JPS58163347A - Ultrasonic three-dimensional fan-shaped scanning probe - Google Patents

Ultrasonic three-dimensional fan-shaped scanning probe

Info

Publication number
JPS58163347A
JPS58163347A JP57045395A JP4539582A JPS58163347A JP S58163347 A JPS58163347 A JP S58163347A JP 57045395 A JP57045395 A JP 57045395A JP 4539582 A JP4539582 A JP 4539582A JP S58163347 A JPS58163347 A JP S58163347A
Authority
JP
Japan
Prior art keywords
ultrasonic
transducer
array
scanning probe
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57045395A
Other languages
Japanese (ja)
Other versions
JPH0369534B2 (en
Inventor
三輪 博秀
治 林
孚城 志村
梁島 忠彦
川辺 憲二
安津夫 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57045395A priority Critical patent/JPS58163347A/en
Priority to EP83301540A priority patent/EP0090567B1/en
Priority to DE8383301540T priority patent/DE3377530D1/en
Publication of JPS58163347A publication Critical patent/JPS58163347A/en
Priority to US06/618,232 priority patent/US4570488A/en
Priority to US06/735,300 priority patent/US4580451A/en
Publication of JPH0369534B2 publication Critical patent/JPH0369534B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、超音波ビームを扇形走査する探触子に係り、
4IK被測定体内の相異なる二つ以上の扇形走査断面を
観測する超音波三次元扇形走査探触子に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a probe that scans an ultrasonic beam in a fan shape;
The present invention relates to an ultrasonic three-dimensional fan-shaped scanning probe for observing two or more different fan-shaped scanning sections within a 4IK object.

〔従来技術と問題点〕[Conventional technology and problems]

超音波ビームによる扇形走査は、生体勢のamに於て、
一つの小さな接触部から内部を広い視野にわたって観測
できる長所がある。特に心臓部の観測に当っては肋骨の
妨害をさけて肋間の狭い部分に接触することで心臓の可
成りの面積をIl!側できるので扇形走査が専ら使用さ
れている。
Fan-shaped scanning by an ultrasonic beam is performed in a living body am.
It has the advantage of being able to observe the interior over a wide field of view from one small contact point. In particular, when observing the heart, a considerable area of the heart can be observed by avoiding interference with the ribs and touching the narrow area between the ribs. Sectoral scanning is used exclusively because it can be used on both sides.

しかし従来は、一つの扇形走査断面しか観IIIされな
いので、正確なI!欄が行なえない欠点があった。何と
なれば、心臓は拍動して動いており、しかも呼吸運動の
ために全体としても前後左右に移動している。このため
に−断面のI!側のみでは、その断面が心臓のどの部位
の断面であるか不明であり、このために探触子の体に対
する姿勢を手で変えたり、探触子軸中心に90°回転し
たりして交互に確かめ乍ら希望する断面の観測が行われ
ている。この場合は、手動であるために、毎回の姿勢蜜
更における幾何学的な精度を保つことが全く困―である
。   “ この解決のために、Il触子の姿勢を横槍的に一定に保
持することが考えられるが、此は呼吸這動勢を妨げるの
で不都合であり未だ試みられた例を見ない。
However, conventionally, only one fan-shaped scanning section is viewed, so accurate I! There was a drawback that columns could not be done. After all, the heart beats and moves, and because of the movement of breathing, the heart as a whole moves back and forth and from side to side. For this - cross section I! If you only look at the sides, it is unclear which part of the heart the cross section is from, so you can change the position of the probe in relation to your body by hand or rotate it 90 degrees around the probe axis. Observations of the desired cross section are being carried out to confirm this. In this case, since it is done manually, it is difficult to maintain geometric accuracy in each posture adjustment. “To solve this problem, it may be possible to maintain the Il tentacle in a constant horizontal position, but this is inconvenient because it interferes with the breathing movement, and I have not seen any attempts to do so yet.

そこで、探触子の外容器を手で体に対し一定に保持した
ままで、内部の探触子管軸中心で90°機械的に回転す
ることが試みられたが、探触子が大型となること、文子
での保持が完全に一定を保つことが困難で、且つ時間的
に同時でないこと1回転に必要な時間が長いこと、等で
誤差が依然として大きいのが欠点である。
Therefore, an attempt was made to mechanically rotate the probe 90 degrees around the axis of the inner probe tube while holding the probe's outer container in a fixed position relative to the body, but the probe was too large. The disadvantage is that the error is still large due to the fact that it is difficult to maintain a completely constant hold in the Bunko, that it is not simultaneous in time, and that the time required for one rotation is long.

本願とは別に発明者は、別々の2つの探触子を用いて、
その相互位置をリンク腕と節につけた角度検出器で知る
ことによって1時間的に同時の2断面をその相対位置と
ともに観測することを考案し、三次元的な正確な観測を
可能とした。
Apart from this application, the inventor uses two separate probes to
By knowing their relative positions using angle detectors attached to the link arms and joints, we devised a method to simultaneously observe two cross-sections and their relative positions over an hour, making accurate three-dimensional observation possible.

しかしこの場合は、2つの探触子を用いるためK、体と
の接触部が2ケ所必要である。一般に、壮年以下の若年
の人々の心臓観測に当っては有効な接触部を発見できる
が、老令化するとともに有効な接触部は一つしか発見で
きない例が増えて来て、その比率は40ないし50%に
なる。
However, in this case, since two probes are used, two contact points with the body are required. In general, it is possible to find a valid contact point when observing the heart of young people under the prime of life, but as they get older, there are more and more cases in which only one valid contact point can be found, and the ratio is 40%. or 50%.

以上のような状況から一つの接触部を通して、異なる二
つ以上の断面を、電子的高速に切替えるか、又は完全同
時に観測する方式の出現が要望されるが、未だ試みられ
た報告がない。
In view of the above-mentioned circumstances, there is a demand for a system in which two or more different cross sections can be electronically switched at high speed or observed completely simultaneously through one contact part, but there have been no reports on attempts to do so.

通常電子的扇形走査は、位相配列(フェーズド・アレイ
)により行われている。この場合、例えば直交する二扇
形走査を行う如く、トランス・ジューサーを複層化し、
夫々の層が異なる走査面を担当することも別に発明者に
よって考案されており、夫々の走査面は異なる周波数を
用いることに、   よって、完全同時に作動可能とす
ることができる。
Electronic sector scanning is typically performed using a phased array. In this case, the transducer is multi-layered, for example with two orthogonal sector scans,
It has also been separately devised by the inventor that each layer is responsible for a different scanning plane, each scanning plane using a different frequency, and thus can be operated completely simultaneously.

しかし此等の場合、複層トランス・ジューサーの加工が
複雑であり、且つ位相制御回路が複雑で高価であるのが
欠点である。
However, in these cases, the drawbacks are that the processing of the multilayer transducer is complicated, and the phase control circuit is complicated and expensive.

〔発−の目的〕[Purpose of departure]

本発明は、上記のような種々の欠点を除くものであって
、探触子の生体等被測体への姿勢を一定に保フたまま一
つの接触St通して複数の相異なる層形走査面を高速電
子切替、及び/又は完全同時KI!測する事を可能とす
る安価、小型な三次元扇形走査探触子を提供することを
目的とするものである。
The present invention eliminates the various drawbacks described above, and allows scanning of a plurality of different layers through one contact St while keeping the attitude of the probe toward the object to be measured, such as a living body, constant. High-speed electronic switching of surfaces and/or complete simultaneous KI! The purpose of the present invention is to provide an inexpensive and small three-dimensional fan-shaped scanning probe that enables measurement.

〔発−の構成〕[Composition of the release]

上記目的を達成するため、本発明による超音波三次元層
形走査探触子は、複数個の超音波トランス・ジューサー
素子を配列した素子配列体と、超音波の出入する窓と、
上記素子配列体と上記廖との間に構成される前寵内に充
填される超音波伝達媒体とを有し、上記超音波トランス
・ジューサー配列素子を開口として選択作動して超音波
をビーム状に集束して送信及び受信し、一部又は全部の
選択を炭更することにより上記窓に外接する被測定体を
超音波ビームにより走査する超音波走査探触子において
、上記素子配列体からの全ての選択による走査線が上記
窓又はその付近のほぼ一点の交叉点を通過して扇形走査
する如く、且つ多次元的もしくは複倉的に上記素子配列
体を構成し、少なくとも二つ以上の扇形断面及び/又は
三次元的扇形走査をすることを特徴とする。走査の詳細
番1、素子配列体の中から複数個の超音波トランス・ジ
ューサー素子を一評として選択作動して超音波ビームを
集束形成するとともに、その選択した超音波トランス・
ジューサー素子のうちの一部又をi全部を変更すること
により超音波ビームの送受点での中心位置を移動するよ
うにするものである。
In order to achieve the above object, an ultrasonic three-dimensional layered scanning probe according to the present invention includes an element array in which a plurality of ultrasonic transducer elements are arranged, a window through which ultrasonic waves enter and exit,
an ultrasonic transmission medium filled in a front chamber formed between the element array and the liao; the ultrasonic transducer array element is selectively operated as an aperture to transmit ultrasonic waves into a beam; In an ultrasonic scanning probe that scans an object circumscribed to the window with an ultrasonic beam by transmitting and receiving and changing some or all selections, the ultrasonic beam from the element array The element array is constructed in a multi-dimensional or multi-dimensional manner so that all selected scanning lines pass through the window or substantially one intersection point near the window and scan in a fan shape, It is characterized by cross-sectional and/or three-dimensional fan-shaped scanning. Scanning details number 1: A plurality of ultrasonic transducer elements are selectively activated from the element array to focus and form an ultrasonic beam, and the selected ultrasonic transducer
By changing some or all of the juicer elements, the center position at the transmitting and receiving point of the ultrasonic beam is moved.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面を参照しつつ説明する。 Hereinafter, the present invention will be explained with reference to the drawings.

第1図は振動子の配列と走査線交叉点と窓との関係を示
した本発明の実施例で、(1) )t 3つの彼数ls
W配列の例を示す図、(ロ)は直交する3つの線型配列
の例を示す図、(C)は!トリタス平Wi蓋配置の例を
示す図、−)は−)の探触子構造を示す断面図である。
FIG. 1 shows an embodiment of the present invention showing the relationship between the transducer arrangement, the scanning line intersection point, and the window.
A diagram showing an example of a W array, (B) a diagram showing an example of three orthogonal linear arrays, and (C)! Figures illustrating an example of Tritas flat Wi lid arrangement; -) is a sectional view showing the probe structure of -).

1は窓、2ないし5は振動子列、6は振動子面、13は
吸音材、14は前室を示す。
1 is a window, 2 to 5 are transducer rows, 6 is a transducer surface, 13 is a sound absorbing material, and 14 is a front chamber.

第1図(1)において、3つの振動子列2.3と4は、
夫々円弧の形状でaui配列され、その曲率中心が嫌ぼ
窓IKある如く、#tぼ並列に配置される。
In FIG. 1 (1), the three transducer rows 2.3 and 4 are
They are arranged in an arc shape, and #t are arranged in parallel so that the center of curvature is at the window IK.

円弧の形状は必要に応じて若干補正されうる。第1図(
−)において振動子列2により形成される扇形走査面は
窓10面と直交する橡に配置されて〜)る。
The shape of the arc can be slightly corrected if necessary. Figure 1 (
In -), the fan-shaped scanning plane formed by the transducer array 2 is arranged in a square orthogonal to the window 10 surface.

振動子列3と4により形成される扇形走査面は窓1の中
心点Oを通過するが、その面は窓10函と直交ではなく
、斜交している。したがって、振動子列3と4は第1図
に)において平行にみえるが走査扇形1iNVc等間隔
平面とするにはl[!IIKはこの斜交のため完全な平
行ではなく歪−させる必要力tある。夫々のymm配列
2.3と4は、一般に腹部診断用等に使用されている完
全に直線型に配列された振動子列、所謂リニア・プレイ
を円弧の形状にしたものと考えてよく、夫々多数の煙量
状のPZT轡から作られた圧電素子が一列に配列されて
(・る。
The fan-shaped scanning plane formed by the transducer rows 3 and 4 passes through the center point O of the window 1, but the plane is not orthogonal to the window 10, but obliquely. Therefore, transducer arrays 3 and 4 appear parallel in FIG. Because of this oblique angle, IIK is not completely parallel, and there is a necessary force t to distort it. The respective ymm arrays 2.3 and 4 can be thought of as an arcuate version of the so-called linear play, which is a completely linear array of transducers generally used for abdominal diagnosis. A large number of piezoelectric elements made from smoke-shaped PZT plates are arranged in a row.

その作動方法も一般のリニア・アレイと同じでよく、相
隣る検数の絡個の素子を選択してビーム集末剤の開口と
する。そのビーム中心が走査線となる。走査線の移動は
選択素子の位置t−費えることで行われる。亀+1個の
素子を駆動して半ピッチ鴫ずれた走査線を得るとか、群
を構成する素子の中央付近から周辺に行くにつれて順次
送信、受信のタイミング位相を制御することで、走査面
内での超音波ビーム幅集束点を電子的に設定したり、動
的に制御したりすることができる。但し、位相制御を行
わなければ集束点は幾何学的配列で定まり、円弧の一率
中心となる。走査面と直交する方向のビーム幅の集束は
、夫々の頬骨型素子に音波放出方向に凹の曲率をもたせ
るか、又は円柱レンズを用いその円柱軸を円弧に沿わせ
て曲げた形状として円孤形線型配列の前面に付加すると
とKよって行いうる。この様に一般のリニア・アレイに
用いられている技術を適用することができる。第1図(
Jl)では円弧の一率中心が各走査線の交叉点と一致す
る場合を示しである。又、この交叉点は窓1の中心Oと
合致した例が示されているが、必要に応じて必ずしも合
致させなくてもよい。
Its operating method may be the same as that of a general linear array, and a number of adjacent elements are selected and used as the aperture of the beam concentrator. The center of the beam becomes the scanning line. The scanning line is moved by changing the position t of the selection element. By driving +1 elements to obtain a scanning line shifted by half a pitch, or by sequentially controlling the timing phase of transmission and reception from near the center to the periphery of the elements that make up the group, it is possible to The ultrasound beam width focal point can be electronically set or dynamically controlled. However, if phase control is not performed, the focal point will be determined by a geometric arrangement and will be the 1-rate center of the circular arc. The beam width in the direction perpendicular to the scanning plane can be focused by giving each zygomatic element a concave curvature in the sound wave emission direction, or by using a cylindrical lens with its cylindrical axis bent along an arc. This can be done by adding K to the front of a linear array. In this way, techniques used in general linear arrays can be applied. Figure 1 (
Jl) shows the case where the 1-rate center of the circular arc coincides with the intersection point of each scanning line. Further, although an example is shown in which this intersection point coincides with the center O of the window 1, it does not necessarily have to coincide with the center O of the window 1, if necessary.

第1図1)は第1図(1)の窓1の中心点0点と振動子
列2の中心線を通る面で切った具体的探触子構造を示す
断面図である。
FIG. 1(1) is a sectional view showing a specific probe structure taken along a plane passing through the center point 0 of the window 1 and the center line of the transducer array 2 in FIG. 1(1).

探触子は窓1を頂点部に持つ嫌ぼ四角錐の形状の前室1
4と素子への回路結線等を含み一体として作られる。前
[14の四角錐底面に各II型配列の振動子列2.3と
4が設置される。s際は窓1以外の側面、及び線層配列
の振動子列2.3と4の背面と一体となったJl爾等の
前室14内面は可及的吸音材13で覆われ又は形成され
る。前1114の内部には水、ひまし油、流動パラフィ
ン、弗素油勢を充填し、振動子列2,3,4とII!1
との間の超音波の伝達経路とする。振動子列2.3と4
で形成される曽1114内層形走査面は点0を通り反対
側に点対称的に伸び、被測定体中に相異なる三つの扇形
走査面を形成する。振動子列2.3と4は、同一周波数
で作動される場合は各走査面は時間的に切替えて作動さ
れる。しかし、夫々の配列の構成素子を1例えば振動子
列2は3.5 MHJ、3はL2SMHi、41tt、
 1.5 MHNIIト作1hiR1ll数t’Rえた
り、異なる0HIRP変調法を付加したりして作動でき
る様にすると、三つのl/sll配列された振動子列2
,3と4を同時に作動し、その受信信号をフィルターで
弁別することによって三つの走査面は同時に走査できる
The probe has a front chamber 1 in the shape of a square pyramid with a window 1 at the apex.
4 and circuit connections to the elements, etc., and are made as a single unit. The vibrator rows 2, 3 and 4 of type II arrangement are installed on the bottom of the square pyramid in front [14]. At this time, the side surfaces other than the window 1 and the inner surface of the front chamber 14, which is integrated with the back surface of the transducer rows 2, 3 and 4 in the line-layer arrangement, are covered or formed with as much sound-absorbing material 13 as possible. Ru. The inside of the front 1114 is filled with water, castor oil, liquid paraffin, and fluorine oil, and the transducer rows 2, 3, 4 and II! 1
This is the transmission path for ultrasonic waves between the Transducer row 2.3 and 4
The Zeng 1114 inner-layer scanning plane formed by Zeng 1114 extends point-symmetrically to the opposite side through point 0, forming three different fan-shaped scanning planes in the object to be measured. When the transducer arrays 2.3 and 4 are operated at the same frequency, each scanning plane is operated in a temporally switched manner. However, if the constituent elements of each array are 1, for example, transducer row 2 is 3.5 MHJ, 3 is L2SMHi, 41tt,
1.5 By increasing the number of 1hiR1ll created by MHNII and adding different 0HIRP modulation methods, three transducer rows 2 arranged in l/sll can be used.
, 3 and 4 simultaneously, and the received signals are discriminated by a filter, the three scanning planes can be scanned simultaneously.

第1図(b) において振動子列2と5は夫々の屑形走
査圓が互に直交するINK、又全ての走査線が愈l付近
又は窓1上の1点0を交叉して通過する様に配置されて
いる。振動子列2と5の交叉する部分は短冊状でなく縦
横に分割されたマ) IJクス状素子で、縦に接続され
て振動子列2の一部として使用されたり、横に接続され
て振動子列5の一部として使用されたりするものである
。振動子列2と5とは中央交叉部を何れかが使用してい
る時は他はその他の部分を使用している如く、時相をず
らせて作動される。その他の構造、作動、走査は第1図
(a)と同様であり、慾1の外の被測定体内に互に直交
する扇形走査面を時間切替で、又は完全開時に走査し得
ることも同様である。
In Fig. 1(b), the transducer arrays 2 and 5 have INK whose respective scrap-shaped scanning circles are orthogonal to each other, and all scanning lines pass near the axis l or at a point 0 on the window 1, crossing each other. It is arranged like this. The intersecting part of transducer rows 2 and 5 is not a rectangular shape but an IJ box-shaped element that is divided vertically and horizontally, and can be connected vertically and used as part of transducer row 2, or connected horizontally. It is used as part of the transducer array 5. The transducer arrays 2 and 5 are operated out of phase so that when one is using the central crossing section, the other is using the other sections. The other structure, operation, and scanning are the same as in Fig. 1(a), and it is also possible to scan mutually orthogonal fan-shaped scanning planes inside the object to be measured outside 1 by time switching or when fully opened. It is.

第1図(C) において、振動子面6は線型配列でなく
、マトリクス状に平面型配置として、点0を一率中心と
する球面上Kll数の振動子を配置したものである。こ
の場合、平面X軸、Y軸上の任意の位置を中心とし、そ
の付近の振動子を正方形、近似円形、郷と適宜の開口形
状と、開口の広さで選択することができるので、自由な
三次元扇形走査を行い得る。
In FIG. 1(C), the transducer surface 6 is not arranged in a linear arrangement, but in a planar arrangement in the form of a matrix, with Kll number of transducers arranged on a spherical surface centered at point 0. In this case, the center can be centered at any position on the plane A three-dimensional fan-shaped scan can be performed.

第2図は本発v4による複層構造を有する振動子列の構
造の具体例を示す図であって、(a)はam配列の例を
示す図、 l))は直交する2つの線型配列の例を示す
図である。7.8と10は振動子列、71.72.73
・・・は圧電素子、8′は圧電板、8oはアース電極、
 81,82.83・・・は信号電極、11は反射板、
12は非傭極板、13は吸音材を示す、第2図(旬の例
は振動子列7と8が円弧形am配列の二つの層を構成す
る複層構造になっている。振動子列7は例えば中心周波
数& 5 MHJのPZT(ジルコン・チタン酸鉛)等
で作られた圧電素子を分割した圧電素子71,72.7
3等を有する。振動子列8は例えばPVDF(ポリ・7
ツ化ビニリデン)の如き有機圧電板8′を有し、中心周
波数が例えば24!SMH7に調整される。有機圧電板
8′は片側(図では表側)K信号電極81.82.83
尋が、他側(図では裏側)Kアース電極80が全面に配
置される。圧電素子71.72.73等にも信号電極と
アース電極が夫々配置される。PZTはセラミックで可
撓性がないので、圧電素子71.72.73等は1個ず
つ独立した個体として作るか、或は予め円板状に加工し
た板に裏までつきぬけない岬いスリットを切り込んで一
体として作ることもできる。PVDFは可撓性があり、
平面シートで作ってから円弧に合わせて曲げることがで
きる。振動子列7の背面には金属物t%人した樹脂眸で
作られた吸音材13を設ける。振動子列7、吸音材13
、振動子列8は接着剤で一体に構成される。PZTは音
響インピーダンスが約35X10@即//sec、PV
DFは約4 X l O@即/yd secであるので
、PZTl   はλ/2共振、PVDFはλ/4共振
とするのがよい。PZTからの超音波はP’/DFを通
過して出入する。PVDFはPZTKとって音響インピ
ーダンス整合に近い効果をもたせることもできる。
FIG. 2 is a diagram showing a specific example of the structure of a transducer array having a multilayer structure according to the present invention v4, in which (a) is a diagram showing an example of an am array, and (l)) is a diagram showing two orthogonal linear arrays. It is a figure showing an example. 7.8 and 10 are transducer rows, 71.72.73
... is a piezoelectric element, 8' is a piezoelectric plate, 8o is a ground electrode,
81, 82, 83... are signal electrodes, 11 is a reflection plate,
12 is a non-polarized plate, and 13 is a sound-absorbing material, as shown in FIG. The child row 7 includes piezoelectric elements 71, 72.7 which are made by dividing a piezoelectric element made of PZT (zircon lead titanate) or the like with a center frequency of &5 MHJ.
3rd prize. The transducer row 8 is made of, for example, PVDF (poly-7
It has an organic piezoelectric plate 8' such as vinylidene tsulfide, and has a center frequency of, for example, 24! Adjusted to SMH7. The organic piezoelectric plate 8' has K signal electrodes 81, 82, 83 on one side (front side in the figure).
On the other side (the back side in the figure), a K ground electrode 80 is arranged on the entire surface. A signal electrode and a ground electrode are also arranged on the piezoelectric elements 71, 72, 73, etc., respectively. PZT is a ceramic and is not flexible, so piezoelectric elements 71, 72, 73, etc. must be made as independent pieces one by one, or a cape slit that cannot penetrate all the way through to the back of the plate must be cut into a disc-shaped plate. It can also be made as a whole. PVDF is flexible,
It can be made from a flat sheet and then bent to fit an arc. On the back side of the vibrator row 7, a sound absorbing material 13 made of a resin eye made of t% metal material is provided. Vibrator row 7, sound absorbing material 13
, the transducer array 8 is integrally constructed with adhesive. PZT has an acoustic impedance of approximately 35X10@soon//sec, PV
Since DF is about 4 X l O@yd sec, it is preferable that PZTl has λ/2 resonance and PVDF has λ/4 resonance. Ultrasonic waves from PZT pass through P'/DF to enter and exit. PVDF can also provide an effect similar to acoustic impedance matching compared to PZTK.

PVDFの後方への超音波はPZTで大部分反射し前方
に出て行く、この例では第1層は3.5 MHJ、第2
層は125MH)l夫々中心周波数とすることで特徴づ
けたが、0HIRF変調、疑似ランダム・コード変調等
を用いることもできる。受信に当ってフィルタを用いて
弁別すると両系を完全同時に作動することができる。こ
の例は、特に、2組の線形配列の振動子列が同位置に重
なり、同一扇形走査面を異なった周波数で走査すること
ができるので、人体組織等に用いた場合、組織の周波数
特性の差から組織弁別等を行うのに適している。
Ultrasonic waves to the rear of the PVDF are mostly reflected by the PZT and go out to the front. In this example, the first layer is 3.5 MHJ, the second layer
Although the layer is characterized by having each center frequency as 125 MH), it is also possible to use 0HIRF modulation, pseudorandom code modulation, etc. If a filter is used for discrimination during reception, both systems can be operated completely simultaneously. In this example, two sets of linearly arranged transducer arrays overlap at the same position and can scan the same fan-shaped scanning plane at different frequencies, so when used for human tissue, etc., the frequency characteristics of the tissue can be changed. It is suitable for performing tissue discrimination based on differences.

第2図−)の例は、PZTよりなる中心周波数1!!M
HJf)IIm!配列ノ振動子列ノ層7 ト、PVDF
よりなる中心周波数! 25 MH70線型配列の振動
子列の層10とが互に直交する2つの扇形走査面を形成
するよ5IN層化されたものである。しかも振動子列7
は下層に、振動子列10は上層に配列されている0反射
1[11はPZ’l’と厚さ、音響インピーダンスの等
しい材質からなり振動子列7と10との交叉部と同一特
性を与える様KPVDFから後方へ出た音波を反射する
もので、偏極しないPZTセラ電ツクック用いることが
で幹る。非偏極板12はPZTから前方へ出た音波が振
動子列7の全面にわたって、振動子列7と10との交叉
部と同じになる様にPVDFと厚さ、音響インピーダン
スの等しい材質からなる板で構成され、振動子列10の
交叉部の左右両側表面に接着される。非偏極板12の具
体的な材質としては振動子列lOと同じPVDFで偏極
しないものを用いると便利である。この実施例によれば
一つの窓から互に直交する2つの扇形走査面を形成し、
且つ完全同時に走査することもできる。
The example in Figure 2-) is made of PZT with a center frequency of 1! ! M
HJf)IIm! Array vibrator array layer 7, PVDF
More center frequency! 25 MH70 layer 10 of a linear array of transducer arrays is layered with 5 IN so as to form two mutually orthogonal fan-shaped scanning planes. Moreover, the transducer row 7
is arranged in the lower layer, and the transducer array 10 is arranged in the upper layer. 0 reflection 1 [11 is made of a material with the same thickness and acoustic impedance as PZ'l', and has the same characteristics as the intersection of the transducer arrays 7 and 10. It reflects the sound waves emitted backward from the KPVDF, and it is possible to use non-polarized PZT ceramics. The non-polarized plate 12 is made of a material having the same thickness and acoustic impedance as PVDF so that the sound waves emitted forward from the PZT spread over the entire surface of the transducer row 7 and at the intersection of the transducer rows 7 and 10. It is composed of a plate and is adhered to both left and right surfaces of the intersection of the transducer array 10. As a specific material for the non-polarized plate 12, it is convenient to use PVDF, which is the same as the vibrator array 1O, and is not polarized. According to this embodiment, two mutually orthogonal fan-shaped scanning planes are formed from one window,
It is also possible to scan completely simultaneously.

第3図は本発明による開口制御を行う振動子列の構造の
具体例を示す図である。第3図において、7と9は振動
子列、71.72.73・・・及び91.92.93・
・・は圧電素子、90はアース電極を示す、ある開口、
例えば半径aの円板状により形成される音場はビーム状
をなし、近距離ではそのビーム半径はaであるが、遠距
離では頂角が1/λ(λ:波長)に比例した細い円錐状
で拡散する。したがって遠距離でのビーム形状を2つの
周波数で同一にしたい場iは、開口1を波長λに比例さ
せればよい、しかしこの場合は近距離でのビーム形状が
異なることとなる0本発明ではこの近距離音場の大部分
が前室内、即ち窓1より内部にある如く開口を定めるこ
とKより、被測定体中のビームは大部分遠距離音場とす
るもので、このため全測定深度にわたって周波数に依存
しない同一のビーム形状を実現することができる。この
ことは人体組Ik勢の周波数依存性から組織弁別を行う
時に411に11’である。第3図においては圧電素子
71及び91を接着したユニット素子を線型に並ぺて振
動子列7と9が作られている。煙量型PZTの圧電素子
71は波長λ1で作動されるが、Y軸方向には全面の表
裏に電極があり全長Wt Kわたって有効である。
FIG. 3 is a diagram showing a specific example of the structure of a vibrator array that performs aperture control according to the present invention. In Fig. 3, 7 and 9 are transducer rows, 71.72.73... and 91.92.93.
... indicates a piezoelectric element, 90 indicates a ground electrode, a certain opening,
For example, the sound field formed by a disk shape with radius a is beam-shaped, and at short distances the beam radius is a, but at long distances it becomes a thin cone with an apex angle proportional to 1/λ (λ: wavelength). It spreads in a shape. Therefore, if you want to make the beam shape at a long distance the same at two frequencies, the aperture 1 can be made proportional to the wavelength λ.However, in this case, the beam shape at a short distance will be different. By defining the aperture so that most of this near sound field is in the front room, that is, inside the window 1, the beam in the object to be measured is mostly a far sound field, and therefore the entire measurement depth It is possible to achieve the same frequency-independent beam shape over the entire range. This is 11' in 411 when tissue discrimination is performed from the frequency dependence of the human body group Ik. In FIG. 3, vibrator rows 7 and 9 are made by linearly arranging unit elements to which piezoelectric elements 71 and 91 are bonded. The smoke type PZT piezoelectric element 71 is operated at wavelength λ1, but has electrodes on the front and back sides of the entire surface in the Y-axis direction, and is effective over the entire length WtK.

圧電素子91はPVDFよりなり波長λ、で作動されY
軸方向の長さはW、であるが、有効に対向している電極
長はW、で、WI/ W* ”λ1/λ、とされる。
The piezoelectric element 91 is made of PVDF and is operated at a wavelength λ, Y
The length in the axial direction is W, and the length of the effectively opposing electrodes is W, which is WI/W*"λ1/λ.

PYDFの圧電素子91のp面電極が下までつづいてい
るのは電極信号の取り出しのためである。この圧電素子
71と91とを一体としたユニット素子を配列し、振動
子列γと9及び吸音材13を一体とし、一つの#型配列
をつくる。更に実際の作動に当って選択する群の開口と
して振動子列γは4個、振動子列9は4個とし、町/町
=λI/λ。
The reason why the p-plane electrode of the piezoelectric element 91 of PYDF continues all the way to the bottom is to extract electrode signals. A unit element including the piezoelectric elements 71 and 91 is arranged, and the vibrator rows γ and 9 and the sound absorbing material 13 are integrated to form one #-shaped array. Further, the number of openings in the group to be selected in actual operation is four for the transducer row γ and four for the transducer row 9, and town/town=λI/λ.

とする。この様にするとほぼ矩形断面のビームが形成さ
れるが、遠距離音場に於てばλ、とλ、の両波長のビー
ム形状は同一になる。第3図の(1)の組立図では説明
のため圧電素子91のP点(第3図のに)の圧電素子9
1)より上を除去して図示しであるが、実際には除去し
てはならない。
shall be. In this way, a beam with a substantially rectangular cross section is formed, but in the far sound field, the beam shapes of both wavelengths λ and λ are the same. In the assembly diagram (1) of FIG. 3, for the purpose of explanation, the piezoelectric element 9 at point P (indicated in FIG. 3) of the piezoelectric element 91 is shown.
1) Although the upper part is shown to be removed, it should not actually be removed.

第4図は本発v4による開口制御を行う振動子の構造の
他の具体例を示す図であり、#!2図(a)に示した振
動子列80I!型配列のY軸方向開口を変化する方法を
示すものである。8′は1枚のPVDFの如き有機圧電
板、80はアース電極、81.82、83・・・は信号
電極を示す、アース電極80はW、の幅で円弧方向全長
に付加されている。予めこれら電極を形成後電圧印加し
て加熱し偏極を行うと、アース電極80と信号電極81
.82.83等と対向した部分のみが偏極され圧電作用
を示し、その他は圧電作用を示さない様に作ることがで
きる。非圧電部分はPZTの如き圧電素子71.72醇
からの超音波を出入する媒体として働き、圧電素子71
.72等の超音波のY軸方向分布がW8幅のPVDFの
圧電部分により亀されるのを防止するのに有効である。
FIG. 4 is a diagram showing another specific example of the structure of a vibrator that performs aperture control according to the present invention v4. The transducer row 80I shown in FIG. 2(a)! It shows a method of changing the Y-axis direction opening of the mold array. 8' is a single organic piezoelectric plate such as PVDF, 80 is a ground electrode, and 81, 82, 83, . . . are signal electrodes. The ground electrode 80 has a width of W and is added to the entire length in the arc direction. When these electrodes are formed in advance and polarized by applying a voltage and heating, the ground electrode 80 and the signal electrode 81 are formed.
.. It is possible to make it so that only the portion facing 82, 83, etc. is polarized and exhibits a piezoelectric effect, and the rest does not exhibit a piezoelectric effect. The non-piezoelectric portion acts as a medium for transmitting and transmitting the ultrasonic waves from the piezoelectric element 71, 72, such as PZT.
.. This is effective in preventing the distribution of ultrasonic waves such as 72 in the Y-axis direction from being distorted by the piezoelectric portion of the PVDF having a width of W8.

以上、三次元扇形走査を[11配列の振動子列により実
現する本発明の主要部分の説明を行ったが、位相配列に
比して位相制御が不要であるので制御回路は主として選
択切替のみですみ、簡単で安価である。又、トランス・
ジューサー素子の配列面が広くとれるので、三次元の各
種走査や多周波作動等とその配列が容易に構成でき、製
作も容易で安価にできる。
Above, we have explained the main parts of the present invention, which realizes three-dimensional fan-shaped scanning using an array of 11 transducers. However, since phase control is not required compared to a phased array, the control circuit mainly consists of only selection switching. It's easy and cheap. Also, transformer
Since the arrangement surface of the juicer elements can be widened, various types of three-dimensional scanning, multi-frequency operation, etc. and their arrangement can be easily configured, and manufacturing is also easy and inexpensive.

反面、走査St−交叉するために前室が必要となり、且
つ慾や体表勢とトランス・ジューサーとの多重反射の悪
影響を除くためkは、トランス・ジューサと窓間の走査
線長I11、前室内媒体の音速へとし、窓から外の最大
測定深さム、被測定体の音速vtとした時、 1、 / *、≧ム/h の条件が必要となり、前室が大きくなる欠点がある。l
、中6の時は18はムと少なくとも同じとなり、心臓等
ではl、==19CMであるので探触子は長くなる。又
、被測定体内の走査角6とすると、前室内走査角θ、は
屈折の為、 s ln li 1 / s i n f) t =y
s / 1゜となり1w、キーで2#、=90@なら2
θ、=90°となり、Il、 =18alと共に、探触
子の大きさが使用に耐えない種火型となる。実用に肖っ
てはこの長さl。
On the other hand, a front chamber is required for the scanning St-intersection, and in order to eliminate the adverse effects of multiple reflections between the body surface and the transducer, k is the scanning line length I11 between the transducer and the window, and the front chamber is When the sound velocity is set to the indoor medium, the maximum measurement depth outside the window is m, and the sound velocity of the object to be measured is vt, the following conditions are required: 1, / *, ≧ m/h, which has the disadvantage of making the front chamber larger. . l
, for 6th year middle school students, 18 is at least the same as MU, and for the heart, etc., 1 = 19 CM, so the probe becomes longer. Also, if the scanning angle inside the body to be measured is 6, the scanning angle θ inside the front chamber is due to refraction, so s ln li 1 / s i n f) t = y
s / 1° becomes 1w, key is 2#, = 90@ then 2
θ, =90°, and along with Il, =18al, the size of the probe becomes a pilot flame type that cannot be used. This length l is suitable for practical use.

と前室内走査角20.(四角錐状の探触子外形の頂角を
与える)を小とすることが絶対の要請となる。
and front chamber scanning angle 20. It is absolutely necessary to minimize the angle (which gives the apex angle of the quadrangular pyramidal shape of the probe).

この要請に対しては前室内媒体として一1/す≦1のも
のを選ぶことによって**することができる。
This request can be met by selecting a medium in the front room that is 11/s≦1.

これは上述のIs、IIsの式から明らかである。This is clear from the above equations of Is and IIs.

11/ ml、≦172とすれば非常に好ましい。この
様な物質としては弗素油があり、町が生体等で1500
mlsec であるノロc対し、3M社F048、F’
072、FC75等はν、が700.527.590m
/secで優れたシ、/11比を与える。
11/ml, ≦172 is very preferable. Fluorine oil is an example of such a substance, and the town has about 1,500 living organisms.
For Noro c which is mlsec, 3M company F048, F'
072, FC75 etc. ν is 700.527.590m
/sec gives an excellent /11 ratio.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなようK、本発明によれば、一つ
の窓を有する前室内K、複数の線型配列、又は千面蓋配
置の振動子を設け、それ郷の形成する走査線が窓付近の
ほぼ一点を交叉通過する如く構成すること罠より、生体
等の被測定体く対し、一つの接触部から探触子を一つの
姿勢に保ったままで、複数の相異なる扇形走査面を形成
することが可能となるので、正確で、取扱容易で、安価
な三次元扇形走査が実現できる。
As is clear from the above description, according to the present invention, a front chamber K having one window, a plurality of linear arrays or a thousand-sided array of transducers are provided, and the scanning line formed by the transducer is near the window. By configuring the probe so that it crosses over almost one point, it is possible to form a plurality of different fan-shaped scanning planes from one contact point to the object to be measured, such as a living body, while keeping the probe in one posture. As a result, accurate, easy-to-handle, and inexpensive three-dimensional sector scanning can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は振動子の配列と走査線交叉点と慾との関係を示
した本発明の実施例で、(a)は複数1IIi1配列の
例を示す図、−)は直交する2つの線型配列の例を示す
図、幹)はマトリクス平面型配置の例を示す図、鈎は(
a)の探触子構造を示す断面図、第2図は本発明による
振動子列の璽層構造の具体例を示す図であって、(a)
は複層構造を有する線型配列の例を示す図、(b)は複
層構造を有する直交する2つの線型配列の例を示す図、
第3図は本発明による開口制御を行う振動子列の構造の
具体例を示す図、第4図は本発明による開口制御を行う
振動子列の構造の他の具体例を示す図である。 1・・・窓、2ないし10・・・振動子列、6・・・振
動子面、8′・・・圧電板、11・・・反射板、12・
・・非偏極板、13・・・吸音材、14・・・前室、7
1.72と73・・・圧電素子、81.82と83・・
・信号電極、80と90・・・アース電極、91.92
と93・・・圧電素子。 特許出願人 富士通株式会社 代理人弁理士 京 谷 四 部 事 ツ 1 図 (α) (シ) 欠 )図 (C) (d) =:X2121 (α) (シ)
FIG. 1 shows an embodiment of the present invention showing the relationship between the transducer arrangement, the scanning line intersection point, and the direction, where (a) shows an example of a plurality of 1IIi1 arrangements, and -) shows two orthogonal linear arrangements. The figure showing an example of , the stem) is a figure showing an example of matrix planar arrangement, and the hook is (
FIG. 2 is a cross-sectional view showing the probe structure in a), and FIG.
is a diagram showing an example of a linear array having a multilayer structure, (b) is a diagram showing an example of two orthogonal linear arrays having a multilayer structure,
FIG. 3 is a diagram showing a specific example of the structure of a transducer array that performs aperture control according to the present invention, and FIG. 4 is a diagram showing another specific example of the structure of a transducer array that performs aperture control according to the present invention. DESCRIPTION OF SYMBOLS 1... Window, 2-10... Vibrator row, 6... Vibrator surface, 8'... Piezoelectric plate, 11... Reflector plate, 12...
...Non-polarized plate, 13...Sound absorbing material, 14...Ante chamber, 7
1.72 and 73... piezoelectric element, 81.82 and 83...
・Signal electrode, 80 and 90...Earth electrode, 91.92
and 93...piezoelectric element. Patent Applicant Fujitsu Ltd. Representative Patent Attorney Kyotani 4 Departments 1 Figure (α) (C) Missing )Figure (C) (d) =:X2121 (α) (C)

Claims (1)

【特許請求の範囲】 α) 複数個の超音波トランス・ジューサー素子を配列
した素子配列体と、超音波の出入する窓と、上記素子配
列体と上記窓との間に構成される前室内に充填される超
音波伝達媒体とを有し、上記超音波トランス・ジューサ
ー配列素子を開口として選択的に作動して超音波をビー
ム状に集束して送信及び受信し、一部又は全部の選択を
変更することにより上記窓に外接する被測定体を超音波
ビームにより走査する超音波走査探触子において、上記
素子配列体からの全ての選択による走査線が上記窓又は
その付近のはげ一点の交叉点を通過して層形走査する如
くし、且つ多次元的もしくは複合的に上記素子配列体を
構成し、少なくとも二つ以上の層形断面及び/又は三次
元的扇形走査をすること1特徴とする趨音披三次元眉形
走査探触子。 ■) 複数個の超音波トランス・ジューサー素子を並設
して1個の線型トランス・ジューサー列を構成し、該線
型トランス・ジューサー列の複数個を、走査−の交叉点
を一率の中心とする球面にほぼ沿って並設した壷金的素
子配列体を有することを特徴とする特許請求の範囲第1
項に記載の超音波三次元扇形走査探触子。 口) 複数個の超音波トランス・ジューサー素子を並設
して1個の線層トランス・ジューサー列を構成し、該I
I!lIトランス・ジューサー列の複数個を、走査−の
交叉点を一率の中心とする球面にほぼ沿って直交配列し
た複金的素子配列体を有することを特徴とする特許請求
の範囲第1項に記載の超音波三次元扇形走査探触子。 葎) 走査線の交叉点を一率の中心とする球面に嫌ぼ沿
つて複数の超音波トランス・ジューサー素子をマトリク
ス状勢の平面INK配置した多次元的素子配列体を有す
ることを特徴とする特許請求の範囲第1項に記載の超音
波三次元扁形走査探触子。 6) 素子配列体が複数個の]IIm!)ランス・ジュ
ーサー列で複合的に構成されている場合、各IIWトラ
ンス・ジューサー列の少なくとも二つが互いに異なる周
波数又は4I微を有する超音#鋏形で作動されることを
特徴とする特許請求の範囲第2項ないし第3項に記載の
超音波三次元III形走査探触子。 (6)  複数個の超音波トランス・ジューサー素子を
並設して1個の線型トランス・ジューサー列を構成し、
該任意数の線型トランス・ジューサー列を一つの層上に
配列し4Iを更に重ね合わせて走査線の交叉点を一率の
中心とする円弧又は球面にほぼ沿って配列して素子配列
体を複合的に構成し。 各1s!!!!)ランス・ジューサー列の少なくとも二
つが異なる周波数又は特徴を有する超音波形で作動され
ることをII#像とする特許請求の範囲第1項に記載の
超音波三次元層形走査探触子。 ■ 素子配列体を構成する超音波トランス・ジ。 −サー素子の少なく共一部の素子1体を複数個の超音波
トランス・ジューサー素子を重ね合わせて作成された複
層超音波トランス・ジューサー素子とし、該豪層超青波
トランス・ジューサー素子自であることを特徴とする特
許請求の範囲第1項ないし第511K記載の超音波三次
元扇形走査探触子。 S)1[数個の超音波トランス・ジューサー素子を多次
元的、又は1倉的に配列し、その中から選択された適宜
の群の素子が異なった周波数のビームを集束形成する場
合、各群の構成超音波トランス・ジューサー素子自体の
開口及び/又は選択された素子の群としての開口を夫々
の群の送受する超音波の波長に基いて便化させると共に
、その近距離音場の大部分が前室内にある如く構成され
たことを特徴とする特許請求の範囲第5項ないし第7項
のいずれかに記載の超音波三次元扇形走査探触子。 e) 被欄定体の音速(−)にほぼ郷しいか、より遅い
音速包)の超音波伝達媒体を前室内に充填したことを特
徴とする特許請求の範囲第1項ないし第8項に記載の超
音波三次扇形走査探触子。
[Scope of Claims] α) An element array in which a plurality of ultrasonic transducer elements are arranged, a window through which ultrasonic waves enter and exit, and a front chamber configured between the element array and the window. an ultrasonic transmission medium filled with the ultrasonic transducer, and selectively operates the ultrasonic transducer array element as an aperture to focus the ultrasonic waves into a beam to transmit and receive the beam, and select some or all of the ultrasonic waves. In an ultrasonic scanning probe that scans an object to be measured circumscribed by the window with an ultrasonic beam, all the scanning lines selected from the element array intersect the window or a single point near the window. One feature is that the element array is configured in a multi-dimensional or composite manner so as to perform layered scanning through a point, and to perform at least two or more layered cross-sections and/or three-dimensional fan-shaped scanning. A three-dimensional eyebrow-shaped scanning probe. ■) A plurality of ultrasonic transducer elements are arranged in parallel to form one linear transducer row, and the plurality of linear transducer rows are arranged so that the intersection point of the scanning line is the center of one rate. Claim 1, characterized in that it has a pot metal element array arranged in parallel almost along a spherical surface.
The ultrasonic three-dimensional fan-shaped scanning probe described in . ) A plurality of ultrasonic transducer elements are arranged in parallel to form one line layer transducer array, and the I
I! Claim 1, characterized in that it has a compound element array in which a plurality of II transducer arrays are orthogonally arranged substantially along a spherical surface having a scanning intersection point as a center of one ratio. The ultrasonic three-dimensional fan-shaped scanning probe described in .葎) A patent characterized by having a multidimensional element array in which a plurality of ultrasonic transducer elements are arranged in a matrix in a flat plane INK roughly along a spherical surface with the intersection point of scanning lines as the center of one rate. An ultrasonic three-dimensional flat scanning probe according to claim 1. 6) IIm! with multiple element arrays! ) When the IIW transducer array is composed of multiple transducer arrays, at least two of each IIW transducer array are operated in an ultrasonic #scissor shape having mutually different frequencies or 4I increments. The ultrasonic three-dimensional type III scanning probe according to item 2 or 3. (6) A plurality of ultrasonic transducer elements are arranged in parallel to form one linear transducer array,
The arbitrary number of linear transducer arrays are arranged on one layer, and the 4Is are further superimposed and arranged almost along an arc or a spherical surface with the intersection point of the scanning lines as the center of the 1 ratio to form a composite element array. Configure. 1s each! ! ! ! 2. The ultrasonic three-dimensional layered scanning probe according to claim 1, wherein at least two of the lance juicer arrays are operated with ultrasonic waveforms having different frequencies or characteristics. ■ Ultrasonic transformer that makes up the element array. - A multi-layer ultrasonic trans-ducer element made by stacking a plurality of ultrasonic trans-ducer elements is used, and the ultra-blue wave trans-ducer element itself is An ultrasonic three-dimensional fan-shaped scanning probe according to any one of claims 1 to 511K. S) 1 [When several ultrasonic transducer elements are arranged multidimensionally or in one array, and an appropriate group of elements selected from among them converges and forms beams of different frequencies, each The apertures of the ultrasonic transducer elements themselves and/or the apertures of the selected elements as a group are adjusted based on the wavelength of the ultrasonic waves transmitted and received by each group, and the size of the near-field sound field is adjusted. 8. The ultrasonic three-dimensional fan-shaped scanning probe according to any one of claims 5 to 7, wherein the ultrasonic three-dimensional fan-shaped scanning probe is configured such that the portion is located within the front chamber. e) Claims 1 to 8 are characterized in that the front chamber is filled with an ultrasonic transmission medium whose speed of sound is approximately equal to or slower than the sound speed (-) of the object to be covered. The ultrasonic tertiary sector scanning probe described.
JP57045395A 1982-03-20 1982-03-20 Ultrasonic three-dimensional fan-shaped scanning probe Granted JPS58163347A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57045395A JPS58163347A (en) 1982-03-20 1982-03-20 Ultrasonic three-dimensional fan-shaped scanning probe
EP83301540A EP0090567B1 (en) 1982-03-20 1983-03-18 Ultrasonic sector-scan probe
DE8383301540T DE3377530D1 (en) 1982-03-20 1983-03-18 Ultrasonic sector-scan probe
US06/618,232 US4570488A (en) 1982-03-20 1984-06-07 Ultrasonic sector-scan probe
US06/735,300 US4580451A (en) 1982-03-20 1985-05-17 Ultrasonic sector-scan probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57045395A JPS58163347A (en) 1982-03-20 1982-03-20 Ultrasonic three-dimensional fan-shaped scanning probe

Publications (2)

Publication Number Publication Date
JPS58163347A true JPS58163347A (en) 1983-09-28
JPH0369534B2 JPH0369534B2 (en) 1991-11-01

Family

ID=12718068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57045395A Granted JPS58163347A (en) 1982-03-20 1982-03-20 Ultrasonic three-dimensional fan-shaped scanning probe

Country Status (1)

Country Link
JP (1) JPS58163347A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164354A (en) * 1987-12-21 1989-06-28 Hitachi Ltd Ultrasonic probe
JP2010227603A (en) * 2010-06-16 2010-10-14 Aloka Co Ltd Ultrasonic diagnostic apparatus
JP2010243321A (en) * 2009-04-06 2010-10-28 Hitachi-Ge Nuclear Energy Ltd Ultrasonic measurement method and apparatus
JP2013504241A (en) * 2009-09-03 2013-02-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Ultrasonic probe with a large field of view and method for manufacturing such an ultrasonic probe
JP2015091347A (en) * 2008-06-18 2015-05-14 キヤノン株式会社 Ultrasonic probe, photoacoustic and ultrasonic system having the same, and specimen imaging device
US9693753B2 (en) 2008-06-18 2017-07-04 Canon Kabushiki Kaisha Ultrasonic probe, and photoacoustic-ultrasonic system and inspection object imaging apparatus including the ultrasonic probe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865923A (en) * 1971-12-10 1973-09-10
JPS4994352A (en) * 1972-05-02 1974-09-07
JPS5241267U (en) * 1975-09-12 1977-03-24
JPS5690274A (en) * 1979-12-24 1981-07-22 Fujitsu Ltd Scanning method by ultrasonic wave

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865923A (en) * 1971-12-10 1973-09-10
JPS4994352A (en) * 1972-05-02 1974-09-07
JPS5241267U (en) * 1975-09-12 1977-03-24
JPS5690274A (en) * 1979-12-24 1981-07-22 Fujitsu Ltd Scanning method by ultrasonic wave

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164354A (en) * 1987-12-21 1989-06-28 Hitachi Ltd Ultrasonic probe
JP2015091347A (en) * 2008-06-18 2015-05-14 キヤノン株式会社 Ultrasonic probe, photoacoustic and ultrasonic system having the same, and specimen imaging device
US9693753B2 (en) 2008-06-18 2017-07-04 Canon Kabushiki Kaisha Ultrasonic probe, and photoacoustic-ultrasonic system and inspection object imaging apparatus including the ultrasonic probe
JP2010243321A (en) * 2009-04-06 2010-10-28 Hitachi-Ge Nuclear Energy Ltd Ultrasonic measurement method and apparatus
JP2013504241A (en) * 2009-09-03 2013-02-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Ultrasonic probe with a large field of view and method for manufacturing such an ultrasonic probe
JP2010227603A (en) * 2010-06-16 2010-10-14 Aloka Co Ltd Ultrasonic diagnostic apparatus

Also Published As

Publication number Publication date
JPH0369534B2 (en) 1991-11-01

Similar Documents

Publication Publication Date Title
EP0090567B1 (en) Ultrasonic sector-scan probe
US4550606A (en) Ultrasonic transducer array with controlled excitation pattern
US6419633B1 (en) 2D ultrasonic transducer array for two dimensional and three dimensional imaging
US4831601A (en) Apparatus for transmitting and receiving ultrasonic signals
US4241611A (en) Ultrasonic diagnostic transducer assembly and system
US20080027320A1 (en) Multidimensional transducer systems and methods for intra patient probes
JP2851005B2 (en) Ultrasonic beam three-dimensional focusing device
US4640291A (en) Bi-plane phased array for ultrasound medical imaging
WO2006134686A1 (en) Ultrasonographic device
US20050131302A1 (en) Ultrasonic probe having a selector switch
EP2237070A1 (en) Dual mode ultrasound system
WO2007046180A1 (en) Ultrasonic transducer, ultrasonic probe and ultrasonic imaging device
CN100457048C (en) Improved ultrasonic volumetric imaging by coordination of acoustic sampling resolution, volumetric line density and volume imaging rate
JPS58163347A (en) Ultrasonic three-dimensional fan-shaped scanning probe
JPH05244691A (en) Ultrasonic probe
CN109715302A (en) Ultrasound transducer element array
Bera et al. Three-dimensional beamforming combining micro-beamformed RF datasets
JP2743008B2 (en) Ultrasound diagnostic equipment
JPH03272752A (en) Ultrasonic probe
JPH0226189B2 (en)
US4430898A (en) Pulse-echo ultrasound system utilizing conjugate emitting and receiving apertures
JPH08173432A (en) Electron scanning type ultrasonic probe
JPH03247324A (en) Ultrasonic photographing method and apparatus
JPS58163346A (en) Plural surface fan-shaped scanning ultrasonic probe
JP4751388B2 (en) Ultrasonic imaging device