JPS58194752A - Production of preform rod for optical fiber for single-phase polarized light - Google Patents

Production of preform rod for optical fiber for single-phase polarized light

Info

Publication number
JPS58194752A
JPS58194752A JP57076347A JP7634782A JPS58194752A JP S58194752 A JPS58194752 A JP S58194752A JP 57076347 A JP57076347 A JP 57076347A JP 7634782 A JP7634782 A JP 7634782A JP S58194752 A JPS58194752 A JP S58194752A
Authority
JP
Japan
Prior art keywords
rod
glass
optical fiber
preform
glass rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57076347A
Other languages
Japanese (ja)
Other versions
JPH024539B2 (en
Inventor
Kunio Ogura
邦男 小倉
Kazuaki Yoshida
和昭 吉田
Yasuro Furui
古井 康郎
Tamotsu Kamiya
保 神谷
Takeyuki Kikuchi
菊池 健之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP57076347A priority Critical patent/JPS58194752A/en
Publication of JPS58194752A publication Critical patent/JPS58194752A/en
Publication of JPH024539B2 publication Critical patent/JPH024539B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0124Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/12Non-circular or non-elliptical cross-section, e.g. planar core
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:A glass rod having the core layer and the clad layer is softened by heating for deformation, then the external shape is processed into a round form to produce the titled preform rod of high accuracy in high efficiency. CONSTITUTION:A glass rod 1 consisting of the concentric core layer 2 and clad layer 3 is heated by passing through the heat zone H provided with the furnace 4 for softening, passed through the forming zone provided with rollers 5 to apply external forces to deform the rod into an oval in cross section. Then, a glass layer of the same composition as the clad layer 3 is accumulated on the external surface of the rod by the externally accumulating CVD method into a round rod. The present process gives a preform rod for single-phase polarized light with a desired core shape only by deforming an already made preform rod.

Description

【発明の詳細な説明】 本発明は単一偏波光ファイバ用プリフォームロッドの製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a preform rod for a single polarization optical fiber.

/ングルモード伝送型の単一偏波光ファイバは、そのモ
ードのうち、1つの偏波面(偏光面)の光のみを伝送す
る機能をそなえたものであり、この光ファイバはセンサ
への応用やコヒーレントな光通信などに有望視されてい
る0 上記において偏波面の保存特性をよくするため、光フア
イバ断面内における複屈折現象を大きく発現させること
はすでに知られており、これの具体策として光ファイバ
のコアを楕円形、四角形、ダンベル形などとすることも
ずでき提案されている。
Single-mode transmission type single-polarization optical fiber has the function of transmitting light of only one polarization plane (plane of polarization) among its modes, and this optical fiber is used for sensor applications and coherent It is already known that in order to improve the preservation characteristics of the polarization plane, the birefringence phenomenon within the cross section of the optical fiber is greatly expressed. It has also been proposed that the core be oval, square, or dumbbell shaped.

もちろんこうした構造形状はプリフォームロソド(光フ
アイバ用母材)の段階からそなわっており、該ロッドを
紡糸することlこより上記コア形状をもつ単一偏波光フ
ァイバが得られる。
Of course, such a structural shape is provided from the stage of the preform rod (base material for optical fiber), and by spinning the rod, a single polarization optical fiber having the above-mentioned core shape can be obtained.

したがって単一偏波光ファイバはそのプリフォームロッ
ド段階での加工が難事といえる。
Therefore, it is difficult to process a single polarization optical fiber at the preform rod stage.

現在のところ、単一偏波光コアイノ(については各種の
ものが案出されているが、上記のごとき特殊形状のコア
をもつ単一偏波光コアイノ(の7”J7オームロンドに
ついて、これらを如何iこ簡易Iこ製造するかといった
技術開示は殆どなく、ガラス切断法、ガラス堆積法、ロ
ッドインチューブ法などを適宜に組み合わせている現状
では当該ロッドの加工に難度や手段が伴い、偏波特性の
ものを製造する際の能率も低下している。
At present, various types of single-polarized optical cores have been devised. There are almost no technical disclosures on how to easily manufacture this rod, and at present, the glass cutting method, glass deposition method, rod-in-tube method, etc. are appropriately combined, and the processing of the rod is difficult and requires various methods, and the polarization characteristics are difficult to manufacture. Efficiency in manufacturing products is also decreasing.

本発明は上記の問題点5こ鑑み、所望のコア形状をもつ
単一偏波光コアイノ(用プリフォームロッドが簡易にし
かも精度よく製造できる新規な方法を提供せんとするも
ので、以下その具体的方法を図示の実施例により説明す
る。
In view of the above-mentioned problem 5, it is an object of the present invention to provide a new method by which a preform rod for single-polarized optical cores having a desired core shape can be manufactured simply and with high precision. The method will be explained by means of an illustrated example.

第1図におけるガラス棒(1)はVAD法、肉付のであ
り、このガラス棒(1)は同心状のコア用ガラス層(2
)およびクラッド用ガラス層(3)を備えているととも
に加工前における両ガラス層+21 +3)はいずれも
断面円形となっている。
The glass rod (1) in FIG.
) and a cladding glass layer (3), and both glass layers +21 +3) have a circular cross section before processing.

本発明の方法で#′i第1図のごとくガラス棒(1)を
ヒートゾーンHに通して加熱し、さらに当該加熱により
軟化された四棒(1)を次段の成形ゾーンFで変形させ
るのであり、図示の場合、上記ヒートゾーンHにはカー
ボン抵抗炉、高周波炉などの加熱炉(4)が配置され、
成形ゾーンFにはカーボンローラ等のローラ[51+5
1が配置されている0 したがって第1図の場合、ガラス棒(1)は加熱炉(4
)により加熱軟化されるとともlこその直後、ローラ+
5) +5)からの外力(押圧力)を受けて変形され、
これにより該ガラス棒(1)は第2図0)のご    
   +1とき楕円形となる。
In the method of the present invention, the glass rod (1) is passed through the heat zone H and heated as shown in Figure 1, and the four rods (1) softened by the heating are further deformed in the next forming zone F. In the case shown in the figure, a heating furnace (4) such as a carbon resistance furnace or a high frequency furnace is arranged in the heat zone H.
In the molding zone F, rollers such as carbon rollers [51+5
Therefore, in the case of Fig. 1, the glass rod (1) is placed in the heating furnace (4).
), and immediately after that, the roller +
5) Deformed by receiving external force (pressure force) from +5),
As a result, the glass rod (1) becomes as shown in Fig. 2 (0).
When +1, it becomes an ellipse.

もちろんこの際のガラス棒変形状faは、ロー2]5)
の数、そのローラ形状により任意にできるのであり、例
えば第2図(ロ)のごとく4つのローラ(5) [5)
 (5) +51を用いた場合には菱形の変形状態が得
られ、さらに第2図(ハ)のどとくローラ幅の小さい1
対のローラ[5) 151を用いた場合にはダンベル形
の変形状態が得られる。
Of course, the glass rod deformation fa at this time is Rho 2] 5)
The number of rollers can be arbitrarily determined depending on the shape of the rollers, for example, four rollers (5) as shown in Figure 2 (b) [5]
(5) When +51 is used, a diamond-shaped deformed state is obtained, and in addition, as shown in Fig. 2 (c), the width of the throat roller is small.
When a pair of rollers [5] 151 is used, a dumbbell-shaped deformation is obtained.

上記のようにして変形されたガラス棒(1)はコア用ガ
ラス層(2)およびクラッド用ガラス層(3)がともi
こ変形しているが、つぎの工程では当該ガラス棒(1)
の外形を円形に加工する。
The glass rod (1) deformed as described above has a core glass layer (2) and a cladding glass layer (3).
Although the glass rod (1) is deformed, in the next step the glass rod (1)
Process the outer shape into a circle.

つまり、変形状態にあるクラッド(3)の外周に外付C
VD法を介してガラス層(クラッド(3)と同一組成)
を堆積させるとか、あるいはクラッド(3)を研削する
とか、さらにはガラス堆積、ガラス研削の両方を採用す
るなどして、ガラス棒(1)の外形を円形(ζする。
In other words, the external C
Glass layer (same composition as cladding (3)) via VD method
The outer shape of the glass rod (1) is made circular (ζ) by depositing glass, or by grinding the cladding (3), or by employing both glass deposition and glass grinding.

こうして得られたプリフォームロッドはクラッドガラス
層(3)が円形であるのに対し、コア用ガラス層(2)
は第2図(勇(ロ)(ハ)で示した変形状態を保持して
いる。
In the thus obtained preform rod, the cladding glass layer (3) is circular, while the core glass layer (2) is circular.
maintains the deformed state shown in Figure 2 (B) and (C).

例えば第2図ft)の状態から得られたプリフォームロ
ッド(6)は第3図のようになり、コア用ガ5x層(2
)が楕円形のままとなっている。
For example, the preform rod (6) obtained from the state shown in Fig. 2 ft) becomes as shown in Fig. 3, and the core gas 5x layer (2
) remains oval.

上記のプリフォームロッド(6+ Viその外周に石英
系ジャケット管が被せられた状態で紡糸され、これによ
り単一偏波光ファイバとなる。
The above preform rod (6+ Vi) is spun with a quartz-based jacket tube placed over its outer periphery, thereby forming a single polarization optical fiber.

もちろんこうして得られた単一偏波光ファイバは、その
コアが真円でない特殊形状となっているため、これに依
存した単一偏波特性を有している。
Of course, the single polarization optical fiber thus obtained has a special shape whose core is not a perfect circle, and therefore has single polarization characteristics depending on this.

なお、上記ヒートゾーンHにおける加熱炉(4)はこれ
を酸水素バーナに代えてもよく、また、成形ゾーンFに
配置すべきローラ15+ +51・・・・・もカス噴射
器50代えてよい。
The heating furnace (4) in the heat zone H may be replaced with an oxyhydrogen burner, and the rollers 15+, +51, . . . to be disposed in the forming zone F may also be replaced with the waste injector 50.

このガス噴射器としては偏平な噴射口を備えたものがよ
く、そして該噴射口を上記ローラ(5)と同様、ガラス
棒(1)の周囲に配置してガス噴射圧(外力)により軟
化状態の四棒(1)を変形させればよい。
This gas injector is preferably equipped with a flat injection port, and like the roller (5), the injection port is placed around the glass rod (1) and softened by gas injection pressure (external force). All you have to do is deform the four bars (1).

つぎに具体例を述べる。Next, a specific example will be described.

ガラス棒(1)としてはコア用ガラス層(2)の組成が
Ge 02−8 i 02、クラッド用ガラス層(3)
ノ組成が5i02、そしてガラス層(2)ニガラス層(
3)の外径比が1:6、ガラス層(3)の外径が301
11I+であるものを採用し、第2図0)に示す楕円形
のタイプをつくることとした0 この際、加熱炉(4)はカーボン抵抗炉(1800℃)
とし、2つのローラ(5)はカーボン製20W幅のもの
とした。
As for the glass rod (1), the composition of the glass layer for the core (2) is Ge 02-8 i 02, and the glass layer for the cladding (3)
The composition of glass layer (2) is 5i02, and the glass layer (2) is glass layer (2).
The outer diameter ratio of 3) is 1:6, and the outer diameter of the glass layer (3) is 301.
11I+, and decided to make the oval type shown in Figure 2 (0). At this time, the heating furnace (4) was a carbon resistance furnace (1800℃).
The two rollers (5) were made of carbon and had a width of 20W.

ガラス棒+11の移動速度は20 sa/m1ns両ロ
ーラ[5) !5t +こよる押圧力はI Kf/i 
である。
The moving speed of the glass rod +11 is 20 sa/m1ns for both rollers [5]! 5t + the resulting pressing force is I Kf/i
It is.

上記の条件で加工されたガラス棒(1)はクラッド用ガ
ラスIn [31の長径および短径がそれぞれ40 t
m、225、コア用ガラス層(2)の長径および短径が
それぞれ6.71111%3.71111であり、は!
楕円形であった。
The glass rod (1) processed under the above conditions was made of cladding glass In [31 with a long axis and a short axis of 40 t each.
m, 225, the major axis and minor axis of the core glass layer (2) are 6.71111% and 3.71111, respectively, ha!
It was oval in shape.

その後、上記ガラス棒111を外径22mとなるように
研削してプリフォームロッド(6)とし、その外周に石
英系ジャケット管を被せて紡糸することにより外径12
5μmの単一偏波光ファイバを得た。
Thereafter, the glass rod 111 is ground to have an outer diameter of 22 m to form a preform rod (6), and a quartz-based jacket tube is placed on the outer periphery of the preform rod (6), which is then spun to have an outer diameter of 22 m.
A 5 μm single polarization optical fiber was obtained.

この楕円コア単一偏波光ファイバは良好な偏波面保存性
を示した。
This elliptical core single polarization optical fiber showed good polarization preservation.

以上説明した通り、本発明方法はコア用ガラス層とタラ
ラドガラス層とを備えたガラス棒を加熱により軟化させ
るとともに該軟化状態のガラス棒にはその外周から外力
を加えて四棒を変形させ、核変形後のガラス棒外形を円
形に加工することを特徴としているから、通常の光フア
イバ用としてつくられている既製のプリフォームロッド
(ガラス棒)を上記の手段の手段によりf形させるだけ
で所望のコア形状が得られることとなり、あとは簡易な
外部加工により棒外形を円形Iこするだけであるから、
これも難度な〈実施できることとなり、総じて単一偏波
光ファイバ用プリフォームロッドが高能率、高精度をも
って製造できることとなる。
As explained above, the method of the present invention involves softening a glass rod provided with a core glass layer and a TARRADO glass layer by heating, and applying an external force to the softened glass rod from its outer periphery to deform the four rods. Since the glass rod is characterized in that the outer shape of the glass rod after deformation is processed into a circular shape, the desired preform rod (glass rod) made for ordinary optical fibers can be shaped into the desired F shape by simply using the above-mentioned means. The core shape is obtained, and all that is left to do is to rub the outer shape of the rod in a circular shape by simple external machining.
This is also difficult to implement, and as a whole, preform rods for single-polarized optical fibers can be manufactured with high efficiency and precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の1実施例を示した略示説明図、第
2図(イ)(ロ)e)はガラス棒の各種変形例を示した
断面図、第3図はガラス棒の円形加工状態を示した断面
図でちる0 (1)・・・・・ガラス棒 (2)・・・・・コア用ガラス層 (3)書・・・・クラッド用ガラス層 (4)e・・・・加熱炉 (5)・・・・0ローラ +61−−−−−プリフォームロッド H・1・・ヒートゾーン F壷・・拳・成形ゾーン 特許出願人 代理人 弁理士  井 藤   誠 第1図     第2@ 第1頁の続き 0発 明 者 菊池偉才 市原市へ幡海岸通6番地古河電 策工業株式会社千葉電線製造所 内 、゛1
Figure 1 is a schematic explanatory diagram showing one embodiment of the method of the present invention, Figures 2 (a), (b), and e) are sectional views showing various modifications of the glass rod, and Figure 3 is a cross-sectional view of the glass rod. Cross-sectional view showing circular processing state (1)...Glass rod (2)...Glass layer for core (3)...Glass layer for cladding (4)e ... Heating furnace (5) ... 0 roller + 61 - Preform rod H 1 ... Heat zone F pot ... Fist / Molding zone Patent applicant's agent Makoto Ifuji No. 1 Figure 2 @ Continued from page 1 0 Author: Kikuchi Isai, Ichihara City, Hata Kaigan-dori 6, Furukawa Densaku Kogyo Co., Ltd., Chiba Electric Wire Works, ゛1

Claims (1)

【特許請求の範囲】 (11コア用ガラス層とその外周のり2ソド用ガラス層
とを備えたガラス棒を加熱により軟化させるとともに該
軟化状態のガラス棒にはその外周から外力を加えて四棒
を変形させ、該変形後のガラス棒外形を円形薔こ加工す
ることを特徴とした単一偏波光ファイバ用プリフォーA
ロンドの製造方法。 (2)  ガラス棒番こ外力を加える手段として四棒の
外周にローラを接触させる特許請求の範囲第1項記載の
単一偏波光ファイバ用プリフオームロンドの製造方法。 (3)  ガラス棒Iこ外力を加える手段として四棒の
外周にガスを吹きつける特許請求の範囲第1項記載の単
一偏波光ファイバ用プリフォームロンドの製造方法。 (4)変形後のガラス棒外形を円形に加工する手段とし
てガラス研削法、ガラス堆積法のいずれか一法または両
法を採用する特許請求の範囲第1項記載の単一偏波光フ
ァイバ用プリフォームロンドの製造方法。
[Claims] (A glass rod having 11 core glass layers and 2 core glass layers on its outer periphery is softened by heating, and an external force is applied to the softened glass rod from its outer periphery. A preform A for single polarized optical fiber characterized by deforming the glass rod and rounding the outer shape of the glass rod after the deformation.
How to make Rondo. (2) A method for manufacturing a preform rond for a single polarization optical fiber according to claim 1, wherein a roller is brought into contact with the outer periphery of the four bars as means for applying an external force to the glass rods. (3) A method for manufacturing a preform rond for a single polarized optical fiber according to claim 1, wherein gas is blown onto the outer periphery of the four glass rods as means for applying an external force to the glass rods. (4) A single-polarization optical fiber fiber optic according to claim 1, wherein one or both of a glass grinding method and a glass deposition method is employed as a means for processing the outer shape of the glass rod into a circular shape after deformation. Method of manufacturing reform rondo.
JP57076347A 1982-05-07 1982-05-07 Production of preform rod for optical fiber for single-phase polarized light Granted JPS58194752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57076347A JPS58194752A (en) 1982-05-07 1982-05-07 Production of preform rod for optical fiber for single-phase polarized light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57076347A JPS58194752A (en) 1982-05-07 1982-05-07 Production of preform rod for optical fiber for single-phase polarized light

Publications (2)

Publication Number Publication Date
JPS58194752A true JPS58194752A (en) 1983-11-12
JPH024539B2 JPH024539B2 (en) 1990-01-29

Family

ID=13602818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57076347A Granted JPS58194752A (en) 1982-05-07 1982-05-07 Production of preform rod for optical fiber for single-phase polarized light

Country Status (1)

Country Link
JP (1) JPS58194752A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188426A (en) * 1981-05-15 1982-11-19 Fujitsu Ltd Manufacture of optical fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188426A (en) * 1981-05-15 1982-11-19 Fujitsu Ltd Manufacture of optical fiber

Also Published As

Publication number Publication date
JPH024539B2 (en) 1990-01-29

Similar Documents

Publication Publication Date Title
US4529426A (en) Method of fabricating high birefringence fibers
US4283213A (en) Method of fabrication of single mode optical fibers or waveguides
JPH0581543B2 (en)
JPS627130B2 (en)
JPS61191543A (en) Quartz base optical fiber
JPS58194752A (en) Production of preform rod for optical fiber for single-phase polarized light
FR2307639A1 (en) Optical fibres with low attenuation - drawn from fused silica blank contg. multilayer core of doped silica and flux (NL191076)
JPH0236535B2 (en)
JPH06235838A (en) Production of polarization maintaining optical fiber
JPS6212626A (en) Production of optical fiber of constant polarized electromagnetic radiation
JPS6218492B2 (en)
JPS6243932B2 (en)
JP2015151328A (en) Method of manufacturing multicore optical fiber preform
JPH0210093B2 (en)
JPS59456B2 (en) Manufacturing method of optical glass fiber
JPS5575933A (en) Production of fiber for light transmission
JPS58135141A (en) Preparation of single polarized optical fiber
JPS5951502B2 (en) Optical fiber manufacturing method
JPS58115403A (en) Multicore constant polarization optical fiber and its manufacture
JPS6350291B2 (en)
JPS5918125A (en) Manufacture of single-polarization single-mode optical fiber
JPS58208148A (en) Manufacture of optical fiber causing single polarization
GB2057160A (en) Processes for producing light-conducting glass fibres
JPH01160838A (en) Production of preform for dispersion-shift optical fiber
JPS6344692B2 (en)