形の頂角を与え
る)を小とすることが絶対の要請となる。この要
請に対しては前室内媒体としてv1/v2≦1のもの
を選ぶことによつて実現することができる。これ
は上述のl1,θ1の式から明らかである。v1/v2
1/2とすれば非常に好ましい。この様な物質と
しては弗素油があり、v2が生体等で1500m/sec
であるのに対し、3M社FC48、FC72、FC75等は
v1が700、527、590m/secで優れたv1/v2比を与
える。
On the other hand, a front chamber is required to intersect the scanning lines, and in order to eliminate the adverse effects of multiple reflections between the transducer and the window or body surface, the scanning line length l 1 between the transducer and the window is required. Velocity of sound in the front room medium
v 1 , the maximum measurement depth outside the window is l 2 , and the sound velocity of the object to be measured is v 2 , then the condition l 1 /v 1 ≧l 2 /v 2 is required, which has the disadvantage that the front chamber becomes large. be. When v 1 ≒ v 2 , l 1 is at least the same as l 2 ,
In the case of the heart, etc., l 2 = 18 cm, so the probe will be long. Also, if the scanning angle inside the object to be measured is θ 2 , the scanning angle θ 1 inside the front chamber is due to refraction, so sinθ 1 /sinθ 2 = v 1 / v 2 , and if v 1 ≒ v 2 and 2θ 2 = 90°, then 2θ 1 = 90°, and l 2
= 18cm, the size of the probe becomes too large to be usable. In practical use, it is absolutely necessary to keep this length l 1 and the scanning angle 2θ 1 (which gives the apex angle of the quadrangular pyramidal probe shape) small. This request can be realized by selecting a medium in the front room where v 1 /v 2 ≦1. This is clear from the above equations for l 1 and θ 1 . v 1 / v 2
It is very preferable to set it to 1/2. Fluorine oil is an example of such a substance, and V 2 is 1500 m/sec in living organisms etc.
On the other hand, 3M's FC48, FC72, FC75, etc.
Provides excellent v 1 /v 2 ratios at v 1 of 700, 527, and 590 m/sec.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれ
ば、一つの窓を有する前室内に、複数の線型配
列、又は平面型配置の振動子を設け、それ等の形
成する走査線が窓付近のほぼ一点を交叉通過する
如く構成することにより、生体等の被測定体に対
し、一つの接触部から探触子を一つの姿勢に保つ
たままで、複数の相異なる扇形走査面を形成する
ことが可能となるので、正確で、取扱容易で、安
価な三次元扇形走査が実現できる。
As is clear from the above description, according to the present invention, a plurality of linearly arranged or planarly arranged transducers are provided in a front chamber having one window, and the scanning lines formed by these transducers are arranged near the window. By configuring the probe to cross almost one point, it is possible to form a plurality of different fan-shaped scanning planes from one contact point on the object to be measured, such as a living body, while keeping the probe in one posture. As a result, accurate, easy-to-handle, and inexpensive three-dimensional sector scanning can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は振動子の配列と走査線交叉点と窓との
関係を示した本発明の実施例で、aは複数線型配
列の例を示す図、bは直交する2つの線型配列の
例を示す図、cはマトリクス平面型配置の例を示
す図、dはaの探触子構造を示す断面図、第2図
は本発明による振動子列の複層構造の具体例を示
す図であつて、aは複層構造を有する線型配列の
例を示す図、bは複層構造を有する直交する2つ
の線型配列の例を示す図、第3図は本発明による
開口制御を行う振動子列の構造の具体例を示す
図、第4図は本発明による開口制御を行う振動子
列の構造の他の具体例を示す図である。 1……窓、2ないし10……振動子列、6……
振動子面、8′……圧電板、11……反射板、1
2……非偏極板、13……吸音材、14……前
室、71,72と73……圧電素子、81,82
と83……信号電極、80と90……アース電
極、91,92と93……圧電素子。
FIG. 1 shows an embodiment of the present invention showing the relationship between the transducer arrangement, scanning line intersection points, and windows, where a shows an example of a multiple linear arrangement, and b shows an example of two orthogonal linear arrangements. FIG. 2 is a diagram showing an example of a matrix planar arrangement, d is a sectional view showing the probe structure of FIG. 2, and FIG. FIG. 3 is a diagram showing an example of a linear array having a multilayer structure, b is a diagram showing an example of two orthogonal linear arrays having a multilayer structure, and FIG. FIG. 4 is a diagram showing another specific example of the structure of a transducer array for performing aperture control according to the present invention. 1... window, 2 to 10... transducer row, 6...
Vibrator surface, 8'...piezoelectric plate, 11...reflection plate, 1
2... Non-polarized plate, 13... Sound absorbing material, 14... Front chamber, 71, 72 and 73... Piezoelectric element, 81, 82
and 83... signal electrode, 80 and 90... earth electrode, 91, 92 and 93... piezoelectric element.

Claims (1)

【特許請求の範囲】 1 複数個の超音波トランス・ジユーサー素子を
配列した素子配列体と、超音波の出入する窓と、
上記素子配列体と上記窓との間に構成される前室
内に充填される超音波伝達媒体とを有し、上記超
音波トランス・ジユーサー素子を開口として選択
的に作動して超音波をビーム状に集束して送信及
び受信し、一部又は全部の選択を変更することに
より上記窓に外接する被測定体を超音波ビームに
より走査する超音波走査探触子において、上記素
子配列体からの全ての選択による走査線が上記窓
又はその付近のほぼ一点の交叉点を通過して扇形
走査する如くすると共に、少なくとも二つ以上の
被測定体の断層像が得られる如く上記素子配列体
を構成し、且つ上記前室内超音波伝播経路l1の伝
播時間が上記窓に外接する被測定体の体表から最
大測定深さl2の伝播時間とほぼ等しいか、より長
くなるようにしたことを特徴とする超音波扇形走
査探触子。 2 複数個の超音波トランス・ジユーサー素子を
並設して1個の線型トランス・ジユーサー列を構
成し、該線型トランス・ジユーサー列の複数個
を、走査線の交叉点を曲率の中心とする球面にほ
ぼ沿つて並設した複合的素子配列体を有すること
を特徴とする特許請求の範囲第1項に記載の超音
波扇形走査探触子。 3 複数個の超音波トランス・ジユーサー素子を
並設して1個の線型トランス・ジユーサー列を構
成し、該線型トランス・ジユーサー列の複数個
を、走査線の交叉点を曲率の中心とする球面にほ
ぼ沿つて直交配列した複合的素子配列体を有する
ことを特徴とする特許請求の範囲第1項に記載の
超音波扇形走査探触子。 4 走査線の交叉点を曲率の中心とする球面にほ
ぼ沿つて複数の超音波トランス・ジユーサー素子
をマトリツクス状等の平面型に配置した多次元的
素子配列体を有することを特徴とする特許請求の
範囲第1項に記載の超音波扇形走査探触子。 5 素子配列体が複数個の線型トランス・ジユー
サー列で複合的に構成されている場合、各線型ト
ランス・ジユーサー列の少なくとも二つが互いに
異なる周波数又は特徴を有する超音波波形で作動
されることを特徴とする特許請求の範囲第2項な
いし第3項に記載の超音波扇形走査探触子。 6 複数個の超音波トランス・ジユーサー素子を
並設して1個の線型トランス・ジユーサー列を構
成し、該任意数の線型トランス・ジユーサー列を
一つの層上に配列し、該層を更に重ね合わせて走
査線の交差点を曲率の中心とする円弧又は球面に
ほぼ沿つて配列して素子配列体を複合的に構成
し、各線型トランス・ジユーサー列の少なくとも
二つが異なる周波数又は特徴を有する超音波形で
作動されることを特徴とする特許請求の範囲第1
項に記載の超音波扇形走査探触子。 7 素子配列体を構成する超音波トランス・ジユ
ーサー素子の少なくとも一部の素子自体を複数個
の超音波トランス・ジユーサー素子を重ね合わせ
て作成された複層超音波トランス・ジユーサー素
子とし、該複層超音波トランス・ジユーサー素子
自体が複数の周波数又は特徴の超音波波形で作動
可能であることを特徴とする特許請求の範囲第1
項ないし第5項に記載の超音波扇形走査探触子。 8 複数個の超音波トランス・ジユーサー素子を
多次元的、又は複合的に配列し、その中から選択
された適宜の群の素子が異なつた周波数のビーム
を集束形成する場合、各群の構成超音波トラン
ス・ジユーサー素子自体の開口及び/又は選択さ
れた素子の群としての開口を夫々の群の送受する
超音波の波長に基づいて変化させると共に、その
近距離音場の大部分が前室にある如く構成された
ことを特徴とする特許請求の範囲第5項ないし第
7項のいずれかに記載の超音波扇形走査探触子。 9 被測定体の音速v2にほぼ等しいか、より遅い
音速v1の超音波伝達媒体を前室内に充填したこと
を特徴とする特許請求の範囲第1項ないし第8項
記載の超音波扇形走査探触子。
[Claims] 1. An element array in which a plurality of ultrasonic transducer elements are arranged, a window through which ultrasonic waves enter and exit,
It has an ultrasonic transmission medium filled in a front chamber configured between the element array and the window, and selectively operates the ultrasonic transducer element as an aperture to transmit ultrasonic waves into a beam. In an ultrasonic scanning probe that scans an object to be measured circumscribing the window with an ultrasonic beam by changing the selection of some or all of the ultrasonic beams, all of the ultrasonic beams from the element array The element array is configured such that the scanning line selected by the above passes through the window or approximately one intersection point near the window and scans in a fan-shaped manner, and at least two or more tomographic images of the object to be measured are obtained. , and the propagation time of the ultrasonic wave propagation path l 1 in the front chamber is approximately equal to or longer than the propagation time of the maximum measurement depth l 2 from the body surface of the object circumscribed to the window. Ultrasonic fan-shaped scanning probe. 2 A plurality of ultrasonic transducer elements are arranged in parallel to form one linear transducer array, and the plurality of linear transducer arrays are formed into a spherical surface whose center of curvature is the intersection point of the scanning line. 2. An ultrasonic fan-scanning probe as claimed in claim 1, characterized in that it has a multi-element array juxtaposed substantially along. 3 A plurality of ultrasonic transducer elements are arranged in parallel to form one linear transducer array, and the plurality of linear transducer arrays are formed into a spherical surface whose center of curvature is the intersection point of the scanning line. 2. An ultrasonic fan-scanning probe as claimed in claim 1, characterized in that it has a multi-element array arranged orthogonally substantially along. 4. A patent claim characterized by having a multidimensional element array in which a plurality of ultrasonic transducer elements are arranged in a planar shape such as a matrix substantially along a spherical surface whose center of curvature is the intersection point of scanning lines. The ultrasonic fan-shaped scanning probe according to item 1. 5. When the element array is composed of a plurality of linear transformer arrays, at least two of each linear transformer array may be operated with ultrasonic waveforms having different frequencies or characteristics. An ultrasonic fan-shaped scanning probe according to claims 2 and 3. 6 A plurality of ultrasonic transducer elements are arranged in parallel to form one linear transducer array, an arbitrary number of linear transducer arrays are arranged on one layer, and the layers are further stacked. The ultrasonic waves are arranged substantially along an arc or a spherical surface with the intersection of the scanning lines as the center of curvature to form a composite element array, and at least two of each linear transducer array have different frequencies or characteristics. Claim 1 characterized in that it is operated in the form of
The ultrasonic fan-shaped scanning probe described in . 7 At least some of the ultrasonic transformer elements constituting the element array are multilayer ultrasonic transformer elements created by stacking a plurality of ultrasonic transformer elements, and the multilayer Claim 1, characterized in that the ultrasonic transducer element itself is operable with multiple frequencies or characteristics of ultrasonic waveforms.
The ultrasonic fan-shaped scanning probe according to items 5 to 6. 8 When a plurality of ultrasonic transducer elements are arranged in a multidimensional or complex manner, and appropriate groups of elements selected from among the elements focus and form beams of different frequencies, the composition of each group The aperture of the acoustic transducer element itself and/or the aperture of the selected elements as a group is changed based on the wavelength of the ultrasonic waves transmitted and received by each group, and most of the near-field sound field is directed to the front chamber. An ultrasonic fan-shaped scanning probe according to any one of claims 5 to 7, characterized in that it is constructed as follows. 9. The ultrasonic sector according to claims 1 to 8, characterized in that the front chamber is filled with an ultrasonic transmission medium having a sonic velocity v 1 that is approximately equal to or slower than the sonic velocity v 2 of the object to be measured. scanning probe.
JP57045395A 1982-03-20 1982-03-20 Ultrasonic three-dimensional fan-shaped scanning probe Granted JPS58163347A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57045395A JPS58163347A (en) 1982-03-20 1982-03-20 Ultrasonic three-dimensional fan-shaped scanning probe
DE8383301540T DE3377530D1 (en) 1982-03-20 1983-03-18 Ultrasonic sector-scan probe
EP83301540A EP0090567B1 (en) 1982-03-20 1983-03-18 Ultrasonic sector-scan probe
US06/618,232 US4570488A (en) 1982-03-20 1984-06-07 Ultrasonic sector-scan probe
US06/735,300 US4580451A (en) 1982-03-20 1985-05-17 Ultrasonic sector-scan probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57045395A JPS58163347A (en) 1982-03-20 1982-03-20 Ultrasonic three-dimensional fan-shaped scanning probe

Publications (2)

Publication Number Publication Date
JPS58163347A JPS58163347A (en) 1983-09-28
JPH0369534B2 true JPH0369534B2 (en) 1991-11-01

Family

ID=12718068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57045395A Granted JPS58163347A (en) 1982-03-20 1982-03-20 Ultrasonic three-dimensional fan-shaped scanning probe

Country Status (1)

Country Link
JP (1) JPS58163347A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2619446B2 (en) * 1987-12-21 1997-06-11 株式会社日立製作所 Ultrasound diagnostic equipment
JP2013173060A (en) * 2008-06-18 2013-09-05 Canon Inc Ultrasonic probe, and photoacoustic-ultrasonic system and inspection object imaging apparatus including ultrasonic probe
JP5294998B2 (en) 2008-06-18 2013-09-18 キヤノン株式会社 Ultrasonic probe, photoacoustic / ultrasonic system including the ultrasonic probe, and specimen imaging apparatus
JP5689227B2 (en) * 2009-04-06 2015-03-25 日立Geニュークリア・エナジー株式会社 Ultrasonic measurement method and apparatus
JP5735512B2 (en) * 2009-09-03 2015-06-17 コーニンクレッカ フィリップス エヌ ヴェ Ultrasonic probe with a large field of view and method for manufacturing such an ultrasonic probe
JP5222323B2 (en) * 2010-06-16 2013-06-26 日立アロカメディカル株式会社 Ultrasonic diagnostic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865923A (en) * 1971-12-10 1973-09-10
JPS4994352A (en) * 1972-05-02 1974-09-07
JPS5241267U (en) * 1975-09-12 1977-03-24
JPS5690274A (en) * 1979-12-24 1981-07-22 Fujitsu Ltd Scanning method by ultrasonic wave

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865923A (en) * 1971-12-10 1973-09-10
JPS4994352A (en) * 1972-05-02 1974-09-07
JPS5241267U (en) * 1975-09-12 1977-03-24
JPS5690274A (en) * 1979-12-24 1981-07-22 Fujitsu Ltd Scanning method by ultrasonic wave

Also Published As

Publication number Publication date
JPS58163347A (en) 1983-09-28

Similar Documents

Publication Publication Date Title
EP0090567B1 (en) Ultrasonic sector-scan probe
US4550606A (en) Ultrasonic transducer array with controlled excitation pattern
US4831601A (en) Apparatus for transmitting and receiving ultrasonic signals
US4183249A (en) Lens system for acoustical imaging
US5305756A (en) Volumetric ultrasonic imaging with diverging elevational ultrasound beams
KR101906838B1 (en) Concave ultrasound transducers and 3d arrays
US5360007A (en) Ultrasonic apparatus
US8551004B2 (en) Dual mode ultrasound transducer
JP2851005B2 (en) Ultrasonic beam three-dimensional focusing device
JP3862793B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus using the same
US20080027320A1 (en) Multidimensional transducer systems and methods for intra patient probes
US5743855A (en) Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
US20050124884A1 (en) Multidimensional transducer systems and methods for intra patient probes
JPH07107595A (en) Ultrasonic phased-array converter and its manufacture
JPS58625B2 (en) Ultrasonic imaging method and system
JPH02217000A (en) Ultrasonic wave probe
JPS625337A (en) Phased array for medical ultrasonic imaging
JPH05244691A (en) Ultrasonic probe
WO2008033528A2 (en) Therapeutic and diagnostic electrostrictor ultrasonic arrays
JPH0369534B2 (en)
JPS62227327A (en) Ultrasonic probe
JPH02246948A (en) Ultrasonic diagnostic device
JPH0443957A (en) Ultrasonic image pickup system
JP2964147B2 (en) Ultrasound diagnostic equipment
JPH05285140A (en) Ultrasonic device