JPH05244691A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPH05244691A
JPH05244691A JP4040939A JP4093992A JPH05244691A JP H05244691 A JPH05244691 A JP H05244691A JP 4040939 A JP4040939 A JP 4040939A JP 4093992 A JP4093992 A JP 4093992A JP H05244691 A JPH05244691 A JP H05244691A
Authority
JP
Japan
Prior art keywords
electrodes
vibrator
ultrasonic probe
divided
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4040939A
Other languages
Japanese (ja)
Inventor
Yutaka Masuzawa
裕 鱒沢
Hiroshi Kanda
浩 神田
Hiroshi Ikeda
宏 池田
Yuichi Miwa
祐一 三和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4040939A priority Critical patent/JPH05244691A/en
Publication of JPH05244691A publication Critical patent/JPH05244691A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/04Gramophone pick-ups using a stylus; Recorders using a stylus
    • H04R17/08Gramophone pick-ups using a stylus; Recorders using a stylus signals being recorded or played back by vibration of a stylus in two orthogonal directions simultaneously

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To reduce an accessory circuit scale, and to attain a low cost by dividing each electrode provided at the both main faces of a disk being an electrostrictive material into more than three fans, circularly dividing it into plural parts from a center, and using it as a vibrator. CONSTITUTION:The electrode provided at one main face of a disk 2 being the electric distortion material is divided into four fans, and divided into plural parts from the center, so that electrodes 110e, 111a-111d, 112a-112d, 113a-113d, and 114a-114d can be formed. In the electrode on the other main face, a circular area sharing the center of an electrode 120 is divided into fine parts by equal angles, so that electrodes 121 and 122 can be formed. A piezoelectric vibrator 3 is a circle interfit with the circular opening of the center of the electric distortion vibrator 2, and the diameter of the electrodes 110e and 120 is equal to that of the vibrator 3. Thus, the are a where a piezoelectricity is induced by a bias voltage is designated as a pair of fans, a ultrasonic scanning by a phased array system is operated, and the operation of obtaining a tomographic image information is successively operated while rotating the fan designation are a in the vibrator, so that a three-dimensional ultrasonic wave can be measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超音波の送受信により生
体や構造物の内部像を撮像したりドップラ効果を応用し
た流体の運動を計測する医用超音波診断装置や非破壊検
査装置等の超音波計測装置に係り、特に、超音波送受信
部である超音波探触子の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic diagnostic apparatus for medical use, a non-destructive inspection apparatus, or the like for measuring an internal image of a living body or a structure by transmitting and receiving ultrasonic waves and measuring a motion of a fluid applying the Doppler effect. The present invention relates to a sound wave measuring device, and more particularly, to a structure of an ultrasonic probe which is an ultrasonic wave transmitting / receiving unit.

【0002】[0002]

【従来の技術】従来の電子走査型の超音波計測装置で
は、Bモードエコーグラフィにより被検体内部の断層像
を実時間で得るものが実用化されている。この装置を用
いた被検体内の3次元的計測では、検査者が超音波探触
子の位置や向きを手で変更するか機械的に走査して目的
とする部位の断層像情報を蓄積したのち被検体内部の立
体情報を再構成していた。しかし、機械的な走査方法で
は被検体が人体の心臓等の運動部位を含む場合に、機械
的走査時間の間に被検体が運動し実時間性が著しく低下
する。この点から3次元情報が実時間で得られる電子走
査型の超音波計測装置及びそのための超音波探触子が必
要になる。
2. Description of the Related Art In a conventional electronic scanning type ultrasonic measuring device, a device for obtaining a tomographic image of the inside of a subject in real time by B-mode echography has been put into practical use. In the three-dimensional measurement of the inside of the subject using this device, the examiner changes the position and orientation of the ultrasonic probe by hand or mechanically scans and accumulates tomographic image information of the target site. Later, the stereoscopic information inside the subject was reconstructed. However, in the mechanical scanning method, when the subject includes a moving part such as the heart of the human body, the subject moves during the mechanical scanning time and the real-time property is significantly reduced. From this point, an electronic scanning type ultrasonic measuring device and an ultrasonic probe therefor which can obtain three-dimensional information in real time are required.

【0003】3次元計測のための電子走査型超音波探触
子では特開昭60−20400 号公報に見るように超音波振動
子を2次元方向に分割しているものが公知である。この
技術では多数2次元配列したそれぞれの超音波振動子に
対して独立した電極を形成し配線している。しかし、こ
の構成では従来の断層像計測装置に比べてチャネル数が
急増するので、回路規模の飛躍的拡大や実装が困難にな
るため実現困難であった。このチャネル数の急増を避け
る方法として振動子に電歪材料を用い、電極をマトリク
ス選択にした方法が特開昭56−11374 号公報に開示され
ている。
An electronic scanning ultrasonic probe for three-dimensional measurement is known in which an ultrasonic transducer is divided into two-dimensional directions, as disclosed in Japanese Patent Laid-Open No. 60-20400. In this technique, independent electrodes are formed and wired for each of the ultrasonic transducers arranged in a two-dimensional array. However, with this configuration, the number of channels increases sharply as compared with the conventional tomographic image measuring apparatus, so that it is difficult to realize it because it becomes difficult to dramatically expand the circuit scale and implement it. As a method for avoiding this sudden increase in the number of channels, a method in which an electrostrictive material is used for a vibrator and electrodes are matrix-selected is disclosed in Japanese Patent Laid-Open No. 56-11374.

【0004】従来から超音波振動子用の材料として広く
用いられている圧電材料は、超音波受波による機械的変
位により電圧を発生する性質を利用して超音波探触子の
電気音響変換部に用いられている。これに対し、電歪材
料はバイアス電界のもとでのみ機械的変位により電圧の
変動が生じる性質を有する。また、バイアス電界の強度
により電気機械結合係数が大きく変化するため、電歪材
料はバイアス電界により変換効率が制御できる圧電材料
とみなすこともできる。
Piezoelectric materials, which have been widely used as materials for ultrasonic transducers, utilize the property of generating a voltage by mechanical displacement due to the reception of ultrasonic waves, thereby utilizing the electroacoustic conversion part of an ultrasonic probe. Is used for. On the other hand, the electrostrictive material has a property that the voltage changes due to mechanical displacement only under a bias electric field. Further, since the electromechanical coupling coefficient greatly changes depending on the strength of the bias electric field, the electrostrictive material can be regarded as a piezoelectric material whose conversion efficiency can be controlled by the bias electric field.

【0005】[0005]

【発明が解決しようとする課題】特開昭60−20400 号公
報に開示される従来技術では、微細分割した2次元振動
子を独立に配線するために、超音波振動子の分割数が増
すにつれ回路規模が急激に増大し、実装が困難になるた
め実現困難であった。
In the prior art disclosed in Japanese Patent Laid-Open No. 60-20400, since the finely divided two-dimensional transducers are individually wired, the number of divisions of the ultrasonic transducers increases. It was difficult to realize because the circuit scale increased rapidly and implementation became difficult.

【0006】また、矩形の2次元配列振動子を音源とし
て3次元的計測を行うと、計測領域内に放射、あるいは
領域内から受波する際の指向性が、振動子面の中心を垂
直に通る軸に関し90度、あるいは180度回転に対す
る軸対称であった。この手法では3次元情報を回転表示
する場合に分解能の不均一が表示方位により異なる点に
問題があった。このため90度回転以下の小角度の回転
に対しても軸対称の分解能を有し、4以上の多辺からな
る多角形を底面に持つ多角柱あるいは角錐台状の計測領
域が得られる超音波探触子が必要であった。
Further, when three-dimensional measurement is performed using a rectangular two-dimensional array transducer as a sound source, the directivity when radiating into or receiving from the measurement area is perpendicular to the center of the transducer surface. It was axisymmetric with respect to rotation through 90 ° or 180 °. This method has a problem in that, when three-dimensional information is rotated and displayed, the non-uniformity of resolution varies depending on the display orientation. For this reason, an ultrasonic wave which has an axially symmetric resolution even for rotations of a small angle of 90 degrees or less and which can obtain a polygonal prism or a truncated pyramid-shaped measurement region having a polygonal surface composed of four or more sides on the bottom surface I needed a probe.

【0007】また、円形の電極を微小角度の扇型で分割
すると中心部分が極端に微細加工になり、音源を分割す
る上で不必要に細かくなる点に問題があった。
Further, when the circular electrode is divided into fan-shaped portions with a minute angle, the central portion becomes extremely finely processed, which is unnecessarily fine when dividing the sound source.

【0008】また、超音波探触子内の各振動子の中で常
に圧電性を利用して超音波送受信を行う部分は電歪材料
を用いてバイアス電圧で圧電性を誘起する必要は無いの
で、高感度の圧電体を用いなければならない。
Further, in each of the transducers in the ultrasonic probe, it is not necessary to use the electrostrictive material to induce the piezoelectricity by the bias voltage in the portion that always transmits and receives the ultrasonic wave by utilizing the piezoelectricity. , High sensitive piezoelectric must be used.

【0009】[0009]

【課題を解決するための手段】上記小角度での回転対称
の計測を可能とするために、バイアス電圧で圧電性が誘
起される電歪材料の円板の両主面に設けた第一,第二の
電極をそれぞれ三つ以上の扇形に分割し、第一,第二の
一方または両方の主面の電極を中心から同心円状に複数
分割したものを超音波送受信のための振動子とした。
In order to enable the measurement of rotational symmetry at a small angle described above, the first and second main surfaces of a disk of an electrostrictive material whose piezoelectricity is induced by a bias voltage are provided. The second electrode is divided into three or more sectors, and the electrodes on one or both of the first and second principal surfaces are divided into concentric circles from the center to form a transducer for ultrasonic transmission and reception. ..

【0010】前記超音波探触子の中心付近の分割を減少
するため各主面の電極の同心円状分割において、最小半
径以内の中心部分を一個の円形とした。
In order to reduce the division in the vicinity of the center of the ultrasonic probe, in the concentric division of the electrodes on each main surface, the central portion within the minimum radius is made into one circle.

【0011】前記超音波探触子のバイアス電圧印加部分
の面積を減少させるため、各主面の最小半径の円形電極
ではさまれる部分を圧電材料で構成した。
In order to reduce the area of the portion to which the bias voltage of the ultrasonic probe is applied, the portion sandwiched by the circular electrodes having the smallest radius on each main surface is made of a piezoelectric material.

【0012】前記超音波探触子を用いた超音波計測装置
を実現するため、一方の主面の電極群を送受信回路と接
続しバイアス電圧印加手段を他方の主面の電極群に接続
した。
In order to realize an ultrasonic measuring device using the ultrasonic probe, the electrode group on one main surface is connected to the transmitting / receiving circuit and the bias voltage applying means is connected to the electrode group on the other main surface.

【0013】前記超音波探触子を作製するため、少なく
とも一方の主面の電極の角度方向の分割の一部あるいは
全てに沿って背面制動材を分割し、背面制動材の分割さ
れた断面を用いて配線した。
In order to produce the ultrasonic probe, the back braking material is divided along a part or all of the division of the electrodes on at least one main surface in the angular direction, and the divided section of the back braking material is divided. Used for wiring.

【0014】[0014]

【作用】第一の主面の分割電極のそれぞれに送波回路及
び受波回路を接続する。第二の主面の分割電極のそれぞ
れはバイアス電圧印加回路を接続するか接地する。
A wave transmitting circuit and a wave receiving circuit are connected to each of the divided electrodes on the first main surface. Each of the divided electrodes on the second main surface is connected to a bias voltage applying circuit or is grounded.

【0015】第二の主面の分割電極のうちでバイアス電
圧印加回路と接続されたものと相対する第一の主面の分
割電極との間にはさまれた部位の電歪材料に圧電性を誘
起し、振動子面内で超音波送受信のために有効に作用す
る音響的開口の位置を規定する。
Among the divided electrodes on the second main surface, those which are connected between the bias voltage applying circuit and the divided electrodes on the first main surface facing each other have piezoelectricity in the electrostrictive material. And defines the position of the acoustic aperture that effectively induces the ultrasonic wave in the plane of the transducer.

【0016】第二の主面の扇型分割電極のうちから連続
して扇型分割電極を2群互いに面内で左右対称に選択す
る。この状態でフェイズドアレイ方式の超音波送受信信
号の入出力を行えば選択領域の中心線を含み振動子面に
垂直な面内で矩形あるいは扇形の断層面が計測できる。
さらに2群の選択領域の中心線が順次回転するように電
極のバイアス電圧印加回路への接続位置を移動すれば、
断層面は円形振動子の中心を通り振動子面に垂直な線を
軸として回転するので、円筒あるいは円錐台型の3次元
撮像領域が得られる。
From among the fan-shaped divided electrodes on the second main surface, two groups of fan-shaped divided electrodes are continuously and symmetrically selected in the plane. By inputting and outputting the phased array type ultrasonic transmission / reception signals in this state, a rectangular or fan-shaped tomographic plane can be measured in a plane including the center line of the selected region and perpendicular to the transducer plane.
Furthermore, if the connection position of the electrode to the bias voltage applying circuit is moved so that the center lines of the selected regions of the two groups rotate sequentially,
Since the tomographic plane rotates about a line that passes through the center of the circular oscillator and is perpendicular to the oscillator plane, a cylindrical or truncated cone-shaped three-dimensional imaging region can be obtained.

【0017】超音波探触子の作製において振動子の角度
方向の分割線に沿って背面制動材をも分割すれば、断面
に沿った位置でフレキシブルプリント配線板等を用いて
容易に配線できる。
In the manufacture of the ultrasonic probe, if the back braking material is also divided along the dividing line in the angular direction of the vibrator, wiring can be easily performed at a position along the cross section using a flexible printed wiring board or the like.

【0018】[0018]

【実施例】以下、本発明による第一の実施例を説明す
る。本発明の超音波探触子の振動子部分を含む断面図を
図1(c)に示す。振動子材料として電歪振動子2及び圧
電振動子3を用いた。図1(a)に示すように電歪振動子
2は円板の中心に円形の開口を設けたものを4分割した
扇形である。圧電振動子3は電歪振動子2の中心にある
円形開口に嵌合する円形である。各振動子2,3の厚み
は共振周波数が一致するように加工した。
EXAMPLE A first example according to the present invention will be described below. A cross-sectional view including a transducer portion of the ultrasonic probe of the present invention is shown in FIG. The electrostrictive oscillator 2 and the piezoelectric oscillator 3 were used as oscillator materials. As shown in FIG. 1A, the electrostrictive oscillator 2 has a sector shape in which a circular opening is provided in the center of a disk and the disk is divided into four. The piezoelectric vibrator 3 has a circular shape that fits into a circular opening in the center of the electrostrictive vibrator 2. The thicknesses of the vibrators 2 and 3 were processed so that the resonance frequencies were the same.

【0019】電歪振動子の材料はPb(Mg1/3Nb2/3)
3−PbTiO3系固溶体セラミクスなどの緩和型強誘
電体において強誘電体への相転移温度が比較的室温の付
近にある磁器組成物や、その磁器板を縦横に多数の微細
柱に分割して間を樹脂などで充填した複合材料を用い
た。圧電振動子3は従来から広く用いられているチタン
酸ジルコン酸鉛(PZT)系磁器組成物又は上述の複合
材料で構成した。
The material of the electrostrictive oscillator is Pb (Mg 1/3 Nb 2/3 )
In relaxation type ferroelectrics such as O 3 -PbTiO 3 based solid solution ceramics, a ceramic composition whose phase transition temperature to the ferroelectric is relatively near room temperature, or a porcelain plate of which is divided into a number of fine columns vertically and horizontally. A composite material was used in which the space was filled with resin or the like. The piezoelectric vibrator 3 is composed of a lead zirconate titanate (PZT) based porcelain composition which has been widely used from the past, or the above-mentioned composite material.

【0020】この振動子の各主面にそれぞれ電極(皮
膜)を形成する。振動子材料が磁器の場合には電極は銀
の焼き付けで形成し、複合材料の場合には銅,ニッケル
などの無電解鍍金により形成した。
An electrode (coating) is formed on each main surface of this vibrator. When the oscillator material was porcelain, the electrodes were formed by baking silver, and when it was a composite material, the electrodes were formed by electroless plating of copper, nickel, or the like.

【0021】振動子2,3の第一の主面の電極は図1
(a)に示すように分割した。中心の電極110eは圧電
振動子3と同径である。電極111a〜111d,11
2a〜112d,113a〜113d,114a〜11
4dは110eと同心円状に分割したものをさらに中心
角で4等分したものである。
The electrodes on the first main surface of the vibrators 2 and 3 are shown in FIG.
It was divided as shown in (a). The center electrode 110e has the same diameter as the piezoelectric vibrator 3. Electrodes 111a to 111d, 11
2a to 112d, 113a to 113d, 114a to 11
4d is a concentric division of 110e, which is further divided into four equal parts at the central angle.

【0022】振動子の第二の主面の電極は図1(b)に示
すように分割した。中心にある電極120は圧電振動子
3と同径である。電極121及び122は、電極120
と、電極120の中心を共有する円環状の領域をさらに
中心角で等角度で微小分割したものである。但し、この
等角度での微小分割のいずれかは図1(a)に示す等角度
の4分割と表裏で一致させた。図1(c)断面を示してお
り、111は111a〜111dのいずれかを示してお
り、112,113,114についても同様である。
The electrodes on the second main surface of the vibrator were divided as shown in FIG. 1 (b). The center electrode 120 has the same diameter as the piezoelectric vibrator 3. The electrodes 121 and 122 are the electrodes 120.
And a ring-shaped region sharing the center of the electrode 120 is further finely divided into equal angles at the central angle. However, any one of the minute divisions at the same angle was made to coincide with the equal angle four divisions shown in FIG. 1 (c) is shown, and 111 indicates any of 111a to 111d, and the same applies to 112, 113, 114.

【0023】このように両主面に電極形成された電歪振
動子2だけを図1(a)に示す等角度の電極の4分割の位
置にそって4片に切断した。この振動子への配線方法及
び超音波探触子の組立て方法を図5に示す。
In this way, only the electrostrictive vibrator 2 having electrodes formed on both principal surfaces was cut into four pieces along the four-divided positions of the equiangular electrodes shown in FIG. 1 (a). FIG. 5 shows a method of wiring the transducer and a method of assembling the ultrasonic probe.

【0024】図5(a)(b)は図1(a)に示す電歪振動子
の4分割片の一つへの配線を示すものである。電極11
1a,112a,113a,114aを備えた電歪振動
子2を背面制動材(バッキング)41に接着する。背面
制動材41の断面形状は扇形の電歪振動子2と同形状で
ある。電歪振動子2に設けられた各電極に対してフレキ
シブルプリント配線板51a,51b,51cを用いて
配線した。51a,51cは電歪振動子2に圧電性を誘
起するためのバイアス電圧印加回路へ接続され、51b
は超音波送受信回路に接続される。図5(a)(b)ではフ
レキシブルプリント配線板の導体部を電極の断面部に接
続しているが、はんだ付け等による接続が困難な場合に
は振動子の各主面側まで導体部を延長した形で接続して
も良い。
FIGS. 5 (a) and 5 (b) show wiring to one of the four divided pieces of the electrostrictive vibrator shown in FIG. 1 (a). Electrode 11
The electrostrictive oscillator 2 including 1a, 112a, 113a, 114a is bonded to the back braking material (backing) 41. The cross-sectional shape of the back braking member 41 is the same as that of the fan-shaped electrostrictive vibrator 2. Wiring was performed using flexible printed wiring boards 51a, 51b, 51c for each electrode provided on the electrostrictive vibrator 2. 51a and 51c are connected to a bias voltage applying circuit for inducing piezoelectricity in the electrostrictive oscillator 2, and 51b
Is connected to an ultrasonic transmitting / receiving circuit. In Fig. 5 (a) and (b), the conductor of the flexible printed wiring board is connected to the cross section of the electrode, but if it is difficult to connect by soldering etc., connect the conductor to the main surface of the vibrator. You may connect in an extended form.

【0025】このように配線,接着した電歪振動子を他
の3個の電歪振動子についても作製し、図5(c)に示す
様に超音波探触子として組み立てた。円筒形の背面制動
材40は圧電振動子3と同じ外径とした。リード52を
電極110e,120に接続し、圧電振動子3は背面制
動材40に接着した。電歪振動子2を配線,接着した背
面制動材41の4個を円筒形の背面制動材40を囲むよ
うに接着した。これにより形成される円形の振動子面の
全面を覆う様に音響整合層53及び音響レンズ54を接
着した。背面制動材41の側面にはフレキシブルプリン
ト配線板が接着されるが、その厚みが図5(c)に示す組
立てにおいて4個の振動子間のギャップを拡大して不都
合を生じる場合には、背面制動材41の側面に窪みを設
けて配線板の厚みが影響しにくくすることもできる。
The electrostrictive vibrator having the wiring and the adhesive thus bonded was manufactured for the other three electrostrictive vibrators and assembled as an ultrasonic probe as shown in FIG. 5 (c). The cylindrical back braking member 40 has the same outer diameter as the piezoelectric vibrator 3. The lead 52 was connected to the electrodes 110e and 120, and the piezoelectric vibrator 3 was bonded to the back braking material 40. Four of the back braking members 41, to which the electrostrictive oscillator 2 was wired and bonded, were bonded so as to surround the cylindrical back braking member 40. The acoustic matching layer 53 and the acoustic lens 54 were adhered so as to cover the entire surface of the circular vibrator formed thereby. A flexible printed wiring board is adhered to the side surface of the back braking member 41, but if the thickness of the flexible printed wiring board expands the gap between the four vibrators in the assembly shown in FIG. A recess may be provided on the side surface of the braking member 41 so that the thickness of the wiring board is less likely to affect it.

【0026】音響整合層53はエポキシ樹脂に酸化タン
グステンの微粒子を混ぜたもので形成した。その厚みは
超音波探触子の中心周波数の1/4波長に相当させた。
また、電歪振動子2に接着される部分と圧電振動子3に
接着される部分の音響整合層の音響インピーダンスを変
えてもよい。即ち,音響整合層53の中心部分に圧電振
動子3と同径で音響インピーダンスの異なる領域を形成
する。このとき各部の音速は等しくなるように材料の音
響インピーダンスを選択すると厚みを等しくできる。
The acoustic matching layer 53 is formed by mixing epoxy resin with fine particles of tungsten oxide. The thickness was made to correspond to a quarter wavelength of the center frequency of the ultrasonic probe.
Further, the acoustic impedance of the acoustic matching layer of the portion bonded to the electrostrictive oscillator 2 and the acoustic impedance of the portion bonded to the piezoelectric oscillator 3 may be changed. That is, a region having the same diameter as the piezoelectric vibrator 3 but different acoustic impedance is formed in the central portion of the acoustic matching layer 53. At this time, the thickness can be made equal by selecting the acoustic impedance of the material so that the sound velocities of the respective parts become equal.

【0027】音響整合層53の振動子面と接しない主面
には無電解鍍金により図示しない銅の電極膜を形成して
接地し、感電防止のためのシールドとした。
A copper electrode film (not shown) is formed on the main surface of the acoustic matching layer 53 which is not in contact with the vibrator surface by electroless plating and is grounded to provide a shield for preventing electric shock.

【0028】音響レンズ54は球の一部を平面で切り取
った形状をしており、底面は音響整合層53と同じ円形
である。音響レンズ材料はシリコンゴムに微細なシリカ
粉末を混合したもので形成した。この材料中の音速は水
中の音速より遅く約900m/sである。
The acoustic lens 54 has a shape obtained by cutting a part of a sphere with a flat surface, and the bottom surface is the same circular shape as the acoustic matching layer 53. The acoustic lens material was formed by mixing silicon rubber with fine silica powder. The speed of sound in this material is about 900 m / s, which is slower than the speed of sound in water.

【0029】図5(c)の組立て手順による超音波探触子
の断面を模式的に示すとその層構造は図6(a)のように
なる。電歪振動子2,圧電振動子3を可撓性の複合材料
で構成し、これらを背面制動材40,41で支持する場
合には、振動子面を凹面にできる。これにより、音響レ
ンズ54を省いて保護膜61を用いた図6(b)のような
構成にできる。この構成では図6(a)の音響レンズ54
を省いた構成とすることができるため音響レンズ材料に
よる減衰がもとで起こる感度低下を防ぐことができる。
図6において、110〜115,121〜124は図1
あるいは図2で説明したのと同様である。
FIG. 6 (a) shows the layer structure of the ultrasonic probe schematically shown in section in the assembly procedure of FIG. 5 (c). When the electrostrictive oscillator 2 and the piezoelectric oscillator 3 are made of a flexible composite material and are supported by the back braking members 40 and 41, the oscillator surface can be concave. As a result, the configuration as shown in FIG. 6B can be obtained by omitting the acoustic lens 54 and using the protective film 61. With this configuration, the acoustic lens 54 of FIG.
Since the configuration can be omitted, it is possible to prevent the decrease in sensitivity caused by the attenuation due to the acoustic lens material.
In FIG. 6, 110 to 115 and 121 to 124 are shown in FIG.
Alternatively, it is similar to that described in FIG.

【0030】次にこのような構成の超音波探触子の動作
について説明する。図3(a)(b)は図1(a)(b)に示す
電極の動作時における選択方法の一例を示すものであ
る。まず、図3(a)において斜線をつけた領域の電極を
超音波送受信回路に接続する。これらは図1(a)の電極
111a,111c,112a,112c,113a,11
3c,114a,114c,110eに相当する。また
図3(b)の電極のうち斜線をつけた領域の電極をバイア
ス電圧印加回路に接続し、(b)のその他の電極は接地す
る。
Next, the operation of the ultrasonic probe having such a configuration will be described. FIGS. 3A and 3B show an example of a selection method when the electrodes shown in FIGS. 1A and 1B are in operation. First, the electrodes in the shaded area in FIG. 3A are connected to the ultrasonic wave transmitting / receiving circuit. These are the electrodes 111a, 111c, 112a, 112c, 113a, 11 of FIG.
3c, 114a, 114c, 110e. Further, among the electrodes in FIG. 3B, the electrodes in the shaded area are connected to the bias voltage applying circuit, and the other electrodes in FIG. 3B are grounded.

【0031】この接続状態では、バイアス電界により圧
電性が誘起され、かつ超音波送受信回路に接続される振
動子面内の領域は図3(c)のようになる。超音波探触子
内には送受信に有効なエレメント30,31a〜35
a,31b〜35bが形成される。超音波の送受信に有
効な領域は図3(b)の電極選択位置を円の中心を通る軸
のまわりの回転対称位置に移動できる。
In this connected state, the piezoelectricity is induced by the bias electric field, and the region in the plane of the transducer connected to the ultrasonic wave transmitting / receiving circuit is as shown in FIG. 3 (c). Elements 30 and 31a to 35 effective for transmission and reception are provided in the ultrasonic probe.
a, 31b to 35b are formed. The area effective for transmitting and receiving ultrasonic waves can move the electrode selection position in FIG. 3B to a rotationally symmetric position around an axis passing through the center of the circle.

【0032】移動した領域が図3(a)の4分割線を内部
に含む場合には、図3(a)の全電極が超音波送受信回路
に接続される。例えば、図1(a)において図3(b)で選
択される2個の領域が111a〜114aと111d〜
114dの間の分割線、および111b〜114bとの
111c〜114cの間の分割線を覆う場合、111a〜
114aと111d〜114dの電極は同じ送信信号群
が送信され、また受信信号も同一半径位置の電極ごとに
加算される。
When the moved region includes the four-division line of FIG. 3 (a) inside, all the electrodes of FIG. 3 (a) are connected to the ultrasonic wave transmitting / receiving circuit. For example, in FIG. 1A, the two areas selected in FIG. 3B are 111a to 114a and 111d to 111d.
When the dividing line between 114d and the dividing line between 111c and 114c with 111b to 114b is covered, 111a to
The same transmission signal group is transmitted to the electrodes 114a and 111d to 114d, and the reception signals are also added for each electrode at the same radial position.

【0033】同様に111b〜114bと111c〜1
14cの電極の信号も処理される。この方法では図3
(b)の電極選択領域が順次移動して図1(a)のような位
置に1/4回転毎に達し、超音波送受信回路からの信号
の送受に係る電極数が約半分になる。
Similarly, 111b to 114b and 111c to 1
The signal on the electrode of 14c is also processed. In this method,
The electrode selection area of (b) sequentially moves to reach the position as shown in FIG. 1 (a) every ¼ rotation, and the number of electrodes involved in transmission / reception of signals from the ultrasonic transmission / reception circuit becomes about half.

【0034】図3(a)の全電極を常に用いて送受信信号
を送受するように構成しても同じ動作を行うことができ
る。この場合には図3(a)を縦または横に2分したそれ
ぞれは同じ送信信号群が送信され、また受信信号も同一
半径位置の電極ごとに加算され、その2分する分割位置
は図3(b)の電極選択領域が1/4回転に達する毎に1
/4回転する。これらいずれの場合にも互いに180度
対称な位置にある中心角90度の二つの扇形の内部か
ら、図3(b)で選択される電極121と122の一群を
選ばなければならない。
The same operation can be performed even if all the electrodes shown in FIG. 3A are always used to transmit / receive a transmission / reception signal. In this case, the same transmission signal group is transmitted in each of vertically and horizontally divided FIG. 3 (a), and the received signals are also added for each electrode at the same radial position, and the divided position for dividing the same is shown in FIG. 1 when the electrode selection area in (b) reaches 1/4 rotation
/ 4 turn. In any of these cases, a group of electrodes 121 and 122 selected in FIG. 3 (b) must be selected from the inside of two fan shapes having a central angle of 90 degrees, which are symmetrical to each other by 180 degrees.

【0035】図3(a)の領域を等角度で分割する数をN
とすると図3(b)で電極の選択が許される扇形領域の中
心角は、(180−360÷N)度となる。
The number of equal divisions of the area of FIG.
Then, the central angle of the fan-shaped region in FIG. 3B where the selection of electrodes is allowed is (180-360 ÷ N) degrees.

【0036】もし電歪振動子2の材料特性等からバイア
ス電圧による圧電性の誘起領域と非誘起領域のアイソレ
ーションが不充分である場合には、図3(a)の分割数N
を増加させて図3(b)の選択領域が重畳しない部位の電
極(チャネル)を介する送受信は行なわないように構成
することができる。
If the isolation between the piezoelectric induced region and the non-induced region due to the bias voltage is insufficient due to the material characteristics of the electrostrictive oscillator 2 and the like, the division number N in FIG.
Can be increased so that transmission and reception are not performed through the electrodes (channels) in the regions where the selected regions in FIG. 3B do not overlap.

【0037】このようにして形成されるエレメント3
0,31a〜35a,31b〜35bを用いて従来のセ
クタースキャン用超音波探触子と同様の方法でフェイズ
ドアレイ方式による断層像撮像を行なうこともできる。
The element 3 thus formed
It is also possible to use 0, 31a to 35a and 31b to 35b to perform tomographic image imaging by the phased array method in the same manner as in the conventional sector scanning ultrasonic probe.

【0038】図4(a)に示すようにエレメント群Rを用
いて走査用の超音波ビームBを被検体内に形成し、これ
をRからの距離方向に焦点移動したりエレメント群の配
列方向(長手方向)に偏向したりしながら超音波パルス
の送受信を行なう。反射エコーの強度分布やドプラー情
報をもとに断層面S内の情報を得ることができる。
As shown in FIG. 4 (a), an ultrasonic beam B for scanning is formed in the subject by using the element group R, and the focal point of the ultrasonic beam B is moved in the distance direction from R or the array direction of the element group is arranged. Ultrasonic pulses are transmitted and received while being deflected in the (longitudinal direction). Information on the tomographic plane S can be obtained based on the intensity distribution of the reflected echo and the Doppler information.

【0039】エレメント群Rを図3の選択法によって順
次回転させながら移動させると、形成される超音波ビー
ムB及び断層面Sも回転軸Cの回りに回転するので、図
4(b)に示すような立体的撮像領域V内の情報が得られ
る。この場合の断層面Sの走査では回転軸Cから離れる
に従って密に超音波走査を行なうようにすると領域内の
走査密度を均一にできる。
When the element group R is moved while being sequentially rotated by the selection method of FIG. 3, the ultrasonic beam B and the tomographic plane S to be formed are also rotated around the rotation axis C, so that it is shown in FIG. 4B. Information in such a stereoscopic imaging region V is obtained. In the case of scanning the tomographic plane S in this case, if the ultrasonic scanning is performed densely as the distance from the rotation axis C increases, the scanning density in the region can be made uniform.

【0040】撮像方法としては断層面Sを順次回転する
だけで無く、直交する2断面のみを撮像したり、一部の
立体領域を走査するのに必要なだけのエレメント群Rの
回転位置や超音波送受を行なうことも可能である。
As the imaging method, not only the tomographic plane S is sequentially rotated, but also only the two orthogonal cross sections are imaged, and the rotational position and the superposition of the element group R necessary for scanning a part of the three-dimensional area are used. It is also possible to send and receive sound waves.

【0041】本発明の超音波探触子を用いて撮像する場
合の装置構成の一例を図7に示す。X及びYはそれぞれ
図1(a)及び(b)に相当する電極群で、図示の便のため
Yは(b)における角度方向の分割数を減らしてある。
FIG. 7 shows an example of the apparatus configuration when an image is picked up using the ultrasonic probe of the present invention. X and Y are electrode groups corresponding to FIGS. 1 (a) and 1 (b), respectively. For convenience of illustration, Y has the number of divisions in the angular direction in FIG. 1 (b) reduced.

【0042】電極群Xは可変遅延線71a〜71eに接
続される。これらは例えば、多数のタップ付きのLC遅
延線群の終端を、マルチプレクサ回路に接続し外部入力
に従ってマルチプレクサ回路を選択するように構成すれ
ば実現できる。制御回路77によりフェイズドアレイ方
式に沿った遅延時間が順次セットされる。可変遅延線7
1a〜71eは、それぞれがその時点で持つエレメント
からの受波信号を加算する機能も備える。
The electrode group X is connected to the variable delay lines 71a to 71e. These can be realized, for example, by configuring the terminations of a large number of LC delay line groups with taps to connect to a multiplexer circuit and select the multiplexer circuit according to an external input. The control circuit 77 sequentially sets the delay times according to the phased array method. Variable delay line 7
Each of 1a to 71e also has a function of adding the received signals from the elements that it has at that time.

【0043】これらの可変遅延線71a〜71eは何れ
もが超音波送波のためのドライバ73、及び加算器74
にカプラ72を介して接続される。加算器74は増幅器
を備えていてもよい。加算器74の出力はA/D変換器
81によりディジタル信号に変換され記憶回路78に保
持される。記憶回路78は高速でA/D変換された一回
の超音波パルス受信信号に相当する信号データを保持す
るバッファメモリと、それらを逐次指定した記憶領域に
保持できるDRAMなどで構成できる。
Each of the variable delay lines 71a to 71e is a driver 73 for transmitting ultrasonic waves and an adder 74.
To the coupler 72 via the coupler 72. The adder 74 may include an amplifier. The output of the adder 74 is converted into a digital signal by the A / D converter 81 and held in the memory circuit 78. The storage circuit 78 can be configured by a buffer memory that holds signal data corresponding to one ultrasonic pulse reception signal that has been A / D converted at high speed, and a DRAM that can hold them in sequentially designated storage areas.

【0044】電極群Yは中心の電極を除き全てマトリク
ススイッチ76に接続されている。マトリクススイッチ
76はバイアス電圧を印加する直流アンプ75と接地点
とにつながっている。制御回路77は各電極のバイアス
電位を直流アンプ75の出力か接地点に指定する。演算
装置79は記憶回路78に保持された信号をもとに断層
像情報や立体像情報を表示のためのデータに変換し表示
装置80に出力する。これらの動作は制御回路77によ
り規定される。
The electrode group Y is connected to the matrix switch 76 except for the central electrode. The matrix switch 76 is connected to the DC amplifier 75 that applies a bias voltage and the ground point. The control circuit 77 designates the bias potential of each electrode as the output of the DC amplifier 75 or the ground point. The arithmetic unit 79 converts the tomographic image information and the stereoscopic image information into data for display based on the signal held in the memory circuit 78 and outputs the data to the display unit 80. These operations are defined by the control circuit 77.

【0045】演算装置79と表示装置80は、例えば、
マイクロプロセッサを備えたマイクロコンピュータとそ
の端末出力のためのCRTでもよい。また制御回路77
もマイクロプロセッサとROMから構成することが可能
である。
The arithmetic unit 79 and the display unit 80 are, for example,
It may be a microcomputer equipped with a microprocessor and a CRT for output from the terminal. In addition, the control circuit 77
Can also be composed of a microprocessor and a ROM.

【0046】このような構成で撮像を行なうには例とし
て次のような動作が可能となる。
The following operations are possible as an example for performing image pickup with such a configuration.

【0047】まず制御回路77の出力により記憶回路7
8のバッファメモリのリフレッシュやDRAMの先頭格
納アドレスの初期化等の処理を行なう。制御回路77は
超音波送受信を行なう超音波探触子内の音響的開口を指
定するために、選択制御信号をマトリクススイッチ76
に出力する。これにより図3(b)に示したような電極群
Yの一部の領域がバイアス電圧を印加され、その他は接
地に指定される。
First, the memory circuit 7 is output by the output of the control circuit 77.
The buffer memory 8 is refreshed and the initial storage address of the DRAM is initialized. The control circuit 77 sends a selection control signal to the matrix switch 76 in order to specify the acoustic opening in the ultrasonic probe for transmitting and receiving ultrasonic waves.
Output to. As a result, a bias voltage is applied to a part of the electrode group Y as shown in FIG. 3B, and the rest is grounded.

【0048】制御回路77は直流アンプ75に信号電圧
を出力し、所定の直流バイアス電圧がマトリクススイッ
チ76の接続点に出力される。マトリクススイッチ76
の接続状態に従い、電歪振動子2の一部にバイアス電圧
に誘起された圧電性が誘起される。中心の円形電極部は
常に接地点に接続され選択されたままであり、対面の電
極との間に圧電振動子3を挾むのでこの部分は常に振動
子として動作する。
The control circuit 77 outputs a signal voltage to the DC amplifier 75, and a predetermined DC bias voltage is output to the connection point of the matrix switch 76. Matrix switch 76
According to the connection state of, the piezoelectricity induced by the bias voltage is induced in a part of the electrostrictive oscillator 2. The circular electrode at the center is always connected to the ground point and remains selected, and since the piezoelectric vibrator 3 is sandwiched between the facing electrodes, this portion always operates as a vibrator.

【0049】超音波パルスを被検体内の一点に収束する
よう送波するために、制御回路77は電極群Xに接続さ
れている可変遅延線71a〜71eにフェイズドアレイ
方式に沿った遅延時間を設定する。これらは上述の構成
でマルチプレクサ回路による所定のタップの選択を指定
すればこの動作は実現できる。また、遅延時間の設定は
多くの場合、中心の円部分を除く電極群Xを縦または横
に分割する2個のそれぞれに同じ遅延時間群が設定され
る。
In order to transmit the ultrasonic pulse so as to converge it to one point in the subject, the control circuit 77 provides the variable delay lines 71a to 71e connected to the electrode group X with delay times according to the phased array method. Set. These operations can be realized by designating selection of a predetermined tap by the multiplexer circuit in the above-mentioned configuration. In many cases, the same delay time group is set for each of the two electrodes that divide the electrode group X excluding the central circle portion vertically or horizontally.

【0050】ドライバ73は制御回路77からのトリガ
入力に従い、送波パルス信号をカプラ72及び可変遅延
線71a〜71eを介して電歪振動子2に出力する。カ
プラ72は送波パルス信号を可変遅延線71a〜71e
側にのみ接続し、加算器74へは接続しない。図3(c)
のようなエレメント群が送波パルス信号電圧によって励
振され超音波を被検体内の収束点に向け送波する。これ
により被検体内の音響インピーダンスの界面よりエコー
が反射される。
The driver 73 outputs a transmission pulse signal to the electrostrictive vibrator 2 via the coupler 72 and the variable delay lines 71a to 71e according to the trigger input from the control circuit 77. The coupler 72 transmits the transmission pulse signal to the variable delay lines 71a to 71e.
It is connected only to the side and not to the adder 74. Figure 3 (c)
The element group as described above is excited by the transmitted pulse signal voltage, and the ultrasonic wave is transmitted toward the convergence point in the subject. As a result, the echo is reflected from the acoustic impedance interface in the subject.

【0051】超音波送波信号が送波された直後に制御回
路77は可変遅延線71a〜71eの遅延時間を受波の
ための設定に変更する。送波直後は被検体内の近距離か
らの受信信号を整相加算するための小さな焦点距離に相
当する遅延時間分布を設定し、以降時間の経過に従っ
て、順次、大きな焦点距離に変更して行く。これらは被
検体内の音波の伝搬速度に応じて設定される。送波直後
カプラ72はドライバ73と可変遅延線71a〜71e
間のみを接続する。
Immediately after the ultrasonic wave transmission signal is transmitted, the control circuit 77 changes the delay time of the variable delay lines 71a to 71e to the setting for receiving the wave. Immediately after the transmission, a delay time distribution corresponding to a small focal length for phasing addition of received signals from a short distance inside the subject is set, and then gradually changed to a larger focal length as time passes. .. These are set according to the propagation speed of sound waves in the subject. Immediately after the wave transmission, the coupler 72 includes a driver 73 and variable delay lines 71a to 71e.
Connect only between.

【0052】各可変遅延線は接続されたエレメントから
の受信信号を加算し、その出力は信号全体の加算器74
の入力となる。近距離から遠距離まで、順次、加算器7
4から出力される受波エコー信号は、A/D変換器81
を介してディジタル信号となり、記憶装置78へ出力さ
れる。
Each variable delay line adds the received signals from the connected elements, and its output is the adder 74 for the entire signal.
Will be input. Adder 7 from short distance to long distance
The received echo signal output from the A.D.4 is the A / D converter 81.
Is converted into a digital signal via and is output to the storage device 78.

【0053】記憶回路78ではA/D変換された一回の
超音波パルス受信信号に相当する信号データをバッファ
メモリに保持したあと、それらを逐次指定したアドレス
のDRAMなどの記憶領域に格納する。受信信号を格納
する動作は被検体内の最深部に相当する部分からのエコ
ーの受信まで続けられる。
In the memory circuit 78, after the signal data corresponding to one A / D converted ultrasonic pulse reception signal is held in the buffer memory, they are successively stored in a memory area such as a DRAM of a designated address. The operation of storing the reception signal is continued until the echo is received from the portion corresponding to the deepest part in the subject.

【0054】次に超音波パルスを被検体内の別の一点に
収束するよう送波するために、再び一連の送受信動作を
行なう。この場合には遅延時間の設定は先の送受信の偏
向方向と異なる方向で行なわれ、再び、受信信号データ
が記憶回路78に保持される。
Next, in order to transmit the ultrasonic pulse so as to converge on another point in the subject, a series of transmission / reception operations are performed again. In this case, the delay time is set in a direction different from the previous transmission / reception deflection direction, and the reception signal data is held in the storage circuit 78 again.

【0055】このような走査を多数繰り返すと、送波時
に設定した超音波探触子内のエレメント配置をもとにし
た図4(a)の断層面Sに相当するBモード像全体の受信
信号データが記憶回路78に保持される。
When a large number of such scans are repeated, the received signal of the entire B-mode image corresponding to the tomographic plane S in FIG. 4A based on the element arrangement in the ultrasonic probe set at the time of transmitting waves. The data is held in the memory circuit 78.

【0056】超音波探触子内のエレメント配置を回転す
るために制御回路77は新たな選択制御信号をマトリク
ススイッチ76に出力する。これに従い図3(b)に示し
たような、電極群Yの一部の圧電性が誘起された領域が
回転する。エレメント位置における超音波送受信走査が
行なわれ、新たな回転した位置のBモード像全体の受信
信号データが記憶回路78に保持される。
The control circuit 77 outputs a new selection control signal to the matrix switch 76 in order to rotate the arrangement of the elements in the ultrasonic probe. As a result, as shown in FIG. 3B, a part of the electrode group Y in which the piezoelectricity is induced rotates. Ultrasonic transmission / reception scanning is performed at the element position, and the reception signal data of the entire B-mode image at the new rotated position is held in the storage circuit 78.

【0057】このBモード像全体の受信信号データを記
憶回路78に保持する動作を、マトリクススイッチ76
の選択による超音波探触子内のエレメント配置の回転に
合わせて繰返す。回転が180度に達すると図4(b)の
Vに示すような円錐台形の撮像領域内全体の情報が記憶
回路78に保持される。
The operation of holding the received signal data of the entire B-mode image in the memory circuit 78 is performed by the matrix switch 76.
It is repeated according to the rotation of the element arrangement in the ultrasonic probe by the selection of. When the rotation reaches 180 degrees, the storage circuit 78 retains the entire information in the truncated cone-shaped imaging area as shown by V in FIG. 4B.

【0058】一連の超音波の走査が終了すると制御回路
77の出力により演算装置79は、記憶回路78に保持
された受信データをもとに各種計測量の画像化のための
演算処理を行う。各種計測量とはエコーの反射強度やド
プラ情報等が考えられる。演算処理とは、例えば、記憶
回路78に蓄積されたRF信号の検波処理,フィルタ処
理,ゲイン補正処理,座標変換処理,輪郭抽出処理等を
指す。輝度変調等で可視化された計測量は表示装置80
によって検査者に対して表示される。
When a series of ultrasonic scanning is completed, the arithmetic unit 79 performs arithmetic processing for imaging various measured quantities based on the received data held in the memory circuit 78 by the output of the control circuit 77. The various measurement quantities may be echo reflection intensity, Doppler information, and the like. The arithmetic processing refers to, for example, detection processing of RF signals accumulated in the storage circuit 78, filter processing, gain correction processing, coordinate conversion processing, contour extraction processing, and the like. The measured amount visualized by brightness modulation or the like is displayed on the display device 80.
Displayed to the inspector.

【0059】本発明の第二の実施例を図2を用いて説明
する。振動子材料として円板の電歪振動子21を用い
た。電歪材料及び電極の形成法は第一の実施例と同じで
ある。第一の主面の電極は図2(a)に示すように分割し
た。電極110a〜110d,111a〜111d,1
12a〜112d,113a〜113d,114a〜114
d,115a〜115dは同心円状に分割したものをさ
らに中心角で4等分したものである。図2(c)は断面図
を示しており、110は110a〜110dのいずれか
を示しており、111,112,113,114,11
5についても同様である。振動子の第二の主面の電極は
図2(b)に示すように分割した。電極122及び123
は同心円で分割したのち中心角で等角度で微小分割した
ものである。但し、この等角度での微小分割のいずれか
は図2(a)に示す等角度の4分割と表裏で一致させた。
A second embodiment of the present invention will be described with reference to FIG. A disk-shaped electrostrictive oscillator 21 was used as the oscillator material. The method of forming the electrostrictive material and the electrode is the same as in the first embodiment. The electrode on the first main surface was divided as shown in FIG. Electrodes 110a to 110d, 111a to 111d, 1
12a to 112d, 113a to 113d, 114a to 114
Reference numerals d and 115a to 115d denote concentric circles divided into four equal parts at the central angle. FIG. 2C shows a cross-sectional view, and 110 indicates any of 110a to 110d, and 111, 112, 113, 114, 11
The same applies to 5. The electrodes on the second main surface of the vibrator were divided as shown in FIG. 2 (b). Electrodes 122 and 123
Are divided into concentric circles and then finely divided into equal angles at the central angle. However, any of the minute divisions at the same angle was made to coincide with the equal angle four divisions shown in FIG.

【0060】このように両主面に電極形成された電歪振
動子21を、図1(a)に示す等角度の電極の4分割の位
置にそって4片に切断した。この振動子への配線方法及
び超音波探触子の組立て方法は第一の実施例における組
立てを示した図5と類似の手順となる。図5の中心部分
の圧電振動子3及びそのための背面制動材40が無く、
背面制動材42は通常の円柱を4分割した扇型を底面に
持つ形状にする。電歪振動子21と背面制動材42の間
に極薄いフレキシブルプリント配線板を接着して図2に
おける電極123,124へ配線し、扇の半径方向の側
面に沿うように延設した。これは図5において、フレキ
シブルプリント配線板51aによる電極121への配線
の代わりとなる。
The electrostrictive vibrator 21 having electrodes formed on both principal surfaces in this manner was cut into four pieces along the four-divided positions of the equiangular electrodes shown in FIG. 1 (a). The method of wiring to the vibrator and the method of assembling the ultrasonic probe are similar to those in FIG. 5 showing the assembling in the first embodiment. There is no piezoelectric vibrator 3 in the central portion of FIG.
The back braking member 42 has a shape having a fan shape obtained by dividing an ordinary cylinder into four on the bottom surface. An extremely thin flexible printed wiring board was adhered between the electrostrictive vibrator 21 and the back braking material 42 to connect to the electrodes 123 and 124 in FIG. 2 and extend along the radial side surfaces of the fan. This replaces the wiring to the electrode 121 by the flexible printed wiring board 51a in FIG.

【0061】この構成の超音波探触子を用いて撮像ある
いは計測を行う場合の動作は第一の実施例における中心
の圧電振動子3の部分が構成上無い以外は同じである。
撮像あるいは計測を行う場合の装置構成の例はやはり図
7の一部を変更しただけのものが考えられる。図7にお
いて電極群Xの中心の円形電極は構成上省かれ、可変遅
延線71eも省かれる。中心の円形電極が4個に分割さ
れたのに従って71a〜71dに接続される電極数はそ
れぞれ一つ増加する。電極群Yの中心の電極も省かれ
る。この変更点以外は撮像あるいは計測を行う場合の動
作も第一の実施例に同じである。
The operation when imaging or measuring is performed using the ultrasonic probe of this configuration is the same except that the central piezoelectric vibrator 3 in the first embodiment is not provided.
As an example of the device configuration when performing imaging or measurement, it is conceivable that only a part of FIG. 7 is modified. In FIG. 7, the circular electrode at the center of the electrode group X is omitted from the configuration, and the variable delay line 71e is also omitted. As the central circular electrode is divided into four, the number of electrodes connected to 71a to 71d increases by one. The central electrode of the electrode group Y is also omitted. Except for this change, the operation when imaging or measuring is the same as in the first embodiment.

【0062】以上の本発明による第一,第二の実施例に
おける、図1(a)(b),図3(a)(b)における主面の電
極の半径方向、及び角度方向の分割数は本実施例の数に
限られることなくさらに多数とすることも可能である。
また図5,図6の音響レンズの形状は本実施例のような
球の一部分である必要もない。また本発明の超音波探触
子を用いて立体的情報を得るための計測装置構成は、本
実施例の場合に限らず数多く考えられる。
In the first and second embodiments of the present invention described above, the number of divisions in the radial direction and the angular direction of the electrode on the main surface in FIGS. 1 (a) (b) and 3 (a) (b). Is not limited to the number of this embodiment, and can be increased.
The shape of the acoustic lens in FIGS. 5 and 6 does not have to be a part of a sphere as in this embodiment. Further, there are many conceivable measurement device configurations for obtaining three-dimensional information using the ultrasonic probe of the present invention, not limited to the case of the present embodiment.

【0063】[0063]

【発明の効果】本発明により従来3次元撮像のために必
要だった2次元アレイ超音波探触子が比較的少ないチャ
ネル数で実現出来る。本発明により従来1000〜40
00チャネル程度必要だったものが200チャネル程度
に減少し、付帯する回路規模を著しく縮小化でき、低価
格化が図れる。
According to the present invention, the two-dimensional array ultrasonic probe conventionally required for three-dimensional imaging can be realized with a relatively small number of channels. Conventionally according to the present invention
The number of channels required for about 00 channels was reduced to about 200 channels, and the scale of the attached circuit could be significantly reduced, and the cost could be reduced.

【0064】本発明の超音波探触子を超音波計測装置に
用いることにより、従来断層像が主体だった計測情報を
容易に立体領域まで広げることができる。これにより被
検体内の構造やドプラ情報が3次元的に把握できるよう
になる。
By using the ultrasonic probe of the present invention in an ultrasonic measuring device, it is possible to easily extend the measurement information, which has been mainly based on a tomographic image, to a three-dimensional area. This makes it possible to three-dimensionally understand the structure and Doppler information inside the subject.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による第一の実施例である超音波探触子
の電極構造を示す(a),(b)は平面図、(c)は断面図。
FIG. 1A is a plan view and FIG. 1C is a sectional view showing an electrode structure of an ultrasonic probe according to a first embodiment of the present invention.

【図2】本発明による第二の実施例である超音波探触子
の電極構造を示す(a),(b)は平面図、(c)は断面図。
FIG. 2A is a plan view and FIG. 2C is a sectional view showing an electrode structure of an ultrasonic probe according to a second embodiment of the present invention.

【図3】本発明による超音波探触子の口径位置の選択方
法を示す平面図。
FIG. 3 is a plan view showing a method for selecting the aperture position of the ultrasonic probe according to the present invention.

【図4】本発明による超音波探触子による立体的な撮像
方法を示す説明図。
FIG. 4 is an explanatory diagram showing a three-dimensional imaging method using an ultrasonic probe according to the present invention.

【図5】本発明による超音波探触子の組立てを示す斜視
図。
FIG. 5 is a perspective view showing the assembly of the ultrasonic probe according to the present invention.

【図6】本発明による超音波探触子の断面図。FIG. 6 is a sectional view of an ultrasonic probe according to the present invention.

【図7】本発明による超音波探触子を用いて計測を行う
装置の回路構成を示すブロック図。
FIG. 7 is a block diagram showing a circuit configuration of an apparatus for performing measurement using the ultrasonic probe according to the present invention.

【符号の説明】[Explanation of symbols]

110〜115…信号側電極、120〜122…バイア
ス側電極、2…電歪振動子、3…圧電振動子、40〜4
1…背面制動材。
110-115 ... Signal side electrode, 120-122 ... Bias side electrode, 2 ... Electrostrictive oscillator, 3 ... Piezoelectric oscillator, 40-4
1 ... Rear braking material.

フロントページの続き (72)発明者 三和 祐一 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内Front page continuation (72) Inventor Yuichi Sanwa 1-280, Higashi Koigokubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】超音波と電気エネルギの変換手段としての
振動子と、前記振動子を保持する背面制動材とを含む超
音波探触子において、バイアス電圧で圧電性が誘起され
る電歪材料の円板の両主面に設けた第一,第二の電極を
それぞれ三つ以上の扇形に分割し、前記第一,第二の電
極の一方または両方を中心から同心円状に複数に分割し
て振動子としたことを特徴とする超音波探触子。
1. An electrostrictive material in which piezoelectricity is induced by a bias voltage in an ultrasonic probe including a vibrator as a means for converting ultrasonic waves and electric energy, and a backside braking material holding the vibrator. The first and second electrodes provided on both main surfaces of the disk are divided into three or more sectors, and one or both of the first and second electrodes are divided into a plurality of concentric circles from the center. An ultrasonic probe characterized by being used as a vibrator.
【請求項2】請求項1において、前記両主面の前記電極
の分割において、同心円状分割の最小半径以内の領域の
前記第1,第2の電極を円形電極とした超音波探触子。
2. The ultrasonic probe according to claim 1, wherein, in dividing the electrodes on the both principal surfaces, the first and second electrodes in a region within a minimum radius of concentric division are circular electrodes.
【請求項3】請求項2において、前記円形電極ではさま
れる前記振動子の部分を圧電材料で構成した超音波探触
子。
3. The ultrasonic probe according to claim 2, wherein a portion of the vibrator sandwiched by the circular electrodes is made of a piezoelectric material.
【請求項4】請求項1,2または3において、前記第
1,第2の電極のいずれか一方を、角度方向において4
以上の偶数に分割した超音波探触子。
4. The method according to claim 1, 2 or 3, wherein one of the first and second electrodes is 4 in the angular direction.
An ultrasonic probe divided into the above even numbers.
【請求項5】請求項1,2,3または4において、前記
超音波探触子のいずれかを備え、前記超音波探触子の前
記振動子の一方の主面の電極群を送受信回路と接続し、
他方の主面の電極群に各電極の選択が可能なバイアス電
圧誘起手段を接続した超音波計測装置。
5. The ultrasonic probe according to claim 1, comprising any one of the ultrasonic probes, wherein an electrode group on one main surface of the transducer of the ultrasonic probe is used as a transmission / reception circuit. connection,
An ultrasonic measuring device in which a bias voltage inducing means capable of selecting each electrode is connected to an electrode group on the other main surface.
【請求項6】請求項1,2,3または4において、前記
振動子の少なくとも一方の主面の電極の角度方向の分割
の一部あるいは全てにほぼ同形状に背面制動材を分割
し、分割された前記背面制動材の断面を用いてバイアス
電圧供給線または信号線を配線した超音波探触子の作製
方法。
6. The rear braking material according to claim 1, 2, 3 or 4, wherein the back braking material is divided into substantially the same shape as a part or all of the division of the electrodes on at least one main surface of the vibrator in the angular direction. A method for manufacturing an ultrasonic probe, in which a bias voltage supply line or a signal line is wired using the cross section of the backside braking material that has been formed.
JP4040939A 1992-02-27 1992-02-27 Ultrasonic probe Pending JPH05244691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4040939A JPH05244691A (en) 1992-02-27 1992-02-27 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4040939A JPH05244691A (en) 1992-02-27 1992-02-27 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPH05244691A true JPH05244691A (en) 1993-09-21

Family

ID=12594474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4040939A Pending JPH05244691A (en) 1992-02-27 1992-02-27 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPH05244691A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986004679A1 (en) * 1985-02-12 1986-08-14 Commonwealth Scientific And Industrial Research Or Voltammetric cell
US6396198B1 (en) 1999-06-16 2002-05-28 Ngk Spark Plug Co. Ltd. Wave transmission-reception element for use in ultrasound probe, method for manufacturing the wave transmission-reception element and ultrasound probe incorporating the transmission-reception element
JP2009247466A (en) * 2008-04-03 2009-10-29 Shibuya Kogyo Co Ltd Ultrasonic inspection apparatus
JP2010107286A (en) * 2008-10-29 2010-05-13 Hitachi Ltd Apparatus and method for three-dimensional ultrasonic imaging
JP2010243321A (en) * 2009-04-06 2010-10-28 Hitachi-Ge Nuclear Energy Ltd Ultrasonic measurement method and apparatus
JP2011069780A (en) * 2009-09-28 2011-04-07 Hitachi-Ge Nuclear Energy Ltd Ultrasonic measuring device, ultrasonic sensor for use in the same, and ultrasonic measuring method
KR101113212B1 (en) * 2011-03-31 2012-02-20 동국대학교 산학협력단 Ultrasonic probe
US8210043B2 (en) 2009-04-06 2012-07-03 Hitachi-Ge Nuclear Energy, Ltd. Ultrasonic measurement method, ultrasonic measurement apparatus, and ultrasonic sensor
JP2013088430A (en) * 2011-10-14 2013-05-13 General Electric Co <Ge> Ultrasonic tomography system
KR101395264B1 (en) * 2012-10-31 2014-05-15 울산대학교 산학협력단 Ultrasonic transducer using relaxor ferroelectric polymers
US8924164B2 (en) 2008-10-29 2014-12-30 Mitsubishi Hitachi Power Systems, Ltd. Apparatus and method for ultrasonic testing
WO2019008833A1 (en) * 2017-07-03 2019-01-10 株式会社Ihi検査計測 Phased-array flaw-detection device and method
JP2020502527A (en) * 2016-12-19 2020-01-23 サフラン Devices and methods for non-destructively characterizing materials
US10845341B2 (en) 2014-08-12 2020-11-24 Mitsubishi Heavy Industries Compressor Corporation Ultrasonic flaw-detection method and apparatus for blade groove in turbine rotor disc
JP2024016372A (en) * 2022-07-26 2024-02-07 本多電子株式会社 Ultrasonic transducer for measurement instrument

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986004679A1 (en) * 1985-02-12 1986-08-14 Commonwealth Scientific And Industrial Research Or Voltammetric cell
US6396198B1 (en) 1999-06-16 2002-05-28 Ngk Spark Plug Co. Ltd. Wave transmission-reception element for use in ultrasound probe, method for manufacturing the wave transmission-reception element and ultrasound probe incorporating the transmission-reception element
JP2009247466A (en) * 2008-04-03 2009-10-29 Shibuya Kogyo Co Ltd Ultrasonic inspection apparatus
US8924164B2 (en) 2008-10-29 2014-12-30 Mitsubishi Hitachi Power Systems, Ltd. Apparatus and method for ultrasonic testing
JP2010107286A (en) * 2008-10-29 2010-05-13 Hitachi Ltd Apparatus and method for three-dimensional ultrasonic imaging
JP2010243321A (en) * 2009-04-06 2010-10-28 Hitachi-Ge Nuclear Energy Ltd Ultrasonic measurement method and apparatus
US8210043B2 (en) 2009-04-06 2012-07-03 Hitachi-Ge Nuclear Energy, Ltd. Ultrasonic measurement method, ultrasonic measurement apparatus, and ultrasonic sensor
US8701492B2 (en) 2009-04-06 2014-04-22 Hitachi-Ge Nuclear Energy, Ltd. Ultrasonic measurement method, ultrasonic measurement apparatus, and ultrasonic sensor
JP2011069780A (en) * 2009-09-28 2011-04-07 Hitachi-Ge Nuclear Energy Ltd Ultrasonic measuring device, ultrasonic sensor for use in the same, and ultrasonic measuring method
KR101113212B1 (en) * 2011-03-31 2012-02-20 동국대학교 산학협력단 Ultrasonic probe
JP2013088430A (en) * 2011-10-14 2013-05-13 General Electric Co <Ge> Ultrasonic tomography system
KR101395264B1 (en) * 2012-10-31 2014-05-15 울산대학교 산학협력단 Ultrasonic transducer using relaxor ferroelectric polymers
US10845341B2 (en) 2014-08-12 2020-11-24 Mitsubishi Heavy Industries Compressor Corporation Ultrasonic flaw-detection method and apparatus for blade groove in turbine rotor disc
JP2020502527A (en) * 2016-12-19 2020-01-23 サフラン Devices and methods for non-destructively characterizing materials
WO2019008833A1 (en) * 2017-07-03 2019-01-10 株式会社Ihi検査計測 Phased-array flaw-detection device and method
JPWO2019008833A1 (en) * 2017-07-03 2020-05-07 株式会社Ihi検査計測 Phased array flaw detector and method
US11293905B2 (en) 2017-07-03 2022-04-05 Ihi Inspection And Instrumentation Co., Ltd. Phased-array flaw-detection device and method
JP2024016372A (en) * 2022-07-26 2024-02-07 本多電子株式会社 Ultrasonic transducer for measurement instrument
US11965994B2 (en) 2022-07-26 2024-04-23 Honda Electronics Co., Ltd. Ultrasonic transducer for a measuring device

Similar Documents

Publication Publication Date Title
EP0641606B1 (en) Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
US5438998A (en) Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
US5415175A (en) Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
US4550606A (en) Ultrasonic transducer array with controlled excitation pattern
Seo et al. A 256 x 256 2-D array transducer with row-column addressing for 3-D rectilinear imaging
US5743855A (en) Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
EP2087370B1 (en) Catheter with acoustic array for medical ultrasound
US9134419B2 (en) Ultrasonic diagnosis apparatus
JP7190590B2 (en) Ultrasound imaging device with programmable anatomy and flow imaging
JPH05244691A (en) Ultrasonic probe
JPH02217000A (en) Ultrasonic wave probe
JPH10146337A (en) Ultrasonic probe and ultrasonic diagnostic device using it
Whittingham et al. Transducers and beam forming
JP2000358299A (en) Wave transmitting and receiving element for ultrasonic probe, its production method and ultrasonic probe using the same element
JP3382831B2 (en) Method of manufacturing ultrasonic transducer array, ultrasonic transducer array, ultrasonic probe, and ultrasonic imaging apparatus
Payne et al. Integrated ultrasound transducers
JPH03270282A (en) Composite piezo-electric body
EP3028772B1 (en) Ultrasonic probe and method of manufacturing the same
Ratsimandresy et al. A 3 MHz two dimensional array based on piezocomposite for medical imaging
JP2743008B2 (en) Ultrasound diagnostic equipment
JPH03270599A (en) Composite piezoelectric body
JPH0369534B2 (en)
JPH03247324A (en) Ultrasonic photographing method and apparatus
JPS6337664B2 (en)
JPH08289889A (en) Ultrasonic diagnostic device